Synthesis, Structural Insights and Bioevaluation of Phenoxy Pendant Isatin

Hydrazones as Potent α-Glucosidase Inhibitors

Saba Mehreen,^a Muhammad Imran Ali,^a Sidra tul Muntha,^b Mehwash Zia,^c Aman Ullah,^{d,*} Saeed Ullah,^e Ajmal Khan,^{e,f} Javid Hussain,^g Muhammad U. Anwar,^f Ahmed Al-Harrasi,^{e,*} Muhammad Moazzam Naseer^{a,*}

^a Department of Chemistry, Quaid-i- Azam University, Islamabad, 45320, Pakistan

^bPeking University Institute of Advanced Agriculture Sciences, Weifang, Shandong, China

^cDepartment of Chemistry, Allama Iqbal Open University, Islamabad-44000, Pakistan

^dDepartment of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada

eNatural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz 616, Oman

^fDepartment of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea

^gDepartment of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman *Corresponding authors: <u>ullah2@ualberta.ca</u> (A. U.), <u>aharrasi@unizwa.edu.om</u> (A.A.-H.), <u>moazzam@qau.edu.pk</u>

(M. M. N.)

Table of Content

- 1) Procedure for the synthesis of substituted ethyl benzoates E
- 2) Procedure for the synthesis of substituted benzohydrazides F
- 3) Table S1: Pharmacokinetic Studies of Hydrazide Conjugates 1(a-l)
- 4) References
- 5) Copies of NMR spectra
- 6) Copies of HRMS spectra
- 7) Dose Response Curves

1) Procedure for the synthesis of substituted ethyl benzoates E

For the synthesis of ethyl benzoates **E**, the esterification of respective benzoic acids **D** (1 mM) was done by using ethanol (10 mL) with a catalytic amount of conc. H₂SO₄ (2 drops). The reaction mixture was refluxed for 3 hours to afford ethyl esters **E** of respective benzoic acids **D**^[1]. The reaction mixture was cooled, evaporated at reduced pressure, and then extracted with ethyl acetate from the aqueous phase (2 × 30 mL). It was washed with sodium bicarbonate and then dried over anhydrous MgSO₄ and filtered. To afford respective ethyl benzoates **E**^[2-4] ethyl acetate was evaporated at reduced pressure and used in the next step without any further purification. **Scheme S1**.

Scheme S1: Preparation of substituted ethyl benzoates E

2) Procedure for the synthesis of substituted benzohydrazides F

To a stirred solution of ethyl benzoates E (1mM) in ethanol (10 mL) was added hydrazine hydrate (3 mM). The reaction mixture was refluxed with continuous stirring for 4 hours. TLC was used to monitor the progress of the reaction. Upon completion, the reaction mixture was cooled, benzo hydrazides F were crystallized out, filtered the crystals, and washed with cold ethanol. The purity of the benzo hydrazides F was checked with TLC and confirmed with melting point compared with the literature^[5-7]. Scheme S2.

Scheme S2: Preparation of substituted benzohydrazides F

ADMET Properties		1a	1b	1c	1d	1g	1h	1i	1j	1k	11
Absorption	WS (log mol/L)	-4.234	-4.247	-5.839	-4.787	-4.875	-4.871	-6.35	-4.652	-4.593	-6.196
	IS (%abs)	94.73	94.738	90.949	93.815	93.748	93.748	89.96	94.911	94.911	91.123
	SP (log K _p)	-2.758	-2.74	-2.691	-2.786	-2.786	-2.77	-2.695	-2.807	-2.789	-2.744
Distributio n	BBBP (Log BB)	-0.695	-0.695	-0.545	-0.882	-0.891	-0.891	-0.74	-0.915	-0.915	-0.765
	CNSP (Log PS)	-2.484	-2.496	-2.055	-2.375	-2.352	-2.364	-1.923	-2.547	-2.559	-2.118
	VDss (log L/kg)	-0.519	-0.464	-0.282	-0.476	-0.457	-0.405	-0.221	-0.553	-0.494	-0.387
Metabolis m	CYP3A4 inhibitor	No	No	Yes							
	CYP1A2 inhibitor	No									
	CYP2C19 Inhibitor	No									
	CYP2C9 inhibitor	Yes									
Excretion	TC (log mL/min/kg)	0.358	0.414	-0.106	-0.028	-0.049	-0.124	-0.258	0.093	0.149	-0.251
Toxicity	AMES toxicity	No									
	Max. TD. (log mg/kg/day)	0.076	0.103	0.27	0.03	0.031	0.059	0.238	0.174	0.203	0.331
	ORAT (LD ₅₀) (mol/kg)	2.174	2.167	2.185	2.294	2.306	2.298	2.282	2.26	2.268	2.196
	HT	No									
	SS	No									
	<i>T.Pyriformis</i> Toxicity (log ug/L)	0.567	0.55	0.52	0.557	0.554	0.537	0.513	0.466	0.446	0.436

3) Table S1: Pharmacokinetic Studies of Novel Hydrazide Conjugates 1 (a-l)

Abbreviations: WS = water solubility, IS = intestinal solubility, SP = skin permeability, BBBP = blood-brain barrier permeability, CNSP = central nervous system permeability, TC = total clearance, ORAT = oral rat acute toxicity, HT = hepatotoxicity, SS = skin sensitization

4) References:

- [1]. Arjunan, V., Rani, T., Mythili, C., & Mohan, S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79, 3, 486-496. 10.1016/j.saa.2011.03.018.
- [2]. Yuan, C., Lu, Z., & Jin, Z. Food Chem., 2014, 152, 140-145. 10.1016/j.foodchem.2013.11.139.
- [3]. Lei, Y., Chen, G., Yang, Q., Fu, C., Pan, J., & Li, T. J. Struc. Chem., 2013, 54, 829-833. 10.1134/S0022476613040288.
- [4]. Yu, J. J. Struct. Chem., 2013, 54, 581-585. 10.1134/S0022476613030177.
- [5]. Kerzare, D., Chikhale, R., Bansode, R., Amnerkar, N., Karodia, N., Paradkar, A., & Khedekar, P. *J. Braz. Chem. Soc.*, **2016**, *27*, 1998-2010. 10.5935/0103-5053.20160090.
- [6]. Umberger, E. Anal. Chem., 1955, 27, 5, 768-773. 10.1021/ac60101a021.
- [7]. Kuznetsov, V., Skibina, L., & Khalikov, R. Prot. Met. Phys. Chem. Surf., 2009, 45, 283-288.
 10.1134/S2070205109030034.

5) Copies of ¹H-NMR, ¹³C-NMR spectra of compounds 1(a-l)

i and a state

¹H-NMR of 1c

¹H-NMR of 1d

¹H-NMR of 1e

¹H-NMR of 1f

¹H-NMR of 1j

¹H-NMR of 1k

¹H-NMR of 11

6) Copies of HRMS spectra

High-resolution electrospray ionization mass spectra recorded via Agilent 6530 LC Q-TOF.

HRMS of 1a

Spectrum Plot Report

Agilent

Page 1 of 1

Generated at 2:30 PM on 07-Apr-25

HRMS of 1c

HRMS of 1d

Spectrum Plot Report

Page 1 of 1

Agilent

Generated at 2:38 PM on 07-Apr-25

Page 1 of 1

Generated at 12:13 PM on 07-Apr-25

Page 1 of 1

Generated at 2:41 PM on 07-Apr-25

Page 1 of 1

HRMS of 1g

HRMS of 1h

Spectrum Plot Report

Page 1 of 1

Agilent

Generated at 2:36 PM on 07-Apr-25

Page 1 of 1

HRMS of 1i

Spectrum Plot Report

Agilent

HRMS of 11

Page 1 of 1

7) Dose Response Curves

Dose curve response of comound 1d against α -glucosidase:

Dose curve response of comound 1e against α -glucosidase:

Dose curve response of comound 1f against α -glucosidase:

Dose curve response of comound 11 against α -glucosidase:

