Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supporting information

Cytotoxicity of Pd(II) and Pt(II) complexes of 2',6'-di(thiazol-2-yl)-2,4'bipyridine: Insights into the mode of cell death and cell cycle arrest

Ahmed M. Mansour, *a,b1 Krzysztof Radacki, ^c Ola R. Shehab, *^b Gamal A. E. Mostafa, ^d

Essam A. Ali, ^d and Mahmoud T. Abo-Elfadl,^{e,f1}

^{e.} Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt

^{f.}Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.

¹ equal contribution.

^{a.} Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates. <u>Mansour am@uaeu.ac.ae; mansour@sci.cu.edu.eg.; inorganic am@yahoo.com</u>

^{b.} Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt. <u>Olashehab@sci.cu.edu.eg</u>; <u>Olashehab_chem@yahoo.com</u>

^{c.} Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.

^{d.} Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

Fig. S1	AT IR spectrum of the ligand 1 .	S3
Fig. S2	¹ H NMR spectrum of 1 in CDCl ₃ .	S4
Fig. S3	¹³ C NMR spectrum of 1 in CDCl ₃ .	S4
Fig. S4	{ ¹ H, ¹ H} COS90 spectrum of 1 in CDCl₃.	S5
Fig. S5	${}^{13}C, {}^{1}H$ HSQC spectrum of 1 in CDCl ₃ .	S5
Fig. S6	AT IR spectrum of 2 .	S6
Fig. S7	¹ H NMR spectrum of 2 in DMSO-d ₆ .	S7
Fig. S8	¹³ C NMR spectrum of 2 in DMSO-d ₆ .	S7
Fig. S9	${^{1}H, {}^{1}H}$ COS90 spectrum of 2 in DMSO-d ₆ .	S8
Fig. S10	${}^{13}C, {}^{1}H$ HSQC spectrum of 2 in DMSO-d ₆ .	S8
Fig. S11	³¹ P spectrum of 2 in DMSO-d ₆ .	S9
Fig. S12	¹⁹ F spectrum of 2 in DMSO-d ₆ .	S9
Fig. S13	Experimental (Up) and theoretical (down) ISOTOPIC pattern for the [M-	S10
Eig S1/	PF_{6} in or compound 2 . ¹ H NMP spectrum of 3 in DMSO-d. (It breaks down in DMSO)	C 11
Fig. 314		511
Fig. S15	AT IR spectrum of 3 .	511
Fig. S16	Solid-state ¹³ C NMR spectrum of 3 .	S12
Fig. S17	Solid-state ³¹ P spectrum of 3 .	S13
Fig. S18	Solid-state ¹⁹ F spectrum of 3	S13
Fig. S19	Solid-state ¹⁵ N spectrum of 3 .	S13
Fig. S20	Experimental (Up) and theoretical (down) ISOTOPIC pattern for the	S15
51. 624	$[M-PF_6]$ ion of compound 3 .	64.6
Fig. 521	theory.	210
Fig. S22	Local minimum structure of 3 obtained at B3LYP/LANL2DZ level of theory.	S16
Table S1	Atomic coordinates of the optimized structure of 2 .	S17
Table S2	Atomic coordinates of the optimized structure of 3 .	S18
Fig. S23	Theoretical electronic spectra of 2 and 3 obtained at B3LYP/LANL2DZ level of theory.	S19
Table S3	Computed excitation energies (eV), electronic transition configurations and oscillator strengths (f) of 2 and 3 at B3LYP/LANL2DZ level of theories (selected, f > 0.001) (Selected)	S20
Fig. S24	The dose-response curves of 2 against MCF7, HepG2, A549, HCT116, and normal epithelial kidney of an African green monkey, Vero cell line, using MTT assay.	\$21
Fig. S25	The dose-response curves of cisplatin against MCF7, HepG2, A549, HCT116, and normal epithelial kidney of an African green monkey, Vero cell line, using MTT assay.	S22
Fig. S26	UV/Vis spectral changes upon incubation of the aqueous DMSO solution of 2 for 22 h.	S23

Fig. S1 AT IR spectrum of the ligand 1.

Fig. S3 ¹³C NMR spectrum of 1 in CDCl₃.

Fig. S4 $\{^{1}H, ^{1}H\}$ COS90 spectrum of 1 in CDCl₃.

Fig. S5 {¹³C, ¹H} HSQC spectrum of 1 in CDCl₃.

Fig. S6 AT IR spectrum of 2.

Fig. S7 ¹H NMR spectrum of 2 in DMSO-d₆.

Fig. S8 ¹³C NMR spectrum of 2 in DMSO-d₆.

Fig. S10 {¹³C, ¹H} HSQC spectrum of 2 in DMSO-d₆.

Fig. S11 ³¹P spectrum of 2 in DMSO-d₆.

Fig. S12¹⁹F spectrum of 2 in DMSO-d₆.

Fig. S13 Experimental (Up) and theoretical (down) ISOTOPIC pattern for the $[M-PF_6]^+$ ion of compound 2.

Fig. S14 ¹H NMR spectrum of **3** in DMSO-d₆ (It breaks up in DMSO).

Fig. S15 AT IR spectrum of 3.

Fig. S16 Solid-state ¹³C NMR spectrum of 3.

Fig. S17 Solid-state ³¹P spectrum of 3.

Fig. S18 Solid-state ¹⁹F spectrum of 3.

Fig. S19 Solid-state ¹⁵N spectrum of 3.

Fig. S20 Experimental (Up) and theoretical (down) ISOTOPIC pattern for the $[M-PF_6]^+$ ion of compound **3**.

Fig. S21 Local minimum structure of 2 obtained at B3LYP/LANL2DZ level of theory.

Fig. S22 Local minimum structure of 3 obtained at B3LYP/LANL2DZ level of theory.

Center	Atomic	Atomic type	Coordinates (Å)		
number*	number		Х	Y	Z
1	6	0	-2.616006	-0.140324	-0.000009
2	6	0	-1.848098	-1.334694	-0.000052
3	6	0	-0.44792	-1.248416	-0.000039
4	6	0	-0.547854	1.145461	-0.00001
5	6	0	-1.946185	1.114319	0.000002
6	1	0	-2.323902	-2.308393	-0.000163
7	1	0	-2.554714	2.012132	-0.000034
8	6	0	0.365452	2.293573	0.00004
9	7	0	1.694465	2.062906	0.000052
10	6	0	1.736734	4.375453	0.000069
11	6	0	2.471026	3.213084	0.000071
12	1	0	2.086983	5.396613	0.000075
13	1	0	3.548415	3.12323	0.0001
14	6	0	0.556525	-2.318498	-0.000082
15	6	0	2.730623	-3.061529	-0.000103
16	6	0	2.096826	-4.281157	-0.000085
17	1	0	3.797005	-2.883184	-0.000093
18	1	0	2.530441	-5.269774	-0.000238
19	6	0	-4.105544	-0.145541	-0.000007
20	6	0	-4.87606	-1.32842	0.000575
21	6	0	-6.279096	-1.228621	0.000534
22	1	0	-4.414258	-2.310108	0.001128
23	6	0	-6.034955	1.17892	-0.000509
24	6	0	-6.874756	0.044426	-0.000045
25	1	0	-6.891283	-2.125361	0.000969
26	1	0	-6.450864	2.182089	-0.00094
27	1	0	-7.953299	0.163504	-0.000112
28	7	0	-4.689396	1.088827	-0.000484
29	7	0	1.861359	-1.979243	-0.0001
30	7	0	0.150657	-0.026313	-0.000019
31	16	0	-0.026018	4.031938	0.000048
32	16	0	0.311178	-4.084936	-0.000076
33	46	0	2.139154	0.057076	0.000001
34	17	0	4.485763	0.150016	0.000087

Table S1 Atomic coordinates of the optimized structure of **2**.

Center	Atomic	Atomic type	Coordinates (Å)		
number*	number		Х	Y	Z
1	6	0	2.882238	0.138995	0.000047
2	6	0	2.117807	1.335091	0
3	6	0	0.718355	1.257638	-0.000014
4	6	0	0.8114	-1.144228	0.000019
5	6	0	2.208109	-1.113166	0.000034
6	1	0	2.597242	2.307049	-0.000046
7	1	0	2.814645	-2.0124	0.000027
8	6	0	-0.108026	-2.284383	0.000009
9	7	0	-1.438412	-2.033868	-0.000005
10	6	0	-1.511544	-4.344679	0.000019
11	6	0	-2.231161	-3.175423	-0.00002
12	1	0	-1.874504	-5.36133	0.000037
13	1	0	-3.307265	-3.071249	-0.000032
14	6	0	-0.284968	2.325073	-0.000059
15	6	0	-2.470232	3.051102	-0.000097
16	6	0	-1.844533	4.272697	-0.000085
17	1	0	-3.535253	2.864707	-0.000097
18	1	0	-2.284577	5.258407	-0.000081
19	6	0	4.371558	0.139049	0.000086
20	6	0	5.146462	1.319177	0.000447
21	6	0	6.549059	1.214612	0.000396
22	1	0	4.688071	2.302483	0.000796
23	6	0	6.296923	-1.191748	-0.000396
24	6	0	7.140652	-0.060391	-0.000029
25	1	0	7.164251	2.109323	0.00069
26	1	0	6.709382	-2.196375	-0.000697
27	1	0	8.218779	-0.183111	-0.000076
28	7	0	4.951556	-1.097213	-0.00033
29	7	0	-1.59187	1.973533	-0.000057
30	7	0	0.111096	0.033292	0.000003
31	16	0	0.256398	-4.025099	-0.000039
32	16	0	-0.056498	4.090309	-0.000142
33	17	0	-4.242763	-0.131293	0.000154
34	78	0	-1.862069	-0.043533	0.000004

Table S2 Atomic coordinates of the optimized structure of **3**.

Fig. S23 Theoretical electronic spectra of 2 and 3 obtained at B3LYP/LANL2DZ level of theory.

Table S3	Computed	excitation	energies	(eV),	electronic	transition	configuratior	ns and
oscillator	strengths (f) of 2 and 3	at B3LYP	/LANL	2DZ level o	of theories	(selected, f >	0.001)
(Selected)							

Γ

(
Energy (cm ⁻¹)	Wavelength (nm)	f	Major contributions		
~	2				
24773	403	0.1265	HOMO→LUMO (74%)		
28744	347	0.2406	HOMO-5→LUMO (97%)		
31128	321	0.283	HOMO−1→LUMO+1 (86%)		
32706	305	0.0942	HOMO-7→LUMO (88%)		
35401	282	0.2079	HOMO-7→LUMO+1 (96%)		
36564	273	0.215	HOMO→LUMO+3 (91%)		
√ 3					
22002	454	0.123	HOMO→LUMO (89%)		
24729	404	0.0181	HOMO→LUMO+1 (95%)		
28544	350	0.3329	HOMO-5→LUMO (81%)		
29277	341	0.4219	HOMO-6→LUMO (91%)		
33816	295	0.2334	HOMO-6→LUMO+1 (68%)		
34510	289	0.2899	HOMO−8→LUMO (29%), HOMO→LUMO+2 (67%)		
35886	278	0.2171	HOMO-7→LUMO+1 (91%)		
37185	268	0.072	HOMO-9→LUMO (91%)		

Fig. S24 The dose-response curves of **2** against MCF7, HepG2, A549, HCT116, and normal epithelial kidney of an African green monkey, Vero cell line, using MTT assay.

Fig. S25 The dose-response curves of cisplatin against MCF7, HepG2, A549, HCT116, and normal epithelial kidney of an African green monkey, Vero cell line, using MTT assay.

Fig. S26 UV/Vis spectral changes upon incubation of the aqueous DMSO solution of **2** for 22 h.