Supplementary Information

Uncovering the biosynthetic pathways of key flavor and color compounds in pomegranate using pathway-based metabolomics

Jin-Pyo An ^a, Dongjoo Kim ^a, Xuebo Song ^a, John M. Chater ^b, Claire C. Heinitz ^c, Yu Wang ^{a,*}

^aFood Science and Human Nutrition Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA

^bHorticultural Science Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA

^cUnited States Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository - Tree Fruit & Nut Crops & Grapes, One Shields Ave, University of California, Davis, Davis, CA 95616, USA

***Corresponding author**: Yu Wang, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850, United States; orcid.org/0000-0002-2003-270X; Email: yu.wang@ufl.edu

Table of Contents

Table	S1		Optimal	Ν	IS/MS	p	aramete	ers	for	а	ntho	ocyanin
quantific	ation				3							
Table		S2.	UH	PLC-MS	5	para	ameters		for		t	argeted
metabolo	omics					4						
Table	S	3.	UHPLC	C-MS	p	arameter	s	for	fa	atty		acid
analysis.		•••••				4						
Table	S4.	Mass	parameters	and	opti	mized	ion	informa	tion fo	or j	ouni	calagin
analysis.			4									
Table	S5.	Opti	mal N	IS/MS	par	ameters	for	r pu	inicalagin		α	and
β				5								
Table		S6.	C	hemical		info	rmation		of			volatile
compour	nds					6	5					
Table S7	. Lineari	ty, LOD,	and LOQ f	for antho	cyanins							7
Table S8	. Precisi	on and ac	curacy for	anthocya	nins							8
Table S9	. Relativ	e abunda	nce and the	ir ratio o	f punic	alagin α a	and β				•••••	9
Figure S	1. Gas C	hromatog	grams of for	ır pomeg	granate	cultivars.					•••••	10
Figure	S2.	LC-M	IS chr	omatogr	rams	(C-30	co	lumn)	using	а		t-SIM
mode		•••••	11									
Figure	S3.	LC-M	S chro	omatogra	ams	(HILIC	c co	olumn)	using	а		t-SIM
mode			12									
Figure	S4.	Chroma	atogram	and	chemic	cal str	ructure	of	punicala	ıgin	α	and
β			13						-	-		
Figure		S5.		Volcano		plo	t	сс	omparing			each
cultivar							.14					
Figure	S6.	Effe	ect of	B-r	ring	functio	onal	groups	on	а	ntho	ocyanin
color				15								

Compound	Retention time (min)	Polarity	Q1 (m/z)	Q3 (m/z)	CE (V)
Compound 1	4.91	positive	627	303	27
Compound 2	6.25	positive	465	303	31
Compound 3	6.40	positive	611	303	26
Compound 4	5.56	positive	611	287	28
Compound 5	6.85	positive	449	287	27
Compound 6	7.02	positive	595	287	31
Compound 7	6.45	positive	625	301	32
Compound 8	7.45	positive	433	271	22
Genistein d4 (Internal standard)	16.15	positive	275	154	28

Table S1. Optimal MS/MS parameters for anthocyanin quantification

Column Parameter Value Parameter Value Column temperature 40°C Vaporizer temperature 275 °C Spray voltage (pos) 3.0 kV Sweep gas flow rate 1 **RP (C-30)** Sheath gas flow rate 35 Spray voltage (neg) 2.5 kV AGC target 2e5 Capillary temperature 275°C Aux gas flow rate Isolation window 1.7 m/z 10 40°C 290 °C Column temperature Vaporizer temperature Spray voltage (pos) $3.0 \, \mathrm{kV}$ Sweep gas flow rate 1 HILIC-Z Spray voltage (neg) 2.5 kV Sheath gas flow rate 40 290°C Capillary temperature AGC target 2e5 Aux gas flow rate 10 Isolation window 1.7 m/z

Table S2. UHPLC-MS parameters for targeted metabolomics.

Table S3. UHPLC-MS parameters for fatty acid analysis

Column	Parameter	Value	Parameter	Value
	Column temperature	40°C	Vaporizer temperature	290 °C
RP (C-18)	Spray voltage (pos)	3.0 kV	Sweep gas flow rate	1
	Spray voltage (neg)	2.5 kV	Sheath gas flow rate	40
	Capillary temperature	290°C	AGC target	2e5
	Aux gas flow rate	10	Isolation window	1.7 m/z
	Resolution	70,000		

Table S4. UHPLC-MS parameters for punicalagin analysis

Method	Parameter	Value	Parameter	Value
	Column temperature	25°C	Vaporizer temperature	300 °C
	Spray voltage (neg)	2.5 kV	Sweep gas flow rate	1
MS	Spray voltage (neg)	2.5 kV	CID Gas (mTorr)	2
	Capillary temperature	325°C Sheath gas flow rate		40
	Aux gas flow rate	12		
	Precursor ion	1083	RF lens (V)	248
CDM	Product ion (quan)	601	Collision Energy (quan)	47
экм	Product ion (qual)	781	Collision Energy (qual)	35
	Q1 resolution	0.7	Q3 resolution	0.7

Table S5. Optimal MS/MS parameters for punicalagin α and β

Compound	Retention time (min)	Polarity	Q1 (m/z)	Q3 (m/z)	CE (V)
Punicalagin α	10.39	negative	1083.03	601.00	47
Punicalagin β	10.61	negative	1083.03	781.07	35
Genistein d_4	8.3	positive	275.1	219.1	25

no	Volatiles	CAS	Chemical formula	Exact mass
1	Hexanal	66-25-1	C ₆ H ₁₂ O	100.0888
2	β-pinene	127-91-3	$C_{10}H_{16}$	136.1252
3	Ethyl-2-butenoate	10544-63-5	$C_6H_{10}O_2$	114.0680
4	Limonene	138-86-3	$C_{10}H_{16}$	136.1252
5	3-Methyl-1-butanol	123-51-3	$C_5H_{12}O$	88.0888
6	2-Hexenal	505-57-7	$C_6H_{10}O$	98.0731
7	2-Pentylfuran	3777-69-3	$C_9H_{14}O$	138.1044
8	γ-Terpinene	99-85-4	$C_{10}H_{16}$	136.1252
9	o-Cymene	527-84-4	$C_{10}H_{14}$	134.1095
10	Sulcatone	110-93-0	$C_8H_{14}O$	126.1044
11	1-Hexanol	111-27-3	$C_6H_{14}O$	102.1044
12	(Z)-3-Hexen-1-ol	928-96-1	$C_6H_{12}O$	100.0888
13	Nonanal	124-19-6	$C_9H_{18}O$	142.1357
14	(E) 2-Octenal	2548-87-0	$C_8H_{14}O$	126.1044
15	2-Ethyl-1-hexanol	104-76-7	$C_8H_{18}O$	130.1357
16	(E)-2-Nonenal	18829-56-6	$C_9H_{16}O$	140.1201
17	Linalool	78-70-6	$C_{10}H_{18}O$	154.1357
18	1-Octanol	111-87-5	$C_8H_{18}O$	130.1357
19	cis-Bergamotene	18252-46-5	$C_{15}H_{24}$	204.1878
20	β-Caryophyllene	87-44-5	C ₁₅ H ₂₄	204.1878

21	Terpinen-4-ol	562-74-3	$C_{10}H_{18}O$	154.1357
22	Methyl benzoate	93-58-3	$C_8H_8O_2$	136.0524
23	p-Tolualdehyde	104-87-0	C_8H_8O	120.0575
24	1-Nonanol	143-08-8	$C_9H_{20}O$	144.1514
25	L-α-Terpineol	10482-56-1	$C_{10}H_{18}O$	154.1357
26	Methyl salicylate	119-36-8	$C_8H_8O_3$	152.0473
27	2,4-Dimethylbenzaldehyde	15764-16-6	$C_9H_{10}O$	134.0731
		1		

Table S6. Chemical information of volatile compounds

Compound	Calibration Range (µg /mL)	Slope	Intercept	r ²	LOD ^a	LOQ ^b
Compound 1	0.1-1000	16.6014	-8.9571	0.9998	0.014	0.043
Compound 2	0.1-1000	60.3187	-18.5947	0.9998	0.017	0.052
Compound 3	0.1-1000	41.7565	-19.2963	0.9999	0.027	0.082
Compound 4	0.1-1000	30.8500	0.0767	1.0000	0.015	0.045
Compound 5	0.1-1000	90.9162	15.5747	0.9999	0.017	0.051
Compound 6	0.1-1000	58.7399	3.2889	0.9999	0.031	0.095
Compound 7	0.1-1000	0.2174	-0.0687	0.9995	0.011	0.035
Compound 8	0.1-1000	47.4895	4.7021	0.9999	0.010	0.033

Table S7. Linearity, LOD, and LOQ for anthocyanin quantification

	Conc		Interday	
Anthocyanin	(µg/mL)	precision	precision	Accuracy (%)
		RSD (%) ^a	RSD (%) ⁶	
	0.5	4.09	6.76	97.6
1	10	4.02	5.68	95.1
	200	3.55	6.13	104.7
	0.5	3.05	7.82	94.2
2	10	5.13	6.68	103.6
	200	3.65	7.01	105.8
	0.5	3.56	6.14	95.8
3	10	4.18	7.34	97.3
	200	3.20	5.11	103.5
	0.5	4.77	4.74	96.4
4	10	2.65	5.68	104.5
	200	2.12	5.97	105.1
	0.5	3.68	6.30	97.2
5	10	3.35	5.67	102.4
	200	2.97	7.35	101.9
	0.5	5.67	8.01	94.6
6	10	5.99	7.34	93.1
	200	4.51	6.51	96.0
	0.5	3.51	7.45	93.6
7	10	4.71	6.25	105.4
	200	2.98	5.64	94.6
	0.5	2.64	4.58	95.0
8	10	4.74	5.01	106.8
	200	5.53	6.47	105.2

Table S8. Precision and Accuracy for anthocyanin quantification

entrations to nominal values. ^aIntra-day precision was evaluated by analyzing the samples on the same day. ^bInterday precision was assessed by analyzing three samples over three consecutive days. Three replicate analyses were performed.

no.	Dunicalagin	Relative abundance					
	runicalagni	Azadi	Eversweet	Poinciana	Wonderful		
1	Punicalagin α	7.28 ± 1.09	6.98 ± 0.89	8.02 ± 1.24	3.47 ± 0.50		
2	Punicalagin β	7.95 ± 1.22	7.27 ± 1.09	8.53 ± 1.34	3.83 ± 0.61		
3	Ratio (punicalagin α/β)	0.92	0.96	0.94	0.90		

Table S9. Relative abundance and their ratio of punical agin α and β

Fig. S1. Gas Chromatograms of four pomegranate cultivars (A: Azadi, B: Eversweet, C:Phoenicia, D: Wonderful).

D

С

Fig. S2. LC-MS chromatograms (C-30 column) using a t-SIM mode (A: Azadi, B: Eversweet, C:Phoenicia, D: Wonderful).

С

D

Figure S4. Chromatogram and chemical structure of punicalagin α and β

Fig. S5. Volcano plot comparing each cultivar. (A) 'Azadi' vs 'Eversweet'; (B) 'Azadi' vs 'Phoenicia'; (C) 'Azadi' vs 'Wonderful'; (D) 'Eversweet' vs 'Phoenicia'; (E) 'Phoenicia' vs 'Wonderful'; (F) 'Phoenicia' vs 'Wonderful'. The color represented its Log2(FC) value, while the point size represented the P-value.

Hydroxyl groups on the B-ring enhance electron-donating capacity and induce a blue shift

Fig. S6. Effect of B-ring functional groups on anthocyanin color.