Supplemental information

Fumed Silica-Based Composite Phase Change Materials with Effective Electric and Magnetic Heating Abilities for Wearable Thermotherapy

1. Raman results

The Raman spectrum of EG@Fe₃O₄ compared to pristine EG is shown in Figure S1a. The pristine EG showed two features at 1582 and 2723 cm⁻¹, assigned to the G and 2D bands, which are typical for graphitic materials. The spectrum of EG@Fe₃O₄ additionally showed a feature of Fe₃O₄ at 716 cm⁻¹ [1, 2], demonstrating the Fe₃O₄ inclusion. Figure S1b compares the Raman spectra of 60 and 75% PW CPCMs to FS, EG@Fe₃O₄, and pure PW. The Raman bands of pure PW have been welldocumented in previous reports [3]. The features at 2850 and 2881 cm⁻¹ were assigned to symmetric and asymmetric CH₂ stretching, respectively. Meanwhile, two weak shoulders at 2935 and 2963 cm⁻¹ were assigned to symmetric and asymmetric CH₃ stretching, respectively. In addition, the feature at 1293 cm⁻¹ was assigned to the CH₂ twisting band and those between 1400-1500 cm⁻¹ were assigned to the CH₂ bending and scissor. In the C–C stretching region, the bands at 1061 and 1129 cm⁻¹ were assigned to the symmetric and asymmetric C-C stretching, respectively. For the prepared 60 and 75% PW CPCMs, the vibrations of confined PW were altered compared to pure PW, in which the CH₂ vibration intensity at 2881 cm⁻¹ was significantly decreased, and those between 1000 and 1500 cm⁻¹ were not well resolved. This phenomenon was attributed to the confinement of PW inside FS and EG@Fe₃O₄ pores, limiting the stretching and vibrations of PW. These confinement effects were also discussed in previous reports [4-6]. Overall,

the Raman results demonstrated a successful preparation of $EG@Fe_3O_4$ and a successful infiltration of PW into FS and $EG@Fe_3O_4$ porous networks.

Figure S1. Raman spectra of (a) EG and EG@Fe₃O₄, and (b) PW, 75% PW, 60% PW, EG@Fe₃O₄, and FS.

2. Porosity properties

Table S1. Porous properties of FS and the prepared CPCMs

CPCMs	Surface area	Pore volume*	Pore size
	(m^{2}/g)	(cm^{3}/g)	(nm)
FS	205	0.95	-
60% PW	71	0.37	-
70% PW	26	0.32	-
75% PW	15	0.23	-
80% PW	-	0.035	-

*Pore volume calculated from the N₂ adsorption–desorption isotherm.

References

[1]. Guo C, Hu Y, Qian H, Ning J and Xu S 2011 Magnetite (Fe3O4) tetrakaidecahedral microcrystals: Synthesis, characterization, and micro-Raman study *Mater Charact* **62** (1)148-51.

[2]. de Jesús Ruíz-Baltazar Á, Reyes-López SY and Pérez R 2017 Magnetic structures synthesized by controlled oxidative etching: Structural characterization and magnetic behavior *Results in Physics* **7** 1828-32.

[3]. Zheng M and Du W 2006 Phase behavior, conformations, thermodynamic properties, and molecular motion of multicomponent paraffin waxes: A Raman spectroscopy study *Vib Spectrosc* **40** (2)219-24.

[4]. Wang J, Yang M, Lu Y, Jin Z, Tan L, Gao H, Fan S, Dong W and Wang G 2016 Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials *Nano Energy* **19** 78-87.

[5]. Aftab W, Huang X, Wu W, Liang Z, Mahmood A and Zou R 2018 Nanoconfined phase change materials for thermal energy applications *Energy Environ Sci* **11** (6)1392-424.

[6]. Gao H, Wang J, Chen X, Wang G, Huang X, Li A and Dong W 2018 Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review *Nano Energy* **53** 769-97.