Supplementary Information

A Sustainable Framework for Advancing Circular Practices for Polyethylene Terephthalate Textiles: Optimized Recycling of Depolymerization Products and LCA Validation

Ye-eun Woo[†], Kyungha Baik[†], Sujin Jeong[†], Suhyun Lee^{,†,§} and Jooyoun Kim^{*,†,§}

[†]Department of Fashion and Textiles, Seoul National University, Seoul 08826, Republic of Korea

§ Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea

* Corresponding author, E-mail: jkim256@snu.ac.kr

Section 1: PET depolymerization

	PET type	Source	Time (min)	Temperature (°C)	Yield of TA
1	PET bottle	Market (evian)	30	100	95.1%
2	PET bottle	Market (ICIS 8.0)	30	100	94.8%
3	PET fabric white	Testfabrics, Inc.	30	100	95.1%
4	PET fabric pink	Testfabrics, Inc.	30	100	93.7%
5	PET fabric white	discarded	30	100	94.9%
6	PET fabric orange	discarded	30	100	95.2%
7	PET/Cotton fabric white	discarded	30	100	94.3%
8	PET/Cotton fabric blue	discarded	30	100	93.8%

Table S1 Depolymerization of PET in various PET-based materials in $FeCl_3 \cdot 6H_2O/PTSA$.

Fig. S1 Effect of PET : DES mass ratio on PET depolymerization. Note: The molar ratio of $FeCl_3 \cdot 6H_2O$ to PTSA in the DES is 1 : 1.

Fig. S2 DSC spectrum of discarded dyed PET fabric.

Fig. S3 The standard curve of TA obtained using UV/Vis spectroscopy.

Fig. S4 SEM-EDS analysis for the recycled $FeCl_3 \cdot 6H_2O$.

Fig. S5 Comparison of (a) solvent state, (b) depolymerization efficiency and TA yield in PET depolymerization with recycled solvent.

Fig. S6 Photos of discarded PET fabric originally dyed (Discarded PET) and PET fabric dyed with recovered dye (r-Dyed PET).

Section 2: Life cycle assessment (LCA)

Table S	32	Summary	of	anal	vzed	scenarios
I aDIC L	7	Summary	01	anai	yzcu	sectiarios.

	Explanation
_	• Because there were differences between the concentrations of
	materials in the LCI DB (life cycle inventory database, ecoinvent
	version 3.10) and what we actually used, the amount of materials
	for LCA was calculated by the adjusted value to make the amount
	of the materials (FeCl3, NaOH, and HCl) the same as the amount
	in our actual processes. After that, a compensation value for water
	was added to meet the material balance.
Assumptions	• A waste ethylene glycol compound, which remained after the process, was not included since its amount was too small to be measured.
	• A waste DES, which remained after the process, was not included
	since its composition is difficult to evaluate.
	• The electricity used for a refrigerator to precipitate FeCl3·6H2O
	was not included since its amount is negligible and difficult to
	measure.

Fig. S7 System boundary of life cycle assessment implemented in the study

Scenario	Explanation
	This is the base scenario, which does not reuse DES and all products
Case 1	(TA/NaOH(aq), FeCl ₃ · $6H_2O$, and dye) are intended products of the process.
	There is no avoided production.
	Once inserted DES is used for 2 cycles of depolymerization. There is no
	avoided production.
Case 2	1 st depolymerization: The same amount of DES of Case 1 is inserted.
Case 2	2 nd depolymerization: No additional input of DES.
	Case 2 DES usage: Average of 1 st and 2 nd depolymerization (half of Case 1)
	Environmental impacts of Case 2: Average of 1st and 2nd depolymerization
	Input and output are the same as in Case 1. The whole process is considered
Casa 2	as discarded PET management method focusing on the handling of waste.
Case 5	Thus, this scenario considered all products (TA/NaOH(aq), FeCl ₃ ·6H ₂ O, and
	dye) as useful byproducts, which provides avoided productions.
	Input and output are the same as in Case 1. The whole process is considered
	a TA manufacturing process. Even though our process and LCA do not
	include a separation between TA and NaOH(aq), we recognized TA as the
Case 4	main product and NaOH(aq) is a useful co-product to reflect others' research
	on the recycled TA-based MOF synthesis. Thus, this scenario considers TA
	to be the main product, while all others (FeCl ₃ ·6H ₂ O, dye, and NaOH(aq))
	are useful co-products that provide avoided productions.

Table S3 Summary of analyzed scenarios.

Table S4 Input and output inventory of materials and electricity for the developed process which is actually used in the research where depolymerized waste PET is 5g. LCA is implemented based on this data with adjustment.

Input/output	Materials	and electricity	Used amount
		Waste PET (g)	5
		FeCl ₃ ·6H ₂ O (g)	18.96
	Motoriala	PTSA (g)	6.04
Input	Materials	2M NaOH (mL)	12
		Distilled water (mL)	15
		37% HCl (mL)	4
-	t Materials M	Electricity (Wh)	31.295
		Terephthalic acid (g)	3.78
		FeCl ₃ ·6H ₂ O (g)	0.83
Output	Materials	Dye (g)	0.3
-		Water, vaporized to air (g)	17.6964
	Materials and electricityMaterials $Waste PET (g)$ FeCl ₃ ·6H ₂ O (PTSA (g))2M NaOH (m)Distilled water (37% HCl (m]ElectricityElectricity (W)ElectricityElectricity (W)FeCl ₃ ·6H ₂ O (Dye (g))MaterialsDye (g)Water, vaporize air (g) 2M NaOH (m)	2M NaOH (mL)	12

Input /output	Flow		Case 1	Case 2	Provider	Notes
		Waste PET (g)	1,000	1,000	market for waste polyethylene terephthalate, for recycling, sorted waste polyethylene terephthalate, for recycling, sorted Cutoff, U - RoW	
		FeCl ₃ ·6H ₂ O (g)	5,596.1	2,798.04	market for iron(III) chloride, without water, in 14% iron solution state iron(III) chloride, without water, in 14% iron solution state Cutoff, U - GLO	
	Matariala	PTSA (g)	PTSA (g) 1,208	604	market for chemical, organic chemical, organic Cutoff, U - GLO	PTSA was substituted to 'chemical, organic' because of absence of PTSA in the LCI DB.
Input	Materials	2M NaOH (g)	384	384	market for sodium hydroxide, without water, in 50% solution state sodium hydroxide, without water, in 50% solution state Cutoff, U - RoW	
		Distilled water (g)	3,000	3,000	market group for tap water tap water Cutoff, U - GLO	
		37% HCl (g)	1055.74	1055.74	market for hydrochloric acid, without water, in 30% solution state hydrochloric acid, without water, in 30% solution state Cutoff, U - RoW	
		Compensation value, water (g)	204.16	1106.22	market group for tap water tap water Cutoff, U - GLO	This term was introduced to compensate the gap from 'FeCl ₃ ·6H ₂ O', '37% HCl', and '2M NaOH'.
	Electricity	Electricity (Wh)	6,259	6,259	market group for electricity, low voltage electricity, low voltage Cutoff, U - GLO	

 Table S5 Input and output inventory for Case 1 and Case 2 adjusted for life cycle impact assessment (LCIA).

Input /output		Flow	Case 1	Case 2	Provider	Notes
		Terephthalic acid (g)	756	756		
		FeCl ₃ ·6H ₂ O (g)	244.98	244.98		'FeCl ₃ ·6H ₂ O' in the output session was also considered as 'iron(III) chloride, without water, in 14% iron solution state' as like input session
		Dye (g)	60	60		Dye was substituted to 'chemical, organic' because of absence of dye materials in the LCI DB.
Output	Materials	Water, vaporized to air (g)	3,539.28	3,539.28		
		2M NaOH (g)	384	384		'2M NaOH' in the output session was also considered as 'sodium hydroxide, without water, in 50% solution state' as like input session
		Compensation value, water (g)	2,129.02	2,129.02		This term was introduced to compensate the gap from 'FeCl ₃ ·6H ₂ O' and '2M NaOH'.

 Table S5 (continued)

Input /output	Flow		Case 3	Case 4	Provider	Notes
		Waste PET (g)	1,000	1,000	market for waste polyethylene terephthalate, for recycling, sorted waste polyethylene terephthalate, for recycling, sorted Cutoff, U - RoW	
		FeCl ₃ ·6H ₂ O (g)	5,596.1	5,596.1	market for iron(III) chloride, without water, in 14% iron solution state iron(III) chloride, without water, in 14% iron solution state Cutoff, U - GLO	
	Matariala	PTSA (g)	1,208	1,208	market for chemical, organic chemical, organic Cutoff, U - GLO	PTSA was substituted to 'chemical, organic' because of absence of PTSA in the LCI DB.
Input	Materials	2M NaOH (g)	384	384	market for sodium hydroxide, without water, in 50% solution state sodium hydroxide, without water, in 50% solution state Cutoff, U - RoW	
		Distilled water (g)	3,000	3,000	market group for tap water tap water Cutoff, U - GLO	
		37% HCl (g)	1055.74	1055.74	market for hydrochloric acid, without water, in 30% solution state hydrochloric acid, without water, in 30% solution state Cutoff, U - RoW	
		Compensation value, water (g)	204.16	204.16	market group for tap water tap water Cutoff, U - GLO	This term was introduced to compensate the gap from 'FeCl ₃ ·6H ₂ O', '37% HCl', and '2M NaOH'.
	Electricity	Electricity (Wh)	6,259	6,259	market group for electricity, low voltage electricity, low voltage Cutoff, U - GLO	

Table S6 Input and output inventory for Case 3 and Case 4 adjusted for life cycle impact assessment (LCIA).

Table S6	(continued)	
----------	-------------	--

Input /output		Flow	Case 3	Case 4	Provider	Notes	
		Terephthalic acid (g)	756	756	(Only for <i>Case 3</i>) purified terephthalic acid production purified terephthalic acid Cutoff, U - RoW		
		FeCl ₃ ·6H ₂ O (g)	244.98	244.98	iron(III) chloride production, without water, in 14% iron solution state iron(III) chloride, without water, in 14% iron solution state Cutoff, U - RoW	'FeCl ₃ ·6H ₂ O' in the output session was also considered as 'iron(III) chloride, without water, in 14% iron solution state' as like input session	
		Dye (g) 60 60 chemical production, organic Cutoff, U - GI		chemical production, organic chemical, organic Cutoff, U - GLO	Dye was substituted to 'chemical, organic' because of absence of dye materials in the LCI DB.		
Output	Materials	Water, vaporized to air (g)	3,539.28	3,539.28			
			2M NaOH (g)	384	384	chlor-alkali electrolysis, membrane cell sodium hydroxide, without water, in 50% solution state Cutoff, U - RoW	'2M NaOH' in the output session was also considered as 'sodium hydroxide, without water, in 50% solution state' as like input session
		Compensation value, water (g)	2,129.02	2,129.02	tap water production, conventional treatment tap water Cutoff, U - RoW	This term was introduced to compensate the gap from 'FeCl ₃ ·6H ₂ O' and '2M NaOH'.	

			Contribution of electricity and materials ¹							
Impact categories	Total result	Unit	Electricity	PTSA	FeCl₃ [.] 6H₂O	HCI	NaOH	Sorted waste PET	Water	
Acidification: terrestrial	0.04231	kg SO ₂ -eq.	34.26%	19.44%	29.82%	10.22%	4.60%	1.64%	0.02%	
Global warming potential	13.6242	kg CO ₂ -eq.	34.81%	26.52%	23.76%	7.84%	4.30%	2.76%	0.02%	
Ecotoxicity: freshwater	1.03504	kg 1,4-DCB- eq.	28.52%	12.42%	41.41%	9.55%	2.94%	5.15%	0.02%	
Ecotoxicity: marine	1.51533	kg 1,4-DCB- eq.	25.52%	18.49%	38.73%	9.06%	2.83%	5.35%	0.02%	
Ecotoxicity: terrestrial	214.8174 4	kg 1,4-DCB- eq.	7.79%	57.04%	21.88%	6.06%	1.91%	5.27%	0.05%	
Energy resources: non-renewable, fossil	4.31055	kg oil-eq.	26.94%	42.22%	18.68%	6.63%	3.34%	2.17%	0.02%	
Eutrophication: freshwater	0.00515	kg P-eq.	40.91%	15.03%	30.48%	7.94%	4.47%	1.17%	0.02%	
Eutrophication: marine	0.00057	kg N-eq.	26.39%	19.75%	26.14%	8.95%	5.66%	13.09%	0.02%	
Human toxicity: carcinogenic	2.92869	kg 1,4-DCB- eq.	18.49%	18.70%	43.74%	7.88%	3.91%	7.12%	0.17%	
Human toxicity: non-carcinogenic	20.34799	kg 1,4-DCB- eq.	27.88%	14.25%	38.40%	10.09%	3.62%	5.75%	0.02%	

Table S7 LCIA results and contributions of usage of electricity and each material for each category in Case 1.

¹ As mentioned above, since materials in the LCI DB were not exactly same concentration with our process, compensation value of water was added in the LCA to meet the total materials inserted.

Table S7 (Continued)

			Contribution of electricity and materials ¹							
Impact categories	Total result	Unit	Electricity	PTSA	FeCl ₃ · 6H ₂ O	HCI	NaOH	Sorted waste PET	Water	
Ionising radiation	1.07091	kBq Co-60-eq.	50.65%	10.51%	28.06%	5.88%	4.14%	0.72%	0.03%	
Land use	0.28102	m ² a crop-eq.	24.59%	17.82%	39.81%	8.29%	4.07%	5.39%	0.02%	
Material resources: metals/minerals	0.46911	kg Cu-eq.	4.59%	10.29%	49.44%	19.75%	13.45%	2.44%	0.04%	
Ozone depletion	4.66E-06	kg CFC-11-eq.	33.06%	15.02%	25.33%	19.79%	4.99%	1.78%	0.03%	
Particulate matter formation	0.02324	kg PM2.5-eq.	39.68%	16.48%	28.27%	8.82%	4.76%	1.97%	0.02%	
Photochemical oxidant formation: human health	0.02981	kg NO _x -eq.	33.34%	22.18%	29.22%	7.43%	4.67%	3.14%	0.02%	
Photochemical oxidant formation: terrestrial ecosystems	0.03136	kg NO _x -eq.	32.38%	23.97%	28.56%	7.34%	4.56%	3.17%	0.02%	
Water use	0.10037	m ³	23.92%	30.06%	25.75%	12.39%	6.28%	1.58%	0.02%	

¹ As mentioned above, since materials in the LCI DB were not exactly same concentration with our process, compensation value of water was added in the LCA to meet the total materials inserted.

¹ Ozone depletion of Case 3 is -273% though It is not appeared in the graph.

Fig. S8 LCIA results relative ratio of scenarios compared to Case 1.