Influence of Spin Crossover Iron(III) Complex to the Detection of Analytes Phenylenediamines of Graphene-modified Screen Printed Electrodes

Basharat Ali,^a Theerapoom Boonprab,^a Warisa Thammasangwan,^b Sittipong Kaewmorakot,^b Chanpen Karuwan,^c Adisorn Tuantranont,^d Guillaume Chastanet,^e David J. Harding^{a*} and Phimphaka Harding^{a*}

^a School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

^b Functional Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand

^c National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

^d National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

^e Université de Bordeaux, CNRS, Bordeuax INP, ICMCB, 87 avenue du Dr A. Schweitzer, Pessac, F-33608, France

E-mail: phimphaka@g.sut.ac.th or david@g.sut.ac.th

Experimental

General Experimental

All manipulations were performed in air with reagent-grade solvents. All other chemicals were purchased from Sigma-Aldrich or TCI Chemicals and used as received. Infrared spectra were collected as KBr discs on a Bruker Tensor 27 FT-IR spectrometer in the range of 400-4000 cm⁻¹ using OPUS software for data collection. Electronic spectra were recorded in solution of **1** in CH_2Cl_2 (0.03125-0.25 mM) at room temperature on PG Instruments T80+ UV/Vis Spectrometer in the range of 200-900 nm. Elemental analyses were carried out by using a Eurovector EA3000 analyzer. ESI-MS were carried out on a Bruker AmaZon X LCMS Mass Spectrometer. Thermogravimetric analyses were performed on Mettler Toledo TGA/DSC1 in the range of 35-300°C.

Crystallographic data of [Fe(salEen-5-I)₂]NCS·0.3CH₂Cl₂·0.5H₂O was collected at 150 K on a Bruker Nonius Kappa CCD diffractometer using MoK α radiation (λ = 0.71073 Å). The structure was solved by direct methods within the SHELX suite of programs and refined on F^2 by the fullmatrix least-squares method using the SHELXL program via the Olex². Powder X-ray diffraction data were measured on a Rigaku SuperNova diffractometer with a HyPix 3000 detector using CuK α radiation (λ = 1.54184 Å). The samples were ground and then suspended in Fomblim Y oil, and the data were collected between 2 θ = 5–80°.

Magnetic susceptibility data were collected with a Quantum Design MPMS 5 SQUID magnetometer under an applied field of 1 T over the temperature range 220-430 K. The powdered or polycrystalline samples were placed in gel capsules and care was taken to allow long thermal equilibration times at each temperature.

Synthesis of [Fe(qsal-5-I)₂]NCS 1

A solution of 5-iodosalicyladehyde (0.496 g, 2 mmol) in ethanol (6 mL) was charged with Nethylethylenediamine (0.210 mL, 2 mmol) and stirred at ambient condition for 2 h to produce HsalEen-5-I. Triethylamine (0.278 mL, 2 mmol) was then added and left for 15 minutes for deprotonation. To this mixture, a mixture of iron (III) chloride (0.170 g, 1.0 mmol) and potassium thiocyanate (0.296 g, 3.0 mmol) in ethanol (6 mL) was added through a celite[®] pad. The reaction was stirred at room temperature for 48 h. A blue tint characteristic of **1** gradually appeared. The solution was filtered and reduced to dryness *in vacuo* to give a black residue. The residue was dissolved in 20 mL CH₂Cl₂ and washed twice with water (20 mL). The resulting CH₂Cl₂ solution was dried with MgSO₄ and filtered. Hexane (10 mL) was added to the blue solution and volume slowly reduced under vacuum to give black microcrystals. The crystals were filtered, rinsed with cold Et₂O (5 mL) and dried in air. **1** was collected as a black microcrystalline solid (576 mg, 73%). Elemental analysis: cald (found) for C₂₃H₂₈N₅O₂I₂SFe: C, 36.92 (37.23); H, 3.77 (3.93); N, 9.36 (9.28).

FT-IR spectroscopy and UV-Vis Absorption

		FT	-IR		UV-Visible absorption (CH ₂ Cl ₂)		
	v (N-H)	v (C-H)	v (NCS)	v (C=N)	_		
[Fe(salEen-5-	3130	2945,	2044	1629	240 nm (50976 M ⁻¹ cm ⁻¹), 364 nm		
I) ₂]NCS, 1		2939,			(8224 M ⁻¹ cm ⁻¹), 403 nm (7328 M ⁻¹ cm ⁻		
		2872			¹), 576 nm (2784 M ⁻¹ cm ⁻¹), 660 nm		
					(2316 M ⁻¹ cm ⁻¹),		

Table S1.1: Keys FT-IR signals and UV-Vis absorption band of [Fe(salEen-5-I)₂]NCS **1**.

Figure S1. Infrared spectra of 1

Figure S2. UV-Visible absorption spectra of 1 in CH₂Cl₂.

Mass Spectrometry

Figure S3. LC-MS (ESI+) of 1.

Thermogravimetric analysis

Figure S4. Thermogravimetric profile of **1** upon heating from 35-300°C in the rate of 5°C/min.

X-ray Crystallographic Studies

SCXRD structure

TableS2.1:Crystallographicdataandrefinementparametersfor[Fe(salEen-5-I)_2]NCS·0.3CH_2Cl_2·0.5H_2OI)2]NCS·0.3CH_2Cl_2·0.5H_2O1·0.3CH_2Cl_2·0.5H_2O

	1.0.3CH2Cl2.0.5H2O
Formula	$C_{23.3}H_{28.6}CI_{0.6}FeI_2N_5O_{2.5}S$
Т (К)	150
MW	781.69
Crystal system	Monoclinic
Space group	P2 ₁ /c
a (Å)	9.9536(6)
b (Å)	28.9081(17)
c (Å)	10.6554(6)
α (°)	90
β (°)	109.240(3)
γ (°)	90
Cell volume (ų)	2894.7(3)
Z	4
μ (mm ⁻¹)	2.813
F(000)	1526.0
Crystal size/mm ³	$0.1 \times 0.05 \times 0.01$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.934 to 51.358
Index ranges	-12 ≤ h ≤ 11, -35 ≤ k ≤ 35, -12 ≤ l ≤ 12
Reflections collected	19957
Independent reflections	5471 [R _{int} = 0.0778, R _{sigma} = 0.0789]
Data/restraints/parameters	5471/0/347
Goodness-of-fit on F ²	0.985
Final R indexes [I>=2σ (I)]	$R_1 = 0.0418$, $wR_2 = 0.0853$
Final R indexes [all data]	R ₁ = 0.0940, wR ₂ = 0.0987
Largest diff. peak/hole / e Å ⁻³	0.89/-0.83
CCDC no.	2417988

Table S2.2: Key intermolecular interactions for $[Fe(salEen-5-I)_2]NCS \cdot 0.3CH_2CI_2 \cdot 0.5H_2O$ **1·0.3CH_2Cl_2·0.5H_2O**

1
150
1.880
1.929
2.044
1.951
46.1
127
LS

TableS2.3:Keyintermolecularinteractions $[Fe(salEen-5-I)_2]NCS\cdot0.3CH_2Cl_2\cdot0.5H_2O$ 1·0.3CH_2Cl_2·0.5H_2O

	1			
Т (К)	150			
N3/4-H…NCS (Å)	2.004, 1.956 (N6)			
	2.124, 2.111 (N7)			
S1…Cl2	3.679			
1-D chain perpendicular to ac plan	ne			
C1-H…O1/2	3.286, 3.623			
C15-H…I1	3.377			
C19-H…I2	3.257			
C32-H…l2	3.242			
C16-H…S2	3.028			
C22-H…S2	3.103			
C32-H…S2	2.611			
C16-H…S3	2.978			
С22-Н…S3	2.490			
C11-H…S3	2.637			
2-D plane perpendicular to ac pla	ne compiling of inverted 1-D chain			
C19-H…I2	3.257			
C32-H…l2	3.242			
C15-H…S2	3.029			
C16-H…S2	3.455			
C12-H…N6	2.774			
C15-H…N6	2.949			
C12-H…N7	2.604			
C15-H…N7	2.796			
Stacking of 2-D planes via translation				
C15-H…I1	3.377			
C4-H…I2	3.085			
C14-H…I2	3.302			

C19-H…I2	3.257	
C14-H…Cl1	3.063	

Figure S5. PXRD pattern of **1** displaying 1.) simulated PXRD pattern generated from SCXRD structure of **1**·CH₂Cl₂, 2.) PXRD of **1** after freshly filtered of the recrystallizing solution and 3.) PXRD of **1** after heating at 150°C for 30 minutes to eliminate solvate CH₂Cl₂.

Electrochemical Studies

Figure S6. Different scan rate CV voltammograms and linear fitting using 100 μM concentration of indicated analyte in 0.1 M PBS buffer (pH-7) in aq. 0.1 M KCl.

Figure S7. Real sample electrochemical analysis of **1**-SPGE for the quantitative determination of PDs in three different hair colors (HD-1, HD-2 and HD-3) employing spike method.

Electrode	Method	Electrolyte	Analyte	Detection potential (V)	LOD (µM)	Linear range (µM)	Ref
PANI/ZnO-starch- rGO/GCO	DPV	PBS, pH-7	p-PD	0.24	0.10	1-180	1
NG@GCE	LSV	KCI	<i>p</i> -PD	0.575	0.67	2-500	2
PSC82/GCE	CV	NaOH	<i>p</i> -PD	-0.2	0.17	0.5-10400	3
CPE	SWV	PBS, pH-7	<i>p</i> -PD	0.2	0.071	0.12-3	4
GCE	CV, SWV	PBS, pH-7	<i>p</i> -PD	0.2	1.2	2-200	5
CZE-AD/Pt	Amp	PBS, pH- 5.8	<i>p</i> -PD	0.85	1.57	2-200	6
Laccase/Pt	CV	PBS, pH-6	<i>p</i> -PD	-	0.05	0.05-20	7
HRP/NPG/GCE	DPV	PBS, pH-7	<i>р</i> -РD <i>о</i> -РD	0.1 0.21	0.33 0.36	2-170 2-180	8
IL-GO@Cu-Ag/GCE	DPV	PBS, pH-7	<i>p</i> -PD	0.21	0.0034	0.018-22	9
Fe₃O₄@ <i>f-</i> MWCNTs/GCE	DPV	PBS, pH-7	o-PD	-	50	0.6-80	10
SCP/GCE	CV	NaOH	<i>p</i> -PD	-0.18	0.3	0.8-5000	11
1-SPGE	DPV	PBS, pH-7	<i>p</i> -PD <i>O</i> -PD <i>m</i> -PD	0.09 0.24 0.48	0.062 0.2 0.41	0.3-150 0.5-100 0.5-50	This Work

 Table S3.1: comparative analysis of 1-SPGE for phenylenediamine isomers detections with

 previously reported electrochemical methods

Abbreviations: PDs – Phenylenediamines, GCE - glassy carbon electrode, PB - prussian blue, SAC – super activated carbon, PANI - polyaniline, rGO – reduced graphene oxide, NG – nitrogen doped graphene, PSC82 – Sr-doped PrCoO_{3-δ} perovskite oxides, CPE – carbon paste electrode, CZE-AD – capillary zone electrophoresis coupled with amperometric detection screen-printed porous gold, HRP – horseradish peroxidase, IL – Ionic liquid, GO – graphene oxide, Fe₃O₄@*f*-MWCNTs/GCE - Fe3O4 doped with functionalized multiwalled carbon nanotubes, SCP – P doped with perovskite oxide of SrCoO_{3-δ} (SC), **1**-**SPGE** – spin crossover Iron (III) complex-based graphene-modified screen printed electrode, *p*-PD - parapheneylenediamine, *o*-PD - ortho-phenylenediamine, *m*-PD - meta-phenylenediamine.

Notes and references

- 1. M. Singh, A. Sahu, S. Mahata, P. Shukla, A. Rai and V. K. Rai, *New Journal of Chemistry*, 2019, **43**, 6500-6506.
- 2. S. Dai, Z. Xu, M. Zhu, Y. Qian and C. Wang, *International Journal of Electrochemical Science*, 2015, **10**, 7063-7072.
- 3. J. He, J. Sunarso, J. Miao, H. Sun, J. Dai, C. Zhang, W. Zhou and Z. Shao, *Journal of Hazardous Materials*, 2019, **369**, 699-706.
- 4. A. A. S. Mou, A. Ouarzane and M. El Rhazi, *Journal of Electrochemical Science and Engineering*, 2017, **7**, 111-118.
- 5. N. S. Lawrence, E. L. Beckett, J. Davis and R. G. Compton, *Analyst*, 2001, **126**, 1897-1900.
- 6. S. Dong, L. Chi, S. Zhang, P. He, Q. Wang and Y. Fang, *Analytical and bioanalytical chemistry*, 2008, **391**, 653-659.
- 7. Y. Zhu, K. Yan, Y. Liu and J. Zhang, *Analytica Chimica Acta*, 2015, **884**, 29-36.
- 8. C. Wu, Z. Liu, H. Sun, X. Wang and P. Xu, *Biosensors and Bioelectronics*, 2016, **79**, 843-849.
- 9. M. Singh, S. R. Bhardiya, A. Asati, H. Sheshma, V. K. Rai and A. Rai, *Journal of Electroanalytical Chemistry*, 2021, **894**, 115360.
- 10. R. Sasikumar, P. Ranganathan, S.-M. Chen and S.-P. Rwei, *Journal of Colloid and Interface Science*, 2017, **504**, 149-157.
- 11. J. He, X. Xu, H. Sun, T. Miao, M. Li, S. Zhou and W. Zhou, *Molecules*, 2023, **28**, 1122.