Supporting Information

Palladium-catalyzed carbon-carbon bond cleavage of primary alcohols: decarbonylative coupling of acetylenic aldehydes with haloarenes

Zewei Jin,^a Qiang Li,^a Maoshuai Zhu,^a Yanqiong Zhang,^a Xufei Yan^{*b} and Xiangge Zhou^{*a}

^{*}^a College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China. E-mail: zhouxiangge@scu.edu.cn

^{*b} West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China. E-mail: yanxf92@scu.edu.cn

Contents

1.	General experimental information	3
2.	Optimization of reaction conditons	3
	2.1 Screening of catalyst	3
	2.2 Screening of ligand	3
	2.3 Screening of base	4
	2.4 Screening of solvent	5
	2.5 Screening of the loading of Pd(<i>t</i> -Bu ₃ P) ₂ , Davephos and KO ^t Bu	5
	2.6 Screening of the temperature	6
	2.7 Screening of the time	6
3.	Synthesis of starting materials	7
	3.1 Synthesis of 3-Phenyl-2-propyn-1-ol	7
4.	General procedures of reactions	13
5.	Characterization date of the products	
6.	Synthetic applications	
	6.1 Gram-scale reaction	
	6.2 Derivatization of diphenylacetylene 3a	
7.	Mechanism experiments	29
	7.1 Verifying the possibility of radical pathway	29
	7.2 Control experiment	29
	7.3 Reaction monitoring experiment	
	7.4 Intermediate experiment	
8.	References	
9.	Copies of ¹ H、 ¹³ C and ¹⁹ F spectra	

1. General experimental information

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. NMR spectra were obtained on an Agilent 400-MR DD2 or a Bruker AV II-400 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ (δ = 7.26 ppm). The ¹³C NMR (101 MHz) chemical shifts were given using CDCl₃ as the internal standard (δ = 77.16 ppm). High resolution mass spectra (HR-MS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). An oil bath was used for the reactions that required high temperature conditions.

2. Optimization of reaction conditons

2.1 Screening of catalyst

Eight types of catalyst were surveyed as shown in Table S1. The results showed that $Pd(t-Bu_3P)_2$ gave the best yield, so $Pd(t-Bu_3P)_2$ was chosen as optimal catalyst for further evaluation. **Table S1. Screening of catalyst** ^{*a*}

0

OH t 1a	Br 20 mol % Catalyst 20 mol % Xphos 2.0 equiv. Cs ₂ CO ₃ 2.0 mL CH ₃ CN 130 °C, 12 h	3b
Entry	Catalyst	Yield ^b (%)
1	RhCl(PPh ₃) ₃	<5
2	Cu(OTf) ₂	12
3	Ni(acac) ₂	<5
4	Pd(dppf)Cl ₂	<5
5	Pd(PPh ₃) ₄	8
6	Pd(OAc) ₂	10
7	PdCl ₂	10
8	Pd(<i>t</i> -Bu ₃ P) ₂	20

^a Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), catalyst (10 mol %), Xphos (20 mol %), and Cs₂CO₃ (2.0 equiv.) in CH₃CN (2.0 mL) at 130 °C for 12 h.^{*b*} Isolated yields.

2.2 Screening of ligand

Seven types of ligand were surveyed as shown in Table S2. The results showed that Davephos gave the best yield, so we chose it as the optimal ligand for further evaluation. **Table S2. Screening of ligand** ^{*a*}

OH + 1a 21	b the set of the set	►
<i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr Xphos	P N N Davephos	IMes+HCI
Entry	Ligand	Yield ^b (%)

Entry	Ligand	Yield ^{<i>b</i>} (%)
1	PPh ₃	8
2	PCy ₃	10
3	XPhos	20
4	DavePhos	25
5	o-Phen	<5
6	Вру	12
7	IMes·HCI	8

^a Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), Pd(*t*-Bu₃P)₂ (10 mol %), Ligand (20 mol %), and Cs₂CO₃ (2.0 equiv.) in CH₃CN (2.0 mL) at 130 °C for 12 h. ^{*b*} Isolated yields.

2.3 Screening of base

Six types of base were surveyed as shown in Table S3. The results showed that KO^tBu gave the best yield of 30%. So KO^tBu was chosen as the optimal base for further evaluation. **Table S3. Screening of base** ^{*a*}

OH + 1a	10 mol % Pd(t-Bu ₃ P) ₂ 20 mol % Davephos 2.0 equiv. Base 2.0 mL CH ₃ CN 2b	3b
Entry	Base	Yield ^b (%)
1	Cs ₂ CO ₃	25
2	KOʻBu	30
3	Et ₃ N	<5
4	K ₂ CO ₃	18
5	K ₃ PO ₄	10
6	NaHMDS	18

^{*a*} Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), Pd(*t*-Bu₃P)₂ (10 mol %), Davephos (20 mol %), and Base (2.0 equiv.) in CH₃CN (2.0 mL) at 130 °C for 12 h. ^{*b*} Isolated yields.

2.4 Screening of solvent

Seven types of solvent were surveyed as shown in Table S4. The results showed that Mesitylene gave the best yield of 43%. Considering its chemical properties, such as its high boiling point and the difficulty of removing the solvent at high temperatures using rotary evaporation, so we chose THF as the optimal solvent for further evaluation, which gave a 40% yield.

Table S4. Screening of solvent ^a

OH t 1a	10 mol % Pd(t-Bu ₃ P) ₂ 20 mol % Davephos 2.0 equiv. KO ^t Bu 2.0 mL Solvent 130 °C, 12 h	- Jo 3b
Entry	Solvent	Yield ^b (%)
1	CH₃CN	30
2	Toluene	24
3	THF	40
4	DMSO	<5
5	Mesitylene	43
6	DCE	<5
7	PhCl	35

^a Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), Pd(*t*-Bu₃P)₂ (10 mol %), Davephos (20 mol %), and KO^tBu (2.0 equiv.) in solvent (2.0 mL) at 130 °C for 12 h. ^{*b*} Isolated yields.

2.5 Screening of the loading of Pd(t-Bu₃P)₂, Davephos and KO^tBu

It was found that a yield of 61% could be achieved under the conditions of entry 7. **Table S5. Screening of equivalent**^{*a*}

Entry	loading of Pd(<i>t</i> -Bu ₃ P) ₂	loading of Davephos	loading of base	Yield ^{<i>b</i>} (%)
1	2.5 mol %	5 mol %	2 equiv.	45
2	2.5 mol %	10 mol %	2 equiv.	55
3	2.5 mol %	20 mol %	2 equiv.	50
4	5 mol %	10 mol %	2 equiv.	30
5	2.5 mol %	10 mol %	1 equiv.	29
6	2.5 mol %	10 mol %	1.5 equiv.	38
7	2.5 mol %	10 mol %	2.5 equiv.	61

^a Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), Pd(*t*-Bu₃P)₂ (x mol %), Davephos (y mol %), and KO^{*t*}Bu (z equiv.) in THF (2.0 mL) at 130 °C for 12 h. ^{*b*} Isolated yields.

2.6 Screening of the temperature

Screening of the temperature showed that 120 °C gave the best yield of 66% (entry 4). **Table S6. Screening of temperature**^{*a*}

OH + 1a	2.5 mol % Pd(<i>t</i> -Bu ₃ P) ₂ 10 mol % Davephos 2.5 equiv. KO ^t Bu 2.0 mL THF 2b Temperature, 12 h	3b
Entry	Temperature (°C)	Yield ^b (%)
1	90	55
2	100	58
3	110	63
4	120	66
5	130	61
6	140	45

^a Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), Pd(*t*-Bu₃P)₂ (2.5 mol %), Davephos (10 mol %), and KO^tBu (2.0 equiv.) in THF (2.0 mL) for 12 h. ^b Isolated yields.

2.7 Screening of the time

Screening of the reaction time showed that 14 h gave the best yield of **3b** in 72%, so be as the optimization in this reaction (entry 4).

Table S7. Screening of reaction time^a

OH + 1a 2b	2.5 mol % Pd(<i>t</i> -Bu ₃ P) ₂ →Br 10 mol % Davephos 2.5 equiv. KO ^t Bu 2.0 mL THF 120 °C, time	3b
Entry	Time (h)	Yield ^b (%)
1	8	45
2	10	53
3	12	66
4	14	72
5	16	65

^a Unless otherwise noted, the reactions were carried out under air atmosphere with **1a** (0.3 mmol), **2b** (0.2 mmol), Pd(*t*-Bu₃P)₂ (2.5 mol %), Davephos (10 mol %), and KO^tBu (2.0 equiv.) in THF (2.0 mL) at 120 °C for the indicated time. ^{*b*} Isolated yields.

3. Synthesis of starting materials

3.1 Synthesis of 3-Phenyl-2-propyn-1-ol

Procedure A:

$$R^{1}-I + OH \xrightarrow{Pd(PPh_{3})_{2}Cl_{2}, Cul} OH$$

Et₃N, N₂, RT, overnight R^{1}

In a 25.0 mL oven-dried round-bottom double-necked flask equipped with a magnetic stir bar, iodobenzene (1.02 g, 5 mmol), prop-2-yn-1-ol (0.34 g, 6 mmol), Cul (28.5 mg, 0.15 mmol), and $Pd(PPh_3)_2Cl_2$ (56.2 mg, 0.08 mmol) were sequentially added. Then, 10.0 mL of triethylamine was added. The mixture was stirred overnight at room temperature under a nitrogen atmosphere. Post-treatment involved diluting the mixture and adding a saturated aqueous solution of ammonium chloride, followed by extraction with ethyl acetate (EtOAc). The combined organic layers were washed with a saturated brine, dried over sodium sulfate (Na₂SO₄), filtered, and the solvents were removed under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether /ethyl acetate = 5:1) to obtain the product.¹

Characterization data of starting materials: 3-Phenyl-2-propyn-1-ol (1a)

Light yellow oil, 0.56 g, 85% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.43 (m, 2H), 7.33 – 7.29 (m, 3H), 4.50 (s, 2H), 2.39 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 131.7, 128.5, 128.3, 122.6, 87.3, 85.7, 51.5. HRMS calculated for C₉H₉O [M+H]⁺ 133.0648, found 133.0650. The data are in agreement with those previously reported in the literature.²

3-p-Tolylprop-2-yn-1-ol (1b)

Orange oil, 0.58 g, 80% yield, eluting with 20% ethyl acetate: petroleum ether.¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 4.49 (s, 2H), 2.35 (s, 3H), 1.79 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.8, 131.7, 129.2, 119.5, 86.6, 85.9, 51.8, 21.6. HRMS calculated for C₁₀H₁₁O [M+H]⁺ 147.0805, found 147.0810. The data are in agreement with those previously reported in the literature.²

3-(4-Ethylphenyl) prop-2-yn-1-ol (1c)

Orange oil, 0.65 g, 82% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.49 (s, 2H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.88 (s, 1H), 1.23 (t, *J* = 7.6 Hz, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 144.2, 131.0, 127.2, 118.9, 85.8, 85.2, 51.0, 28.1, 14.6. HRMS calculated for C₁₁H₁₃O [M+H]⁺ 161.0961, found 161.0963. The data are in agreement with those previously reported in the literature.²

4-(4-Methoxyphenyl) prop-2-yn-1-ol (1d)

Colorless crystals, 0.65 g, 80% yield, eluting with 20% ethyl acetate: petroleum ether.¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.39 – 7.31 (m, 2H), 6.85 – 6.77 (m, 2H), 4.46 (s, 2H), 3.78 (s, 3H), 2.17 (s, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.8, 133.3, 114.7, 114.0, 86.0, 85.7, 55.4, 51.7. **HRMS** calculated for C₁₀H₁₁O₂ [M+H]⁺ 163.0754, found 163.0754. The data are in agreement with those previously reported in the literature.²

3-(4-Ethoxyphenyl) prop-2-yn-1-ol (1e)

Light yellow solid, 0.66 g, 75% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.32 (m, 2H), 6.83 – 6.78 (m, 2H), 4.47 (s, 2H), 4.01 (q, *J* = 7.0 Hz, 2H), 2.13 (s, 1H), 1.40 1.40 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.4, 132.5, 113.7, 113.6, 85.1, 84.9, 62.8, 50.9, 14.0. HRMS calculated for C₁₁H₁₃O₂ [M+H]⁺ 177.0911, found 177.0910. The data are in agreement with those previously reported in the literature.²

3-Mesitylprop-2-yn-1-ol (1f)

Colorless crystals, 0.52 g, 60% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.86 (s, 2H), 4.58 (s, 2H), 2.39 (s, 6H), 2.28 (s, 3H), 1.80 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.3, 137.9, 127.6, 119.3, 94.7, 83.5, 51.9, 21.3, 21.0. HRMS calculated for C₁₂H₁₅O [M+H]⁺ 175.1118, found 175.1115.The data are in agreement with

those previously reported in the literature.¹

3-(4-(tert-Butyl) phenyl) prop-2-yn-1-ol (1g)

Brown solid, 0.69 g, 74% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.6 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 4.50 (s, 2H), 1.86 (s, 1H), 1.31 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.0, 130.7, 124.6, 118.7, 85.8, 85.1, 51.0, 34.0, 30.4. HRMS calculated for C₁₃H₁₇O [M+H]⁺ 189.1274, found 189.1276. The data are in agreement with those previously reported in the literature.¹

3-(4-(*N*, *N*-dimethylamino) phenyl)prop-2-yn-1-ol (1h)

Gray-white crystals, 0.51 g, 58% yield, eluting with 25% ethyl acetate: petroleum ether.¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.28 (m, 2H), 6.66 – 6.58 (m, 2H), 4.47 (d, *J* = 5.6 Hz, 2H), 2.96 (s, 6H), 1.99 (s, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 150.3, 132.8, 111.8, 109.3, 86.7, 85.1, 51.8, 40.2. **HRMS** calculated for C₁₁H₁₄NO [M+H]⁺ 176.1070, found 176.1072. The data are in agreement with those previously reported in the literature.⁴

3-(4-Aminophenyl)-2-propyn-1-ol (1i)

Brown solid, 0.48 g, 65% yield, eluting with 30% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.22 (m, 2H), 6.74 – 6.58 (m, 2H), 4.48 (s, 2H), 3.84 (s, 2H), 1.87 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.8, 133.1, 114.7, 111.9, 86.3, 85.1, 51.8. HRMS calculated for C₉H₁₀NO [M+H]⁺ 148.0757, found 148.0756. The data are in agreement with those previously reported in the literature.⁵

3-(4-Trifluoromethylphenyl) prop-2-yn-1-ol (1j)

Light yellow solid, 0.65 g, 65% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.48 (m, 4H), 4.54 (s, 2H), 2.91 (s, 1H).¹³C NMR (101 MHz,

Chloroform-*d*) δ 131.8, 130.2 (q, *J* = 32.7 Hz), 127.8, 126.3 (d, *J* = 1.8 Hz), 125.2 (q, *J* = 3.7 Hz), 123.5 (q, *J* = 272.7 Hz), 122.5, 119.8, 89.7, 84.2, 51.3.¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -63.0. **HRMS** calculated for C₁₀H₈F₃O [M+H]⁺ 201.0522, found 201.0521. The data are in agreement with those previously reported in the literature.²

Methyl 4-(3-hydroxypropynyl) benzoate (1k)

Colorless crystals, 0.72 g, 76% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 4.49 (d, *J* = 4.3 Hz, 2H), 3.88 (s, 3H), 2.74 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 131.6, 129.6, 129.5, 127.4, 90.5, 84.7, 52.3, 51.4. HRMS calculated for C₁₁H₁₁O₃ [M+H]⁺ 191.0703, found 191.0701. The data are in agreement with those previously reported in the literature.⁶

3-(4-Fluoro-phenyl)-prop-2-yn-1-ol (11)

Colorless oil, 0.49 g, 66% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.36 (m, 2H), 7.03 – 6.97 (m, 2H), 4.48 (s, 2H), 2.00 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.6 (d, *J* = 249.7 Hz), 133.6 (d, *J* = 8.3 Hz), 118.6 (d, *J* = 3.4 Hz), 115.6 (d, *J* = 22.2 Hz), 87.0, 84.6, 51.4. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -110.6. HRMS calculated for C₉H₈FO [M+H]⁺ 151.0554, found 151.0556. The data are in agreement with those previously reported in the literature.²

3-(4-Chlorophenyl) prop-2-yn-1-ol (1m)

Yellow oil, 0.60 g, 73% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.31 (m, 2H), 7.31 – 7.23 (m, 2H), 4.49 (s, 2H), 2.32 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 133.8, 132.2, 128.0, 120.3, 87.4, 83.8, 50.8. HRMS calculated for C₉H₈ClO [M+H]⁺ 167.0259, found 167.0256. The data are in agreement with those previously reported in the literature.²

3-(Naphthalen-2-yl) prop-2-yn-1-ol (1n)

Colorless oil, 0.65 g, 72% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400

MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.85 – 7.74 (m, 3H), 7.53 – 7.45 (m, 3H), 4.56 (s, 2H), 2.05 (d, *J* = 3.3 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 132.9, 131.7, 128.3, 128.0, 127.8, 127.8, 126.8, 126.6, 119.8, 87.6, 86.1, 51.7. **HRMS** calculated for C₁₃H₁₁O [M+H]⁺ 183.0805, found 183.0804. The data are in agreement with those previously reported in the literature.⁷

3-(Phenanthren-9-yl) prop-2-yn-1-ol (1o)

Yellow oil, 0.75 g, 65% yield, eluting with 20% ethyl acetate: petroleum ether.¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.72 – 8.61 (m, 2H), 8.48 – 8.38 (m, 1H), 7.99 (s, 1H), 7.87 – 7.54 (m, 5H), 4.69 (d, *J* = 4.8 Hz, 2H), 2.01 (d, *J* = 5.5 Hz, 1H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 132.3, 131.1, 131.1, 130.4, 130.1, 128.6, 127.6, 127.1, 127.1, 127.0, 126.8, 122.8, 122.6, 118.9, 91.7, 84.0, 51.9. **HRMS** calculated for C₁₇H₁₃O [M+H]⁺ 233.0961, found 233.0964. The data are in agreement with those previously reported in the literature.⁷

3-Thiophen-2-yl-prop-2-yn-1-ol (1p)

Yellow oil, 0.48 g, 70% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 – 7.12 (m, 2H), 6.91 – 6.89 (m, 1H), 4.44 (d, *J* = 5.7 Hz, 2H), 1.52 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.4, 127.4, 127.0, 122.4, 91.1, 79.1, 51.7. HRMS calculated for C₇H₇OS [M+H]⁺ 139.0213, found 139.0215. The data are in agreement with those previously reported in the literature.⁷

3-([1,1'-Biphenyl]-4-yl) prop-2-yn-1-ol (1q)

Light yellow solid, 0.78 g, 75% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.57 (m, 2H), 7.56 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.46 – 7.43 (m, 2H), 7.40 – 7.33 (m, 1H), 4.53 (d, *J* = 4.4 Hz, 2H), 1.87 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.3, 140.3, 132.1, 128.9, 127.7, 127.0, 127.0, 121.4, 87.9, 85.6, 51.7. HRMS calculated for C₁₅H₁₃O [M+H]⁺ 209.0961, found 209.0962. The data are in agreement with those previously reported in the literature.⁷

3-(2-Methoxyphenyl) prop-2-yn-1-ol (1r)

Brown oil, 0.61 g, 75% yield, eluting with 25% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.40 (m, 1H), 7.35 – 7.26 (m, 1H), 6.96 – 6.85 (m, 2H), 4.56 (s, 2H), 3.90 (s, 3H), 2.40 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.0, 133.7, 130.0, 120.5, 111.7, 110.6, 91.5, 81.8, 55.8, 51.8. HRMS calculated for C₁₀H₁₁O₂ [M+H]⁺ 163.0754, found 163.0753. The data are in agreement with those previously reported in the literature.⁸

3-(3-Methoxyphenyl) prop-2-yn-1-ol (1s)

Brown oil, 0.57 g, 70% yield, eluting with 25% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.19 (m, 1H), 7.04 – 7.02 (m, 1H), 6.98 – 7.96 (m, 1H), 6.89 – 6.86 (m, 1H), 4.49 (d, *J* = 5.1 Hz, 2H), 3.79 (s, 3H), 2.00 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 129.4, 124.2, 123.5, 116.6, 115.1, 87.1, 85.6, 55.3, 51.6. HRMS calculated for C₁₀H₁₁O₂ [M+H]⁺ 163.0754, found 163.0752. The data are in agreement with those previously reported in the literature.⁸

3-(3,4-Dimethylphenyl) prop-2-yn-1-ol (1t)

White solid, 0.60 g, 75% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (s, 1H), 7.18 (d, *J* = 7.7 Hz, 1H), 7.07 (d, *J* = 7.7 Hz, 1H), 4.48 (d, *J* = 3.8 Hz, 2H), 2.25 (s, 3H), 2.23 (s, 3H), 1.81 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.5, 136.7, 132.8, 129.6, 129.1, 119.7, 86.3, 86.0, 51.7, 19.7, 19.5. HRMS calculated for C₁₁H₁₃O [M+H]⁺ 161.0961, found 161.0963. The data are in agreement with those previously reported in the literature.⁹

3-(3,4-Dimethoxyphenyl) prop-2-yn-1-ol (1u)

Yellow oil, 0.70 g, 73 % yield, eluting with 30% ethyl acetate: petroleum ether.¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (dd, *J* = 8.3, 1.9 Hz, 1H), 6.93 (d, *J* = 1.9 Hz, 1H), 6.77 (d, *J* = 8.3 Hz, 1H), 4.47 (d, *J* = 4.5 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.09 (s, 1H).¹³C NMR (101 MHz, 1H), 4.47 (d, *J* = 4.5 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.09 (s, 1H).¹³C NMR (101 MHz, 1H), 4.47 (d, *J* = 4.5 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.09 (s, 1H).¹³C NMR (101 MHz, 1H), 4.47 (d, *J* = 4.5 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.09 (s, 1H).¹³C NMR (101 MHz, 1H), 4.47 (s, 1H), 4.47

Chloroform-*d*) δ 149.6, 148.6, 125.0, 114.7, 114.5, 111.0, 85.8, 85.7, 55.9, 51.6. **HRMS** calculated for C₁₁H₁₃O₃ [M+H]⁺ 193.0860, found 193.0864. The data are in agreement with those previously reported in the literature.⁹

4. General procedures of reactions

A Schlenk tube (25.0 mL) with a magnetic stir bar was charged with **1** (0.3 mmol, 1.5 equiv.), **2** (0.2 mmol, 1.0 equiv.), $Pd(t-Bu_3P)_2$ (0.005 mmol, 2.5 mol %, 2.5 mg), Davephos (0.02 mmol, 10 mol %, 7.8 mg) and KO'Bu (0.5 mmol, 2.5 equiv, 56.0 mg) and THF (2.0 mL). The Schlenk tube was heated at 120 °C for 14 hours. Then the reaction solution was cooled to ambient temperature and ethyl acetate (2.0 mL) was added. After filtration and evaporation of the solvents under reduced pressure, the residue **3** was purified by column chromatography on silica gel (100% petroleum ether) to provide the desired product.

5. Characterization date of the products

Diphenyl acetylene (3a)

White solid, 26.7 mg, 75% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.62 (m, 4H), 7.50 – 7.38 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 131.7, 128.5, 128.4, 123.4, 89.6. HRMS calculated for C₁₄H₁₁ [M+H]⁺ 179.0856, found 179.0858. The data are in agreement with those previously reported in the literature.¹⁰

4-Methoxylphenyl phenylacetylene (3b)

White solid, 29.9 mg, 72% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.51 (m, 2H), 7.51 – 7.47 (m, 2H), 7.38 – 7.31 (m, 3H), 6.92 – 6.87 (m, 2H), 3.83 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 133.1, 131.5, 128.3, 128.0, 123.6, 115.4, 114.0, 89.4, 88.1, 55.3. HRMS calculated for C₁₅H₁₃O [M+H]⁺ 209.0961, found 209.0961. The data are in agreement with those previously reported in the literature.¹¹

2-Methoxydiphenylacetylene (3c)

Yellow solid, 26.2 mg, 63% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 2H), 7.52 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.38 – 7.29 (m, 4H), 6.95 – 6.91 (m, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.0, 133.6, 131.7, 129.8, 128.3, 128.1, 123.6, 120.5, 112.5, 110.7, 93.5, 85.8, 55.9. HRMS calculated for C₁₅H₁₃O [M+H]⁺ 209.0961, found 209.0962. The data are in agreement with those previously reported in the literature.¹²

1-Methoxy-3-(phenylethynyl) benzene (3d)

Pale yellow oil, 24.1 mg, 58% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.58 (m, 2H), 7.46 – 7.38 (m, 3H), 7.35 – 7.30 (m, 1H), 7.25 – 7.22 (m, 1H), 7.17 – 7.16 (m, 1H), 7.00 – 6.96 (m, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 131.7, 129.5, 128.5, 128.4, 124.4, 124.3, 123.3,116.5, 116.0, 89.5, 89.3, 55.3. HRMS calculated for C₁₅H₁₃O [M+H]⁺ 209.0961, found 209.0962. The data are in agreement with those previously reported in the literature.¹²

4-Methylphenyl phenylacetylene (3e)

White solid, 26.1 mg, 68% yield, eluting with eluting with 100% petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.49 (m, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.44 – 7.28 (m, 3H), 7.17 (d, *J* = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 138.4, 131.6, 131.5, 129.1, 128.3, 128.1, 123.5, 120.2, 89.6, 88.4, 21.5. **HRMS** calculated for C₁₅H₁₃ [M+H]⁺ 193.1012, found 193.1014. The data are in agreement with those previously reported in the literature.¹³

Ethyl-4-(phenylethynyl) benzene (3f)

Yellow oil, 26.8 mg, 65% yield, eluting with 100% petroleum ether.¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.52 (m, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.37 – 7.33 (m, 3H), 7.20 (d, *J* = 7.9 Hz, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H).¹³**C** NMR (101 MHz, Chloroform-*d*) δ 144.8, 131.7, 131.6, 128.4, 128.2, 128.0, 123.6, 120.5, 89.7, 88.8, 28.9, 15.4. HRMS calculated for C₁₆H₁₅ [M+H]⁺ 207.1169, found 207.1165. The data are in agreement with those previously reported in the literature.¹⁴

1-(tert-Butyl)-4-(phenylethynyl) benzene (3g)

White solid, 37.4 mg, 80% yield, eluting with 100% petroleum ether.¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.53 (m, 2H), 7.53 – 7.47 (m, 2H), 7.43 – 7.27 (m, 5H), 1.35 (s, 9H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 151.6, 131.6, 131.4, 128.4, 128.1, 125.4, 123.6, 120.3, 89.6, 88.8, 34.8, 31.2. **HRMS** calculated for C₁₈H₁₉ [M+H]⁺ 235.1482, found 235.1484. The data are in agreement with those previously reported in the literature.¹¹

1-(tert-Butyl)-4-(phenylethynyl) benzene (3h)

White solid, 30.8 mg, 70% yield, eluting with 100% petroleum ether.¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.52 (m, 2H), 7.42 – 7.30 (m, 3H), 6.93 (d, *J* = 8.7 Hz, 2H), 2.52 (d, *J* = 12.6 Hz, 6H), 2.33 (d, *J* = 9.7 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.2, 137.8, 131.4, 128.4, 127.9, 127.6, 127.6, 124.1, 120.0, 97.1, 87.4, 21.4, 21.0. **HRMS** calculated for C₁₇H₁₇ [M+H]⁺ 221.1325, found 221.1327. The data are in agreement with those previously reported in the literature.¹³

4-Aminodiphenylacetylene (3i)

Yellow solid, 11.6 mg, 30% yield, eluting with 20% ethyl acetate: petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 – 7.47 (m, 2H), 7.39 – 7.26 (m, 5H), 6.67 – 6.61 (m, 2H), 3.82 (s, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 146.8, 133.1, 131.5, 128.4, 127.8, 124.0, 114.9, 112.7, 90.2, 87.4. **HRMS** calculated for C₁₄H₁₂N [M+H]⁺ 194.0965, found 194.0962. The data are in agreement with those previously reported in the literature.¹²

4-N, N-dimethyldiphenylacetylene (3j)

White solid, 11.1 mg, 25% yield, eluting with 30% ethyl acetate: petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 – 7.50 (m, 2H), 7.49 – 7.41 (m, 2H), 7.40 – 7.25 (m, 3H), 6.73 – 6.67 (m, 2H), 3.02 (s, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 150.1, 132.7, 131.3, 128.3, 127.5, 124.2, 111.9, 110.1, 90.6, 87.4, 40.2. **HRMS** calculated for C₁₆H₁₆N [M+H]⁺ 222.1278, found 222.1276. The data are in agreement with those previously reported in the literature.¹⁴

4-Nitrodiphenylacetylene (3k)

Yellow solid, 25.9 mg, 58% yield, eluting with 2% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 – 8.18 (m, 2H), 7.71 – 7.63 (m, 2H), 7.60 – 7.52 (m, 2H), 7.46 – 7.34 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.1, 132.4, 131.9, 130.4, 129.4, 128.6, 123.7, 122.2, 94.8, 87.6. HRMS calculated for C₁₄H₁₀NO₂ [M+H]⁺ 224.0707, found 224.0708. The data are in agreement with those previously reported in the literature.¹¹

1-(Phenylethynyl)-4-(trifluoromethyl) benzene (3l)

White solid, 33.4 mg, 68% yield, eluting with 100% petroleum ether.¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.59 (m, 4H), 7.60 – 7.54 (m, 2H), 7.45 – 7.33 (m, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 131.8, 131.8, 129.9 (q, *J* = 32.7 Hz), 128.9, 128.5, 127.2, 125.3 (q, *J* = 4.0 Hz), 124.1(q, *J* = 271.7 Hz), 122.6, 91.8, 88.0. ¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -62.7. HRMS calculated for C₁₅H₁₀F₃ [M+H]⁺ 247.0730, found 247.0734. The data are in agreement with those previously reported in the literature.¹⁴

4-(Phenylethynyl) benzonitrile (3m)

Yellow oil, 21.1 mg, 52% yield, eluting with 2% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.57 (m, 4H), 7.60 – 7.44 (m, 2H), 7.47 – 7.26 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.2, 132.1 132.0, 129.2, 128.6, 128.3, 122.3, 118.6, 111. 6, 93.9, 87.8. HRMS calculated for C₁₅H₁₀N [M+H]⁺ 204.0808, found 204.0807. The data are in agreement with those previously reported in the literature.¹²

4-Chlorodiphenylacetylene (3n)

White solid. 18.2 mg, 43% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.52 (m, 2H), 7.49 – 7.44 (m, 2H), 7.38 – 7.35 (m, 3H), 7.35 – 7.31 (m, 2H).¹³C NMR (101 MHz, Chloroform-*d*) δ 134.4, 132.9, 131.7, 128.8, 128.6, 128.5, 123.0, 121.9, 90.4, 88.4. HRMS calculated for C₁₄H₁₀Cl [M+H]⁺ 213.0466, found 213.0466. The data are in agreement with those previously reported in the literature.¹¹

1,2-Dichloro-4-(phenylethynyl) benzene (30)

White solid. 19.6 mg, 40% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 1.9 Hz, 1H), 7.56 – 7.53 (m, 2H), 7.43 – 7.33 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 133.2, 132.6, 132.6, 131.7, 130.7, 130.4, 128.8, 128.5, 123.3, 122.5, 91.4, 87.1. HRMS calculated for C₁₄H₉Cl₂ [M+H]⁺ 247.0076, found 247.0078. The data are in agreement with those previously reported in the literature.¹⁵

1,2-Dimethoxy-4-(phenylethynyl) benzene (3p)

White solid. 28.6 mg, 60% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.47 (m, 2H), 7.39 – 7.25 (m, 3H), 7.13 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.03 (d, *J* = 1.9 Hz, 1H), 6.83 (d, *J* = 8.3 Hz, 1H), 3.89 (d, *J* = 1.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 148.7, 131.5, 128.4, 128.1, 124.9, 123.5, 115.5, 114.3, 111.1, 89.5, 89.0, 55.9, 55.9. HRMS calculated for C₁₆H₁₅O₂ [M+H]⁺ 239.1067, found 239.1064. The data are in agreement with those previously reported in the literature.¹²

4-(Phenylethynyl)-1,1'-biphenyl (3q)

White solid, 30.5 mg, 60% yield, eluting with 3% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (m, 4H), 7.60 – 7.55 (m, 2H), 7.50 – 7.44 (m, 2H), 7.41 – 7.32 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.1, 140.5, 132.1, 131.7, 129.0, 128.8, 128.5, 128.4, 127.7, 127.1, 123.4, 122.3, 90.2, 89.4. HRMS calculated for C₂₀H₁₅ [M+H]⁺ 255.1169, found 255.1165. The data are in agreement with those previously reported in the literature.¹²

2-(Phenylethynyl) naphthalene (3r)

Colorless oil, 23.3 mg, 51% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.86 – 7.80 (m, 3H), 7.63 – 7.57 (m, 3H), 7.54 – 7.48 (m, 2H), 7.39 – 7.35 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 133.1, 132.9, 131.8, 131.5, 128.5, 128.5, 128.4, 128.1, 127.9, 126.8, 126.6, 123.4, 120.7, 89.9, 89.8. HRMS calculated for C₁₈H₁₃ [M+H]⁺ 229.1012, found 229.1010. The data are in agreement with those previously reported in the literature.¹⁶

9-(Phenylethynyl) phenanthrene (3s)

White solid, 25.0 mg, 45% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.74 – 8.70 (m, 1H), 8.68 (d, *J* = 8.2 Hz, 1H), 8.63 – 8.54 (m, 1H), 8.11 (s, 1H), 7.89 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.75 – 7.70 (m, 4H), 7.70 – 7.65 (m, 1H), 7.64 – 7.60 (m, 1H), 7.53 – 7.37 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 132.0, 131.9, 131.4, 131.2, 130.4, 130.2, 128.7, 128.6, 127.6, 127.2, 127.1, 123.5, 122.9, 122.8, 119.7, 94.1, 87.8. HRMS calculated for C₂₂H₁₅ [M+H]⁺ 279.1169, found 279.1165. The data are in agreement with those previously reported in the literature.¹⁵

1-(2-(2,4,6-Trimethoxyphenyl) ethynyl)-benzene (3t)

Yellow solid, 27.9 mg, 52% yield, eluting with 3% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.51 (m, 2H), 7.36 – 7.21 (m, 3H), 6.11 (s, 2H), 3.88 (s, 6H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.3, 161.7, 131.6, 128.2, 127.6, 124.3, 96.4, 94.5, 90.6, 82.1, 56.2, 55.5. HRMS calculated for C₁₇H₁₇O₃ [M+H]⁺ 269.1173, found 269.1174. The data are in agreement with those previously reported in the literature.¹⁷

1-Methoxy-4-(p-tolylethynyl) benzene (3u)

Yello solid, 30.2 mg, 68% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.9 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 138.0, 133.0, 131.4, 129.1, 120.5, 115.6, 114.0, 88.7, 88.2, 55.3, 21.5. HRMS calculated for C₁₆H₁₅O [M+H]⁺ 223.1118, found 223.1115. The data are in agreement with those previously reported in the literature.¹⁸

1-Ethyl-4-((4-methoxyphenyl) ethynyl) benzene (3v)

White solid, 30.7 mg, 65% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.41 (m, 4H), 7.18 (d, *J* = 8.2 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 2.67 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 144.3, 133.0, 131.4, 127.9, 120.8, 115.6, 114.0, 88.7, 88.2, 55.3, 28.8, 15.4. HRMS calculated for C₁₇H₁₇O [M+H]⁺237.1274, found 237.1275. The data are in agreement with those previously reported in the literature.¹⁹

Bis (p-methoxyphenyl) acetylene (3w)

White solid, 33.3 mg, 70% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.8 Hz, 4H), 6.90 (d, *J* = 8.8 Hz, 4H), 3.85 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.4, 132.9, 115.7, 114.0, 88.0, 55.3. HRMS calculated for C₁₆H₁₅O₂ [M+H]⁺ 239.1067, found 239.1065. The data are in agreement with those previously reported in the literature.¹⁹

1-Ethoxy-4-((4-methoxyphenyl) ethynyl) benzene (3x)

Yello solid, 22.7 mg, 45% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.40 (m, 4H), 6.91 – 6.80 (m, 4H), 4.05 (q, *J* = 7.0 Hz, 2H), 3.82 (s, 3H), 1.42 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.4, 158.8, 132.9, 115.8, 115.5, 114.5, 114.0, 88.0, 87.9, 63.5, 55.3, 14.8. HRMS calculated for C₁₇H₁₇O₂ [M+H]⁺ 253.1224, found 253.1226. The data are in agreement with those previously reported in the literature.²⁰

2-(2-(4-Methoxyphenyl) ethynyl)-1, 3, 5-trimethylbenzene (3y)

Yellow oil, 30.0 mg, 60% yield, eluting with 1% ethyl acetate: petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 6.90 – 6.90 (m, 4H), 3.84 (s, 3H), 2.47 (s, 6H), 2.30 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.4, 139.9, 137.4, 132.7, 127.6, 120.3, 116.2, 114.0, 97.0, 86.0, 55.3, 21.3, 21.0. **HRMS** calculated for C₁₈H₁₉O [M+H]⁺ 251.1431, found 251.1433. The data are in agreement with those previously reported in the literature.²¹

1-(tert-Butyl)-4-((4-methoxyphenyl) ethynyl) benzene (3z)

White solid, 41.2 mg, 78% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.42 (m, 4H), 7.36 (d, *J* = 8.3 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 3.83 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 151.2, 133.0, 131.2, 125.3, 120.6, 115.7, 114.0, 88.7, 88.2, 55.3, 34.8, 31.2. HRMS calculated for C₁₉H₂₁O [M+H]⁺ 265.1587, found 265.1584. The data are in agreement with those previously reported in the literature.¹¹

4-((4-Methoxyphenyl) ethynyl)-N, N-dimethylaniline (3aa)

White solid, 31.6 mg, 63% yield, eluting with 10% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.32 (m, 4H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.9 Hz, 2H), 3.82 (s, 3H), 2.99 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.1, 149.9, 132.7, 132.5, 116.3, 113.9, 111.9, 89.0, 87.1, 55.3, 40.3. HRMS calculated for C₁₇H₁₈NO [M+H]⁺ 252.1383, found 252.1384. The data are in agreement with those previously reported in the literature.²²

4-((4-Methoxyphenyl) ethynyl) aniline (3ab)

White solid, 16.9 mg, 38% yield, eluting with 10% ethyl acetate: petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 8.8 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.63 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H), 3.79 (s, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 159.2, 146.4, 132.8, 132.8, 116.1, 114.8, 113.9, 113.0, 88.6, 87.1, 55.3. **HRMS** calculated for C₁₅H₁₄NO [M+H]⁺ 224.1070, found 224.1074. The data are in agreement with those previously reported in the literature.²³

1-Methoxy-4-((4-(trifluoromethyl) phenyl) ethynyl) benzene (3ac)

White solid, 11.0 mg, 20% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.56 (m, 4H), 7.55 – 7.47 (m, 2H), 6.95 – 6.87 (m, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.1, 133.3, 131.6, 129.5 (q, *J* = 32.6 Hz), 127.5 (d, *J* = 1.6 Hz), 125.2 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 272.1 Hz), 114.6, 114.1, 92.0, 86.9, 55.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.7. HRMS calculated for C₁₆H₁₂F₃O [M+H]⁺ 277.0835, found 277.0834. The data are in agreement with those previously reported in the literature.²⁴

Methyl 4-((4-methoxyphenyl) ethynyl) benzoate (3ad)

White solid. 13.3 mg, 25% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 3.92 (s, 3H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6,160.0, 133.3, 131.3, 129.5, 129.1, 128.4, 114.8, 114.1, 92.6, 87.5, 55.3, 52.2. HRMS calculated for C₁₇H₁₅O₃ [M+H]⁺ 267.1016, found 267.1018. The data are in agreement with those previously reported in the literature.²⁵

1-Fluoro-4-((4-methoxyphenyl) ethynyl) benzene (3ae)

Pale yellow solid, 21.7 mg, 48% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.48 (m, 4H), 7.10 – 7.00 (m, 2H), 6.94 – 6.86 (m, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, *J* = 249.0 Hz), 160.0, 133.3 (d, *J* = 8.2 Hz), 133.1, 119.8 (d, *J* = 3.6 Hz), 115.6 (d, *J* = 22.1 Hz), 115.2, 114.1, 89.2, 87.1, 55.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.3. HRMS calculated for C₁₅H₁₂FO [M+H]⁺ 227.0867, found 227.0864. The data are in agreement with those previously reported in the literature.¹³

1-Chloro-4-(2-(4-methoxyphenyl) ethynyl) benzene (3af)

White solid, 26.1 mg, 54% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.42 (m, 4H), 7.37 – 7.30 (m, 2H), 6.95 – 6.87 (m, 2H), 3.85 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 133.9, 133.1, 132.7, 128.7, 122.2, 115.0, 114.1, 90.4, 87.0, 55.3. HRMS calculated for C₁₅H₁₂CIO [M+H]⁺ 243.0572, found 243.0570. The data are in agreement with those previously reported in the literature.²⁶

2-((4-Methoxyphenyl) ethynyl) naphthalene (3ag)

White solid, 31.0 mg, 60% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.86 – 7.77 (m, 3H), 7.60 – 7.44 (m, 5H), 6.91 (d, *J* = 8.9 Hz, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 133.1, 133.1, 132.7, 131.1, 128.4, 128.0, 127.8, 127.7, 126.5, 121.0, 115.4, 114.1, 89.8, 88.5, 55.3. HRMS calculated for C₁₉H₁₅O [M+H]⁺ 259.1118, found 259.1116. The data are in agreement with those previously reported in the literature.²¹

9-((4-Methoxyphenyl) ethynyl) phenanthrene (3ah)

White solid, 24.6 mg, 40% yield, eluting with 1% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 – 8.64 (m, 2H), 8.60 – 8.51 (m, 1H), 8.07 (s, 1H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.78 – 7.56 (m, 6H), 6.95 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 133.2, 131.4, 131.2, 130.2, 130.1, 128.5, 127.3, 127.0, 127.0, 122.8, 122.6, 120.0, 115.5, 114.1, 94.0, 86.4, 55.4. HRMS calculated for C₂₃H₁₇O [M+H]⁺ 309.1274, found 309.1271. The data are in agreement with those previously reported in the literature.¹³

2-((4-Methoxyphenyl) ethynyl) thiophene (3ai)

Yellow oil, 18.4 mg, 43% yield, eluting with 5% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, *J* = 8.9 Hz, 2H), 7.32 – 7.25 (m, 2H), 7.03 (m, 1H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 133.0, 131.5, 127.1, 126.8, 123.7, 115.0, 114.1, 93.0, 81.3, 55.3. HRMS calculated for C₁₃H₁₁OS [M+H]⁺ 215.0526, found 215.0526. The data are in agreement with those previously reported in the literature.²³

Phenyl 4-((4-methoxyphenyl) ethynyl) benzoate (3aj)

Yellow solid, 23.3 mg, 41% yield, eluting with 5% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.58 (m, 6H), 7.55 – 7.48 (m, 2H), 7.49 – 7.44 (m, 2H), 7.41 – 7.33 (m, 1H), 6.94 – 6.87 (m, 2H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 140.6, 140.4, 133.1, 131.9, 128.9, 127.6, 127.0, 122.6, 115.4, 114.1, 90.1, 88.1, 55.3. HRMS calculated for C₂₁H₁₇O [M+H]⁺ 285.1274, found 285.1275. M. P: 149.5 – 150 °C.

3,4'-Dimethoxytolan (3ak)

Yellow oil, 30.5 mg, 64% yield, eluting with 3% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.43 (m, 2H), 7.31 – 7.19 (m, 1H), 7.13 – 7.08 (m, 1H), 7.05 – 7.02 (m, 1H), 6.90 – 6.83 (m, 1H), 6.87 – 6.84 (m, 2H), 3.81 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 159.4, 133.1, 129.4, 124.6, 124.1, 116.2, 115.3, 114.6, 114.0, 89.3, 88.1, 55.3, 55.3. HRMS calculated for C₁₆H₁₅O₂ [M+H]⁺ 239.1067, found 239.1065. The data are in agreement with those previously reported in the literature.²¹

1-Methoxy-2-[(4-methoxyphenyl) ethynyl] benzene (3al)

Yellow solid, 29.5 mg, 62% yield, eluting with 3% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.44 (m, 3H), 7.31 – 7.26 (m, 1H), 7.00 – 6.84 (m, 4H), 3.91 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 159.5, 133.5, 133.1, 129.5, 120.5, 115.7, 113.9, 112.8, 110.7, 93.5, 84.4, 55.8, 55.3. HRMS calculated for C₁₆H₁₅O₂ [M+H]⁺ 239.1067, found 239.1065. The data are in agreement with those previously reported in the literature.²¹

1-((4-Methoxyphenyl) ethynyl)-3,5-dimethylbenzene (3am)

White solid, 19.8 mg, 42% yield, eluting with 3% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.45 (m, 2H), 7.19 (s, 2H), 6.97 (s, 1H), 6.94 – 6.86 (m, 2H), 3.83 (s, 3H), 2.34 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.6, 137.9, 133.1, 129.9, 129.2, 123.2, 115.6, 114.0, 88.7, 88.5, 55.3, 21.2. HRMS calculated for C₁₇H₁₇O [M+H]⁺ 237.1274, found 237.1276. The data are in agreement with those previously reported in the literature.²⁷

1,2-Dimethoxy-4-((4-methoxyphenyl) ethynyl) benzene (3an)

White solid, 25.7 mg, 48% yield, eluting with 3% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.44 (m, 2H), 7.14 (dd, *J* = 8.3, 1.9 Hz, 1H), 7.05 (d, *J* = 1.9 Hz, 1H), 6.92 – 6.87 (m, 2H), 6.85 (d, *J* = 8.3 Hz, 1H), 3.92 (s, 3H), 3.92 (s, 3H), 3.84 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 149.3, 148.6, 132.9, 124.7, 115.8, 115.6, 114.2, 114.0, 111.0, 88.1, 87.9, 55.9, 55.3. HRMS calculated for C₁₇H₁₇O₃ [M+H]⁺ 269.1173, found 269.1174. The data are in agreement with those previously reported in the literature.²⁸

6. Synthetic applications

6.1 Gram-scale reaction

A Schlenk tube (100.0 mL) with a magnetic stir bar was charged with **1a** (7.5 mmol, 1.09 g), **2g** (5.0 mmol, 1.06 g), $Pd(t-Bu_3P)_2$ (0.125 mmol, 62.5 mg), Davephos (0.5 mmol, 196.5 mg), KO^tBu (12.5 mmol, 1.4 g) and THF (30.0 mL). The Schlenk tube was heated at 120 °C for 14 hours. Then the reaction solution was cooled to ambient temperature and ethyl acetate was added. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by column chromatography on silica gel (100% petroleum ether) to provide the desired product **3g** (3.7 mmol, 0.87 g, 75% yield).

6.2 Derivatization of diphenylacetylene 3a

6.2.1 Synthesis of triphenylethylene

A Schlenk tube (25.0 mL) equipped with a magnetic stir bar was charged with **3a** (0.5 mmol, 89.1 mg), benzoic acid (0.5 mmol, 61.7 mg), [Ru(*p*-cym)Cl₂]₂ (0.02 mmol, 12.2 mg), guanidine

carbonate (0.1 mmol, 18.2 mg), HOAc (0.5 mmol, 28.9 μ L), 2-picoline (0.1 mmol, 9.9 μ L) and degassed toluene (2.0 mL) .The Schlenk tube was then heated to 120 °C for 24 hours. After the reaction, the solution was cooled to ambient temperature, brine (20.0 mL) was added and the resulting mixture was extracted with ethyl acetate. The combined organic layers were dried over MgSO₄, filtered, and the volatiles were removed under reduced pressure. The purification **4a** was performed by flash column chromatography on silica gel.

Triphenylethylene (4a)

White solid, 0.3 mmol, 76.8 mg, 60% yield, eluting with 100% petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.31 (m, 8H), 7.29 – 7.27 (m, 2H), 7.24 – 7.14 (m, 3H), 7.13 – 7.08 (m, 2H), 7.03 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.5, 142.7, 140.4, 137.4, 130.5, 130.5, 129.6, 129.6, 128.7, 128.7, 128.3, 128.3, 128.2, 128.0, 128.0, 127.7, 127.7, 127.6, 127.5, 126.8. HRMS calculated for C₂₀H₁₇ [M+H]⁺ 257.1325, found 257.1324. The data are in agreement with those previously reported in the literature.²⁹

6.2.2 Synthesis of quinoxaline

A Schlenk tube (25.0 mL) equipped with a magnetic stir bar was charged with **3a** (1.0 mmol, 178 mg), PhI(OAc)₂ (10 mol %, 32.2 mg), 1,2-diaminobenzene derivatives (1.0 mmol, 108 mg), PivOH (3.0 mmol, 678 mg), and dry dimethyl sulfoxide (5.0 mL). The Schlenk tube was then heated to 140 °C and maintained under oxygen atmosphere for 18 hours. After the reaction, the solution was cooled to ambient temperature and poured into a saturated sodium bicarbonate solution (10.0 mL). The aqueous phase was extracted with ethyl acetate, and the combined organic layers were washed with water and brine. The organic layer was dried over Na₂SO₄, filtered, and the volatiles were removed under reduced pressure. The purification **4b** was performed by flash column chromatography on silica gel.

2,3-diphenylquinoxaline (4b)

White solid, 0.5 mmol, 141 mg, 50% yield, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (dd, *J* = 6.4, 3.4 Hz, 2H), 7.78 (dd, *J* = 6.4, 3.4 Hz, 2H), 7.58 – 7.55 (m, 4H), 7.43 – 7.30 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.5, 141.3, 139.1, 130.0, 129.9, 129.2, 128.8, 128.3. HRMS calculated for C₂₀H₁₄N₂ [M+H]⁺ 283.1230, found 283.1233. The data are in agreement with those previously reported in the literature.³⁰

6.2.3 Synthesis of indole compounds

A reaction flask (100.0 mL) equipped with a magnetic stir bar was charged with $Pd(OAc)_2$ (0.25 mmol, 56 mg), D^tBPF(0.3 mmol, 142 mg), 2-chloro-4-methylaniline (5 mmol, 0.71 g), **3a** (10.0 mmol, 1.78g), K₂CO₃ (12.5 mmol, 1.73 g) and DMF (50.0 mL). The reaction was then heated to 110 °C and maintained under nitrogen atmosphere for 20 hours. The mixture was filtered through a layer of celite and washed with ethyl acetate. The filtrate was diluted with water, extracted with EtOAc. The combined organic phase was washed with water and brine, dried over MgSO₄, filtered and concentrated to give a dark brown residue. The purification **4c** was performed by flash column chromatography on silica gel.

2,3-Diphenyl-1H-indole (4c)

Beige solid, 2.2 mmol, 590 mg, 45%, eluting with 20% ethyl acetate: petroleum ether. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.49 – 7.40 (m, 5H), 7.40 – 7.27 (m, 5H), 7.27 – 7.17 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.0, 135.1, 134.1, 132.7, 130.2, 128.8, 128.7, 128.6, 128.2, 127.8, 126.3, 122.8, 120.5, 119.8, 115.1, 110.4. HRMS calculated for C₂₀H₁₆N [M+H]⁺ 270.1278, found 270.1276. The data are in agreement with those previously reported in the literature.³¹

6.2.4 Synthesis of isoquinolinone

A Schlenk tube (25.0 mL) equipped with a magnetic stir bar was charged with benzamide (0.3 mmol, 59.1 mg), **3a** (0.6 mmol, 106.8 mg), 10 mol % Pd/C (0.03 mmol, 31.8 mg), Nal (0.6 mmol, 111.6 mg), Cs_2CO_3 (0.3 mmol, 97.8 mg) and KOAc (0.6 mmol, 57.6 mg) and DMF (1.0 mL). The reaction was then heated to 120 °C and maintained under air for 36 hours. The mixture was filtered and washed with H₂O and extracted with CH₂Cl₂. The combined organic phase was dried with anhydrous Na₂SO₄. After removal of solvents under reduced pressure, the residue was absorbed to small amounts of silica. The purification **4d** was performed by flash column chromatography on silica gel.

2,3,4-triphenylisoquinolin-1(2H)-one (4d)

White solid, 0.19 mmol, 70.9 mg, 65%, eluting with 20% ethyl acetate: petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.61 (d, *J* = 9.6 Hz, 1H), 7.67 – 7.52 (m, 2H), 7.33 – 7.12 (m, 11H), 6.93 (s, 5H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 162.7, 141.1, 139.5, 137.7, 136.4, 134.8,

132.6, 131.7, 131.1, 129.6, 128.6, 128.3, 128.0, 127.6, 127.3, 127.1, 126.9, 126.9, 125.6, 125.5, 118.8. **HRMS** calculated for $C_{27}H_{20}NO$ [M+H]⁺ 374.1540, found 374.1540. The data are in agreement with those previously reported in the literature.³²

7. Mechanism experiments

7.1 Verifying the possibility of radical pathway

A Schlenk tube (25.0 mL) with a magnetic stir bar was charged with **1a** (0.3 mmol, 1.5 equiv.), **2b** (0.2 mmol, 1.0 equiv.), $Pd(t-Bu_3P)_2$ (0.005 mmol, 2.5 mol %, 2.5 mg), Davephos (0.02 mmol, 10 mol %, 7.8 mg), KO^tBu (0.5 mmol, 2.5 equiv, 56.0 mg) and THF (2.0 mL). Then BHT (0.2 mmol, 1.0 equiv, 44.0 mg) or TEMPO (0.2 mmol, 1.0 equiv, 31.2 mg) was added to the reaction. The Schlenk tube was then sealed with a Teflon lined cap and then heated at 120 °C for 14 hours. The reaction solution was then cooled to ambient temperature and EA (3.0 mL) was added. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by column chromatography on silica gel (100% petroleum ether) to provide the desired product **3b** in 24.9 mg (60% yield) and 22.8 mg (55% yield) respectively.

7.2 Control experiment

A Schlenk tube (25.0 mL) with a magnetic stir bar was charged with **1a** (0.3 mmol, 1.5 equiv.), **2b** (0.2 mmol, 1.0 equiv.), $Pd(t-Bu_3P)_2$ (0.005 mmol, 2.5 mol %, 2.5 mg), Davephos (0.02 mmol, 10 mol %, 7.8 mg), KO^tBu (0.5 mmol, 2.5 equiv, 56.0 mg) and THF (2.0 mL). The Schlenk tube was then sealed with a Teflon lined cap and then heated at 120 °C for 1min. After the indicated time, the reaction solution was cooled to ambient temperature and EA (3.0 mL) was added. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by column chromatography on silica gel (10% ethyl acetate: petroleum ether) to provide the desired product **IM-1** (0.06 mmol, 7.8 mg, 30% yield). Subsequently, we characterized the results using NMR and HRMS.

3-phenylpropiolaldehyde(IM-1)

Pale yellow liquid, 0.06 mmol, 7.8 mg, 30%, eluting with 10% ethyl acetate: petroleum ether. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.42 (s, 1H), 7.64 – 7.57 (m, 2H), 7.53 – 7.44 (m, 1H), 7.44 - 7.36 (m, 2H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 176.8, 133.3, 131.3, 128.7, 119.4, 95.1, 88.4. **HRMS** calculated for C₉H₇O [M+H]⁺ 131.0492, found 131.0491. The data are in agreement with those previously reported in the literature.³³

7.3 Reaction monitoring experiment

A Schlenk tube (25.0 mL) with a magnetic stir bar was charged with **1a** (0.3 mmol, 1.5 equiv.), **2b** (0.2 mmol, 1.0 equiv.), $Pd(t-Bu_3P)_2$ (0.005 mmol, 2.5 mol %, 2.5 mg), Davephos (0.02 mmol, 10 mol %, 7.8 mg), KO^tBu (0.5 mmol, 2.5 equiv, 56.0 mg) and THF (2.0 mL). The Schlenk tube was then sealed with a Teflon lined cap and then heated at 120 °C, We selected five different time intervals (0.017h, 2h, 4h, 8h, 14h) to monitor the reaction, observing the changes of IM-1 and **3b** over time.

7.4 Intermediate experiment

A Schlenk tube (25.0 mL) with a magnetic stir bar was charged with **IM-1** (0.3 mmol, 1.5 equiv.), **2b** (0.2 mmol, 1.0 equiv.), $Pd(t-Bu_3P)_2$ (0.005 mmol, 2.5 mol %, 2.5 mg), Davephos

(0.02 mmol, 10 mol %, 7.8 mg), KO^tBu (0.5 mmol, 2.5 equiv, 56.0 mg) and THF (2.0 mL). The Schlenk tube was then sealed with a Teflon lined cap and then heated at 120 °C for 14 hours. After the indicated time, the reaction solution was cooled to ambient temperature and EA (3.0 mL) was added. After filtration and evaporation of the solvents under reduced pressure, the residue was purified by column chromatography on silica gel (100% petroleum ether) to obtain product **3b** in 80% yield. Considering that we successfully detected substance **IM-1** in the control experiment, it is sufficient to conclude that **IM-1** is indeed the intermediate of the reaction.

8. References

- T. Sang, J. Liang, S. Guo, J. Yang, X. Bao and C. Huo, *J. Org. Chem.*, 2023, 88, 10232– 10241.
- M. Wang, S. Jiang, X. Lu, K. Zhang, Z. Yuan, R. Xu, B. Zhao and A. Wu, Org. Biomol. Chem., 2023, 21, 5949–5952.
- C. M. Le, P. J. C. Menzies, D. A. Petrone and M. Lautens, *Angew. Chem. Int. Ed.*, 2015, 127, 256–259.
- M. Klikar, I. V. Kityk, D. Kulwas, T. Mikysek, O. Pytela and F. Bureš, *New J. Chem.*, 2017, 41, 1459–1472.
- O. Koniev, S. Kolodych, Z. Baatarkhuu, J. Stojko, J. Eberova, J. Bonnefoy, S. Cianferani, A. V. Dorsselaer and A. Wagner, *Bioconjugate Chem.*, 2015, 26, 1863–1867.
- 6. N. Chaisan, S. Ruengsangtongkul, C. Thongsornkleeb, J. Tummatorn and S. Ruchirawat, *Synlett.*, 2022, **33**, 1426–1430.
- Q. Zhang, Y. Duan, H. Guo, H. Yang, J. Zhai, T. Li, Z. Wang, X. Lu, Y. Wang and Y. Yin, Chem. Asian. J., 2021, 16, 1832–1838.
- 8. Z. Wang, Y. Sun, Q. Zhang, W. Pan, T. Li and Y. Yin, J. Org. Chem., 2022, 87, 3329–3340.
- C. Chen, Y. Huang, Z. Zhang, X. Dong and X. Zhang, *Chem. Commun.*, 2017, **53**, 4612–4615.
- 10. G. Sullivan, Y. Zhang, G. Xu, L. Christianson, F. Luengo, T. Halkoski and P. Gao, *Green Chem.*, 2022, **24**, 7184–7193.
- S. Kumari, A. K. Dhara, A. Ratnam, K. Mawai, V. K. Chaudhary, A. Mohanty and K. Ghosh, *J. Org. Chem.*, 2020, **928**, 121367.
- 12. Y. Chen, S. Li, L. Xu and D. Ma, J. Org. Chem., 2023, 88, 3330-3334.
- 13. S. Sil, A. U. Krishnapriya, P. Mandal, R. Kuniyil and S. K. Mandal, *Chem. Eur. J.*, 2024, **30**, e202400895.
- 14. M. Ye, M. Hou, Y. Wang, X. Ma, K. Yang and Q. Song, Org. Lett., 2023, 25, 1787–1792.
- 15. T. Truong and O. Daugulis, Org. Lett., 2011, 13, 4172–4175.
- 16. Y. Chen, S. Li, L. Xu and D. Ma, J. Org. Chem., 2023, 88, 3330-3334.
- 17. T. Haro, C. Nevado, J. Am. Chem. Soc., 2010, 132, 1512–1513.
- 18. Y. Ji, N. Zhong, Z. Kang, G. Yan and M. Zhao, Synlett., 2018, 29, 209–214.
- 19. L. Liang, H. Niu, R. Li, Y. Wang, J. Yan, C. Li and H. Guo, Org. Lett., 2020, 22, 6842–6846.
- 20. A. Tlahuext-Aca, M. N. Hopkinson, B. Sahoo and F. Glorius, Chem. Sci., 2016, 7, 89.
- 21. P. K. Mandali, D. K. Chand, Cat Commun., 2014, 47, 40-44.
- 22. M. Liu, M. Ye, Y. Xue, G. Yin, D. Wang and J. Huang, *Tetrahedron Letters.*, 2016, **57**, 3137–3139.
- 23. C. Rossy, J. Majimel, E. Fouquet, C. Delacote, M. Boujtita, C. Labrugere, M. Treguer-

Delapierre, F. X. Felpin, Chem. Eur. J., 2013, 19, 14024-14029.

- 24. A. F. Palermo, B. S. Y. Chiu, P. Patel and S. A. L. Rousseaux, *J. Am. Chem. Soc.*, 2023, **145**, 24981–24989.
- 25. J. Cao, W. Ding and G. Zou, Org. Lett., 2024, 26, 4576-4580.
- 26. M. Chourasiya, A. Kumar, V. N. Vikram and N. Tadigopila, *Chem. Commun.*, 2023, **59**, 9650–9653.
- 27. Z. Tian, S. Wang, S. Jia, H. Song and C. Zhang, Org. Lett., 2017, 19, 5454–5457.
- J. Liang, L. Yang, S. Wu, S. Liu, M. Cushman, J. Tian, N. Li, Q. Yang, H. Zhang, Y. Qiu, L. Xiang, C. Ma, X. Li and H. Qing, *Eur. J. Med. Chem.*, 2017, **136**, 382–392.
- L. Huang, A. Biafora, G. Zhang, V. Bragoni, L. J. Gooβen, *Angew. Chem. Int. Ed.*, 2016, 55, 6933–6937.
- 30. C. Chen, W. Hu, M. Liu, P. Yan, J. Wang, M. Chung, Tetrahedron., 2013, 69, 9735–9741.
- M. Shen, G. Li, B. Z. Lu, A. Hossain, F. Roschangar, V. Farina and C. H. Senanayake, Org. Lett., 2004, 6, 4129–4132.
- 32. Z. Shu, Y. Guo, W. Li, B. Wang, Catalysis Today., 2017, 297, 292–297.
- 33. N. Brach, L. Popek, M. Truong, C. Laurent, V. Bizet, K. P. Kaliappan and N. Blanchard, *Org. Lett.*, 2023, **25**, 7847–7851.

9. Copies of ${}^{1}H$ ${}^{13}C$ and ${}^{19}F$ spectra

¹³C NMR (101 MHz, CDCl₃) spectrum of 1c

¹³C NMR (101 MHz, CDCl₃) spectrum of 1d

¹³C NMR (101 MHz, CDCl₃) spectrum of 1e

¹³C NMR (101 MHz, CDCl₃) spectrum of 1f

¹³C NMR (101 MHz, CDCl₃) spectrum of 1g

¹³C NMR (101 MHz, CDCl₃) spectrum of 1h

¹³C NMR (101 MHz, CDCl₃) spectrum of 1i

¹³C NMR (101 MHz, CDCl₃) spectrum of 1j

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 1j

¹³C NMR (101 MHz, CDCl₃) spectrum of 1k

¹³C NMR (101 MHz, CDCl₃) spectrum of 11

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 11

¹³C NMR (101 MHz, CDCl₃) spectrum of 1m

¹³C NMR (101 MHz, CDCl₃) spectrum of 1n

¹³C NMR (101 MHz, CDCl₃) spectrum of 10

¹³C NMR (101 MHz, CDCl₃) spectrum of 1p

¹³C NMR (101 MHz, CDCl₃) spectrum of 1q

¹³C NMR (101 MHz, CDCl₃) spectrum of 1s

¹³C NMR (101 MHz, CDCl₃) spectrum of 1t

¹³C NMR (101 MHz, CDCl₃) spectrum of 1u

¹³C NMR (101 MHz, CDCl₃) spectrum of 3a

¹³C NMR (101 MHz, CDCl₃) spectrum of 3b

¹³C NMR (101 MHz, CDCl₃) spectrum of 3c

¹³C NMR (101 MHz, CDCl₃) spectrum of 3d

¹³C NMR (101 MHz, CDCl₃) spectrum of 3e

¹³C NMR (101 MHz, CDCl₃) spectrum of 3f

¹³C NMR (101 MHz, CDCl₃) spectrum of 3g

¹³C NMR (101 MHz, CDCl₃) spectrum of 3h

¹³C NMR (101 MHz, CDCl₃) spectrum of 3i

¹³C NMR (101 MHz, CDCl₃) spectrum of 3j

¹³C NMR (101 MHz, CDCl₃) spectrum of 3k

¹³C NMR (101 MHz, CDCl₃) spectrum of 31

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 31

¹³C NMR (101 MHz, CDCl₃) spectrum of 3m

¹³C NMR (101 MHz, CDCl₃) spectrum of 3n

¹³C NMR (101 MHz, CDCl₃) spectrum of 30

¹³C NMR (101 MHz, CDCl₃) spectrum of 3p

¹³C NMR (101 MHz, CDCl₃) spectrum of 3q

¹³C NMR (101 MHz, CDCl₃) spectrum of 3r

¹³C NMR (101 MHz, CDCl₃) spectrum of 3s

¹³C NMR (101 MHz, CDCl₃) spectrum of 3t

¹³C NMR (101 MHz, CDCl₃) spectrum of 3u

¹³C NMR (101 MHz, CDCl₃) spectrum of 3v

¹³C NMR (101 MHz, CDCl₃) spectrum of 3w

¹³C NMR (101 MHz, CDCl₃) spectrum of 3x

¹³C NMR (101 MHz, CDCl₃) spectrum of 3y

¹³C NMR (101 MHz, CDCl₃) spectrum of 3z

¹³C NMR (101 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ab

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ac

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3ac

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ad

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ae

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ag

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ah

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ai

¹³C NMR (101 MHz, CDCl₃) spectrum of 3aj

¹³C NMR (101 MHz, CDCl₃) spectrum of 3ak

¹³C{¹H} NMR (101 MHz, CDCl₃) spectrum of 3al

¹³C NMR (101 MHz, CDCl₃) spectrum of 3am

¹³C NMR (101 MHz, CDCl₃) spectrum of 3an

¹³C NMR (101 MHz, CDCl₃) spectrum of 4a

¹³C NMR (101 MHz, CDCl₃) spectrum of 4b

¹³C NMR (101 MHz, CDCl₃) spectrum of 4c

¹³C NMR (101 MHz, CDCl₃) spectrum of 4d

¹³C NMR (101 MHz, CDCl₃) spectrum of IM-1