Sequential Michael addition, cross-coupling and [3+2] cycloaddition reactions within the coordination sphere of chiral Ni(II) Schiff base complexes derived from dehydroamino acids: pathways to the asymmetric synthesis of structurally diverse O-substituted serine and threonine analogs

Emma A. Khachatryan^a, Lusine Yu. Sahakyan^a, Anna S. Tovmasyan^b, Gagik Meliqyan^a, Henrik Panosyan^c, Anna F. Mkrtchyan^{*a,b}, Norio Shibata^d, Andrei V. Malkov^{*e} Ashot S. Saghyan ^{*a,b}

^aInstitute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., 0025 Yerevan, Armenia, *email: <u>anna_mkrtchyan@ysu.am</u>, Tel.: +374 60 710 427, Fax.: +374 60 710 410.

^bScientific and Production Center "Armbiotechnology" of NAS RA, 14 Gyurjyan Str., 0056 Yerevan, Armenia

^cScientific and Technological Center of Organic and Pharmaceutical Chemistry of NAS RA, 26 Azatutyan Ave., 0014 Yerevan, Armenia

^dDepartment of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan

^eDepartment of Chemistry, Loughborough University, University Road, Loughborough, LE11 3TU, UK

Contents Experimental section	2
Materials	
General Procedures	2
NMR spectra	
HPLC analysis	
MS spectra	
Circular Dichroism	
X-ray 4a	51

Experimental section

Materials

All reagents were obtained from commercial sources and used without further purification. The initial 2 complexes were prepared following literature protocols. TLC analyses were performed on glass plates coated with silica gel 60 F254. Column chromatography was performed on silica gel (60×120 mesh) on a glass column. Melting points (mp) were determined by «Electrothermal». ¹H and ¹³C NMR spectra («Mercury-300 Varian» 300 MHz respectively, Bruker Avance Neo 400 MHz) were recorded using TMS as an internal standard (0 ppm). Elemental analyses were carried out on elemental analyzer EURO EA 3000. The enantiomeric purity of the amino acids was determined by HPLC («Waters Alliance 2695 HPLC System») on the chiral phase column Nautilus-E, 5 μ m, 4.6 mm × 250 mm (BioChemMak ST, Moscow, Russia), using a mixture of 20% of MeOH and 80% of 88 mM aqueous solution of KH₂PO₄ as the eluent. The optical rotation was measured on a Perkin Elmer-341 polarimeter. LCMS analysis was performed on Shimadzu LCMS 2020 with Prominence-I LC-2030C 3D. The CD analyses were carried out on ChirascanTM V100.

General Procedures Complex 3a

A 2 g (3.9 mmol) sample of Ni^{II}-(*S*)-BPB-(*S*)- Δ Ala was dissolved in 3.5 ml of CH₃CN in a round-bottomed flask. Then, a solution of 0.156 g (3.9m mol) NaOH in 3.5 ml of propargyl alcohol was added. The reaction mixture was stirred at room temperature. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 2.5 hours to complete. After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Complex 3a

Yield 90% (2.0g), Mp+218 0 C, $[\alpha]_{D}{}^{20}+2625^{0}$ (c=0.15, CH₃OH). Anal Calc. for: C₃₁H₂₉N₃NiO₄ (566.27) C 65.75; H 5.16; N 7.42; Found: C 65.91; H 5.39; N 7.69: MS, *m/z*: 565.151:

¹H NMR: (CDCl3) δ=1.97-2.15 (2H, m, γ, δ-Ha Pro); 2.41 (1H, t, J=2.4, ≡CH); 2.44-2.58 (1H, m, β-Ha Pro); 2.81-2.92 (1H, m, β-Hb Pro); 3.42 (1H, dd, J=10.9, 6.0, α-H

Pro); 3.48-3.54 (1H, m, δ-Hb Pro); 3.51 (1H, dd, J=9.7, 3.3, OCH2CH) (17a); 3.57 (1H, d, J=12.6, CH2Ph) (8a); 3.78 (1H, dd, J=9.7, 2.9, OCH2CH) (17b); 3.83-3.99 (1H, m, γ-Hb Pro); 4.08 (1H, dd, J=3.3, 2.9, CH) (1); 4.22 (1H, dd, J=15.9, 2.4, OCH2C=CH) (18a); 4.38 (1H, d, J=12.6, CH2Ph) (8b); 4.42 (1H, dd, J=15.9, 2.4, OCH2C=CH) (18b); 6.61-6.69 (2H, m, Ar); 6.98-7.04 (1H, m, Ar); 7,15 (1H, ddd, J=8.7, 6.2, 2.5, C6H4) (3); 7.18-7.27 (2H, m, Ar), 7.33-7.40 (2H, m, Ar); 7.42-7.54 (3H, m, Ar); 8.03-8.07 (2H, m, orto-C6H5); 8.15 (1H, b,d J=8.7, C6H4) (2).

¹³C NMR: (CDCl3) δ = 23.2 (γ-CH2 Pro); 30.9 (β-CH2 Pro); 57.1 (δ-CH2 Pro); 59.0 (OCH2); 62.9 (CH2Ph); 70.6 (α-CH Pro); 70.8 (CH); 71.1 (OCH2C=CH); 75.4 (C=CH); 79.1 (C=CH); 120.7 (CH); 124.0 (CH); 126.9; 127.0 (CH); 128.1 (CH); 128.90 (2CH); 128.93 (CH); 129.04 (CH); 129.05(CH); 129.8 (CH); 131.7 (2CH); 132.2 (CH); 133.26 (CH); 133.33; 134.1; 142.8; 171.2; 177.4; 180.4.

Complex 3b

Based on TLC data, the conversion was around 20%, therefore separation of the product was deemed impractical.

Complex 3c

A 2 g (0.0039 mol) sample of Ni^{II}-(S)-BPB-(S)- Δ Ala was dissolved in 5ml CH₃CN in a roundbottomed flask. Then, 1.15 g (0.011mol) of 3-methylpent-1-yn-3-ol and 0.23 g (0.011 mol) of NaOH were added. The reaction mixture was stirred at room temperature. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the traces of the initial complex. Based on TLC data, the reaction took 2.5 hours to complete. After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was purified by column chromatography on silica.

Complex 3c

Yield 82% (1.96g), Mp 133^oC, [α]_D²⁰ +2143.28^o (c=0.15, CH₃OH). Anal Calc. for: C₃₄H₃₅N₃NiO₄ (608.353) C 67.13; H 5.80; N 6.91; Found: C 67.37; H 6.06; N 7.15: MS, *m/z*: 607.198:

Mixture of 2 diastereoisomers 1/1.

¹H NMR: (CDCl3) δ =0.99 (1.5H, t, J=7.4) and 1.08 (1.5H, t, J=7.4, CH₃Et); 1.47 (1.5H, s) and 1.56 (1.5H, s, CH₃); 1.76-1.89 (2H, m) and 1.93-2.12 (2H, m, CH₂CH₃ and γ , δ -H_a Pro);

2.39 (0.5H, s) and 2.40 (0.5H, s, \equiv CH); 2.43-2.59 (1H, m) and 2.73-2.88 (1H, m, β -CH₂ Pro); 3.44 (1H, dd, J=10.7, 6.2, α -H Pro); 3.55 (1H, dd, J=9.5, 3.6, OCH₂); 3.61 (0.5H, d, J=12.7,) and 3.61 (0.5H, d, J=12.7, C<u>H</u>₂Ph); 3.54-3.62 (1H, m, δ -H_b Pro); 3.67-3.82 (1H, m, γ -H_b Pro); 3.87 (0.5H, dd, J=9.5, 3.6) and 3.89 (0.5H, dd, J=9.5, 3.6, OCH₂); 4.09 (0.5H, t, J=3.6) and 4.10 (0.5H, t, J=3.6, OCH); 4.40 (0.5H, d, J=12.7) and 4.42 (0.5H, d, J=12.7, CH₂Ph); 6.62-6.69 (2H, m, Ar); 7.00-7.05 (1H, m, Ar); 7.11-7.25 (3H, m, Ar); 7.32-7.38 (2H, m, Ar); 7.45-7.53 (3H, m, Ar); 8.01-8.05 (2H, m, Ar) and 8.22-8.26 (1H, m, Ar).

¹³C NMR: (CDCl3) δ =8.4 and 9.0 (<u>C</u>H₃CH₂); 23.8 (γ -CH₂ Pro); 25.4 and 26.0 (CH₂); 30.9 and 31.0 (β -CH₂ Pro); 33.0 and 34.5 (CH₃); 57.0 (δ -CH₂ Pro); 62.99 and 63.02 (<u>C</u>H₂Ph); 65.7 and 65.8 (OCH₂); 70.4 and 70.5 (CH); 70.95 and 71.00 (α -CH Pro); 73.9 and 74.1 (=CH); 74.5 and 74.7 (O<u>C</u>CH₃); 84.7 and 85.0 (=C); 120.6-134.3 (Ar); 142.8 and 142.9 (Ar); 171.36 and 171.39 (Ar); 177.8 and 178.0 (Ar); 180.3 (Ar).

Complex 3d

2g (0.0039 mol) sample of Ni^{II}-(S)-BPB-(S)- Δ Ala was dissolved in 5ml CH₃CN in a roundbottomed flask. Then, 1.72g (0.011 mol) 2-phenylbut-3-yn-2-ol and 0.23g (0.011 mol) NaOH was added. The reaction mixture was stirred at room temperature. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 2.5 hours to complete.

After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was purified by column chromatography on silica.

Complex 3d

Yield 78% (2.01g), Mp+97^oC, $[\alpha]_D^{20}+2063.8^o$ (c=0.15, CH₃OH). Anal Calc. for: C₃₈H₃₅N₃NiO₄ (656.396) C 69.53; H 5.37; N 6.40; Found: C 69.87; H 5.68; N 6.67: MS, *m/z*: 655.198:

Mixture of 2 diastereoisomers 70/30% (A/B)

¹H NMR: (CDCl₃) δ =1.94 (1H, s) and 2.05 (2H, s, CH₃); 1.96-2.10 (2H, m, γ , δ -H_a Pro); 2.42-2.64 (1H, m) and 2.73-2.87 (1H, m, β -CH₂ Pro); 2.68 (0.3H, s) and 2.71 (0.7H, s,

≡CH); 2.96 (0.7H, dd, J=10.5, 4.3, OCH (H)); 3.45 (0.3H, dd, J=10.8, 6.1) and 3.49 (0.7H, dd, J=10.8, 6.1 α-H Pro); 3.55-3.67 (3H, m); 3.78-3.96 (2,3H m); 4.37 (0.3H, d, J=12.6) and 4.46 (0.7H, d, J=12.6, CH₂Ph); 5.48-5.52 (0.7H, m); 6.49 (0.7H, dd, J=8.2, 1.7), 6.63-6.71 (1.3H, m); 6.94-7.01 (1.7H, m); 7.04-7.23 (4.7H, m); 7.28-7.46 (5.3H, m); 7.52-7.57 (0.7H, m); 7.72-7.76 (1.3H, m); 8.02-8.07 (2H, m); 8.29 (0.3H, bd, J=8.6) and 8.43 (0.7H, dd, J=8.6, 1.1). ¹³C NMR: (CDC13) δ=23.6(A) and 23.7 (B)-γ-CH₂ Pro; 30.8 (B) and 31.0 (A)-β-CH₂Pro; 32.9 (A) and 33.0 (B)-CH₃; 57.0 (A) and 57.1 (B)-δ-CH₂Pro; 63.0 (A) and 63.05 (B)-CH₂Ph; 66.7 (A) and 67.0 (B)-OCH₂; 70.4, 70.5 and 70.7-α-CH Pro and CH; 76.84 (B) and 76.86 (A)=≡C; 76.92 (B) and 76.95 (A)-≡CH; 82.5 (A,B)-CMe;120.6 (A) and 120.7 (B) Ar; 123.5 (A) and 123.7 (B) Ar; 126.0 (B) and 126.4 (A) Ar; 126.7 (A) and 126.9 (B) Ar; 127.9-128.9 Ar; 129.5 (A) and 129.7 (B) Ar; 131.6 (B) and 131.7 (A) Ar; 132.3 (B) and 132.4 (A) Ar; 133.2 (A) and 133.3 (B) Ar; 133.4 (A) and 133.6 (B) Ar; 133.9 (A) and 134.2 (B) Ar; 141.4 (B) and 142.5 (A) Ar; 142.8 (B) and 142.9 (A) Ar; 171.4 (A) and 171.6 (B) Ar; 177.5 (B) and 177.8 (A) Ar; 180.4 (B) and 180.6 (A) Ar.

Complex 3e

A 2g (0.0039 mol) sample of Ni^{II}-(S)-BPB-(S)- Δ Ala was dissolved in 5 ml CH₃CN in a roundbottomed flask. Then, 1.72 g (0.011 mol) 1,1-diphenylprop-2-yn-1-ol and 0.23 g (0.011 mol) NaOH was added. The reaction mixture was stirred at room temperature. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 2.5 hours to complete. After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was purified by column chromatography on silica.

Complex 3e

Yield 70% (1.97g), Mp+104⁰C, [α]_D²⁰+1801.86⁰ (c=0.15, CH₃OH). Anal Calc. for: C₄₃H₃₇N₃NiO₄ (718.465) C 71.88; H 5.19; N 5.85; Found: C 72.04; H 5.47; N 6.17: MS, *m/z*: 617.214:

¹H NMR: (CDCl₃) δ =1.30-1.44 (1H, m, γ-H_a Pro), 1.93-2.02 (1H, δ-H_a Pro); 2.04-2.20 (2H, m); 2.73-2.89 (1H, m, β-H_b Pro); 2.84 (1H, s, =CH); 3.35 (1H, dd, J=10.4, 6.6, α-H Pro);

3.38 (1H, dd, J=10.6, 4.6, OCH₂); 3.46-3.52 (1H, m, , δ-H_b Pro); 3.51 (1H, d, J=12.6, C<u>H</u>₂Ph); 4.05-4.10 (2H, m, C<u>HCH</u>₂O); 4.33 (1H, d, J=12.6, C<u>H</u>₂Ph), 5.89-5.93 (1H, m, Ar); 6.52 (1H, dd, J=8.2, 1.7, C₆H₄); 6.65 (1H, ddd, J=8.2, 7.0, 1.2, C₆H₄); 7.05-7.21 (7H, m, Ar); 7.29-7.44 (7H, m, Ar); 7.48-7.53 (2H, Ar); 7.80-7.85 (2H, m, Ar); 8.05-8.09 (2H, m, Ar); 8.34 (1H, dd, J=8.7, 1.2, C₆H₄).

¹³C NMR: (CDCl₃) δ=23.2 (γ-CH₂ Pro); 30.6 (β-CH₂ Pro); 57.5 (δ-CH₂ Pro); 63.3 (<u>C</u>H₂Ph); 67.2 (OCH₂); 70.5 (α-CH Pro); 70.8 (CH); 78.9 (≡CH); 81.3 (≡C); 82.6 (<u>C</u>Ph₂); 120.5 (Ar); 123.6 (Ar); 126.3 (Ar); 126.7 (Ar); 127.7 (Ar); 128.0 (Ar); 128.1 (Ar); 128.2 (Ar); 128.3 (Ar); 128.7 (Ar); 128.8 (Ar); 129.5 (Ar); 130.1 (Ar); 131.6 (Ar); 132.4 (Ar); 133.4 (Ar); 133.5 (Ar); 134.0 (Ar); 141.4 (Ar); 142.9 (Ar); 143.1 (Ar); 171.6 (Ar); 177.7 (Ar); 180.6 (Ar).

Complex 3f

Based on TLC data, the conversion was around 10%, therefore separation of the product was deemed impractical.

Complex 4a

A 10 g (0.0191 mol) sample of Ni^{II}-(S)-BPB-(S)-(E)- Δ -aminobutyric acid was dissolved in a 100 ml solution of a 0.3 M solution of sodium salt of propargyl alcohol in propargyl alcohol. The reaction mixture was stirred at 50-55°C under a nitrogen atmosphere. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 5 hours to complete.

After the completion of the reaction, the mixture was neutralized with glacial acetic acid and evaporated to dryness. The product was recrystallized from acetone.

Complex 4a

Yield 90% (9.90 g), Mp+218⁰C, [α]_D²⁰+2393,1⁰ (c=0.145, CH₃OH). Anal Calc. for: C₃₂H₃₁N₃NiO₄ (580.30) C 66.23; H 5.38; N 7.24; Found: C 66.24; H 5.37; N 7.22: MS, *m/z*: 580.100:

¹H NMR: (CDCl₃), δ =1.07 (3H, d,J=6.5, CH₃); 1.98-2.13 (2H, m, γ, δ-Ha Pro); 2.19 (1H, t, J=2.3, ≡CH); 2.44-2.58 (1H, m, β-Ha Pro); 2.84-2.96 (1H, m, β-Hb Pro); 3.42 (1H, dd, J=10.8, 6.2, α-H Pro); 3.44-3.56 (1H, m, γ -Hb Pro);

3.60 (1H, d, J=12.7, C<u>H</u>₂Ph) (8a); 3.72 (1H, qd, J=6.5, 2.1, C<u>H</u>CH₃) (17); 3.90 (1H, d, J=2.1, C<u>H</u>CHCH₃) (1); 4.23 (1H, dd, J=16.5, 2.3, OC<u>H</u>₂C≡CH) (19a); 4.46 (1H, d, J=12.7, C<u>H</u>₂Ph) (8b); 4.68 (1H, dd, J=16.5, 2.3, OC<u>H</u>₂C≡CH) (19b); 6.60-6.70 (2H, m, C₆H₄); 7.00-7.04 (1H, m, Ar); 7.10-7.22 (2H, m, Ar); 7.24-7.37 (3H, m, Ar); 7.42-7.56 (3H, m, Ar); 8.01-8.05 (2H, m, orto-C₆H₅); 8,20 (1H, ddd, J=8.6 1.0, 0.7, C₆H₄).

¹³C NMR: (CDCl₃) δ =15.6 (CH₃); 23.0 (γ-CH₂ Pro); 30.8 (β-CH₂ Pro); 56.7 (OCH₂); 57.0 (δ-CH₂ Pro); 62.9 (<u>C</u>H₂Ph); 70.4 (α-CH Pro); 74.3 (NCH); 75.0 (≡CH); 77.0 (<u>C</u>HMe); 80.1 (≡C); 120.5 (CH); 123.9 (CH); 126.6 (C); 127.2 (CH); 128.1 (CH); 128.9 (2 CH); 129.0 (CH); 129.1 (CH); 129.8 (2 CH); 131.8 (2 CH); 132.2 (CH); 133.2 (C); 133.3 (C); 134.2 (C); 142.9 (C); 170.9 (C); 176.2 (C); 180.3 (C).

Complex 7

To a mixture of 0.78 ml (7.0 mmol) of Iodobenzene, 5ml of triethylamine, 0.12 g (0.1 mmol) $PdCl_2(PPh_3)_2$ and 0.067 g (0.3 mmol) of copper iodide were added in a pressure tube, supplied with an argon gas flow. Then a solution of 2 g (3.5 mmol) of complex **3a** in 5 ml of 1,4-dioxane was added. The reaction mixture was heated to $60^{\circ}C$ with stirring. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 6 hours to complete.

After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Yield 58% (1.46g), Mp+101°C, $[\alpha]_D^{20}$ +2166.88° (c=0.15, CH₃OH). Anal Calc. for:C₃₇H₃₃N₃NiO₄(642.369) C 68.31; H 5.38; N 6.50; Found: C 66.05; H 5.34; N 7.68: MS, *m/z*: 641.182:

¹H NMR: (CDCl₃) δ =1.95-2.11 (2H, m, γ, δ-H_a Pro); 2.40-2.54 (1H, m, β-H_a Pro); 2.84-2.95 (1H, m, β-H_b Pro); 3.42 (1H, dd, J=10.8, 6.1, α-H Pro);

3.48-3.55 (1H, m, δ -H_b Pro); 3.59 (1H, d, J=12.6, C<u>H</u>₂Ph); 3.60 (1H, dd, J=9.6, 3.4, OC<u>H</u>₂CH); 3.79 (1H, dd, J=9.6, 2.7, OC<u>H</u>₂CH); 3.87-4.04 (1H, m, γ -H_b Pro); 4.11 (1H, dd, J=3.4, 2.7, CH); 4.39 (1H, d, J=12.6, C<u>H</u>₂Ph); 4.43 (1H, d, J=15.7; OCH₂C=C); 4.66 (1H, d, J=15.7, OCH₂C=C); 6.60 (1H, br. dd, J=8.2, 2.1, C₆H₄); 6.64 (1H, ddd, J=8.2, 6.6, 1.1, C₆H₄); 6.95-6.99 (1H, m, Ar); 7.15 (1H, ddd, J=8.6, 6.6, 2.1, C₆H₄); 7.19-7.31 (6H, m, Ar); 7.33-7.52 (6H, m, Ar); 8.03-8.07 (2H,m, Ar); 8.16 (1H, dd, J=8.6, 1.2, C₆H₄).

¹³C NMR: (CDCl₃) δ=23.1 (γ-CH₂Pro); 30.9 (β-CH₂ Pro); 57.1 (δ-CH₂ Pro); 59.7 (OCH₂); 62.9 (<u>C</u>H₂Ph); 70.6-70.8 (2CH, OCH₂); 120.7; 122.4; 124.1; 127.0; 128.1; 128.4 (2C); 128.7; 128.91 (2C); 128.94; 129.00; 129.04; 129.8; 131.7 (2C); 131.9 (2C); 132.2; 133.26; 133.31; 134.0; 142.7; 171.1; 177.8; 180.5.

Complex 8

To a mixture of 0.77 ml (6.8 mmol) of Iodobenzene, 5 ml of triethylamine, 0.12 g (0.1 mmol) of $PdCl_2(PPh_3)_2$ and 0.065 g (3.4 mmol) of copper iodide were added in a pressure tube, supplied with an argon gas flow. Then a solution of 2 g (3.4 mmol) of complex **4a** in 5 ml of 1,4-dioxane was added. The reaction mixture was heated to 60^oC with stirring. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 6 hours to complete.

After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Yield 56% (1.40g), Mp +252°C, $[\alpha]_D^{20}$ +1427.6° (c=0.15, CH₃OH). Anal Calc. for:C₃₈H₃₅N₃NiO₄(656.40) C 69.53; H 5.37; N 6.40; Found: C 69.84; H 5.63; N 6.69: MS, *m/z*: 655.20:

¹H NMR: (CDCl₃) δ =1.13 (3H, d, J=6.4, CH₃); 1.96-2.13 (2H, m, γ, δ-H_a Pro); 2.46-2.60 (1H, m) and 2.92-3.04 (1H, m, β-CH₂ Pro); 3.39 (1H, dd,

J=10.5, 6.5, α -H Pro); 3.48-3.57 (1H, m, γ -H_b Pro); 3.63 (1H, d, J=12.7, C<u>H</u>₂Ph); 3.87 (1H, qd, J=6.4, 2.2, C<u>H</u>CH₃); 3.91 (1H, d, J=2.2, NC<u>H</u>CHCH₃); 3.82-3.97 (1H, m, δ -H_b Pro); 4.48 (1H, d, J=12.7, C<u>H</u>₂Ph); 4.52 (1H, d, J=16.3) and 4.89 (1H, d, J=16.3, OCH₂); 6.50-6.59 (2H, m, C₆H₄); 6.84-6.89 (1H, m, Ar); 7.03-7.25 (8H, m, Ar); 7.29-7.37 (3H, m, Ar); 7.41-7.52 (2H, m, Ar); 7.98-8.04 (2H, m, Ar) and 8.29 (1H, dd, J=8.7, 0.9, C₆H₄).

¹³C NMR: (CDCl₃) δ =15.3 (CH₃); 22.8 (γ-CH₂ Pro); 31.1 (β-CH₂ Pro); 56.8 (OCH₂); 57.1 (δ-CH₂Pro); 62.6 (<u>C</u>H₂Ph); 70.5 (α-CH Pro); 74.4 (CH); 75.9 (CH); 85.0 (<u>C</u>=C); 86.9 (C=<u>C</u>); 120.4 (Ar); 121.8 (Ar); 123.9 (Ar); 126.5 (Ar); 127.2 (Ar); 128.1 (Ar); 128.2 (2CH, Ar); 128.5; 128.8 (2CH, Ar); 128.9 (Ar); 129.0 (Ar); 129.6 (Ar); 131.7 (2CH, Ar); 131.8 (2CH, Ar); 132.0 (Ar); 133.1 (Ar); 133.2 (Ar); 134.2 (Ar); 143.2 (Ar); 170.7 (Ar); 176.3 (Ar); 180.4 (Ar).

Complex 9

To a mixture of 5 ml of 1,4-dioxane and 5 ml of triethylamine, 0.67 g (3.5 mmol) of copper iodide and 2 g (3.5 mmol) of complex **3a** were added. The reaction mixture was stirred at room temperature. The course of the reaction was monitored by TLC (SiO₂, 3/1 chloroform/acetone) until the disappearance of the initial complex. Based on TLC data, the reaction took 96 hours to complete. After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Yield 66% (2.63g), Mp+143 0 C, $[\alpha]_{D}{}^{20}$ +2572 0 (c=0.15, CH₃OH). Anal Calc. for: C₆₂H₅₆N₆Ni₂O₈ (1130.530) C 65.87; H 4.99; N 7.43; Found: C 66.05; H 5.34; N 7.68: MS, *m/z*: 1128.287:

¹H NMR: (CDCl₃) δ=1.88-2.09 (2H, m, γ, δ-H_a Pro); 2.43-2.57 (1H, m, β-H_a Pro); 2.76-2.87 (1H, m, β-H_b Pro); 3.40 (1H, dd, J=10.8; 6.0, α-H Pro); 3.40-3.49 (1H, m, δ-H_e Pro); 3.46 (1H, dd, J=9.6; 3.3, OC<u>H</u>₂CH); 3.50 (1H, d, J=12.6, CH₂Ph), 3.70 (1H, dd, J=9.6; 2.8, OCH₂CH), 3.76-3.93 (1H, m, γ-H_b Pro); 4.05 (1H, dd, J=3.3; 2.8, OCH₂C<u>H</u>), 4.22 (1H, d, J=16.0, OCH₂C≡); 4.31 (1H, d, J=12.6, C<u>H</u>₂Ph); 4.44 (1H, d, J=16.0; OCH₂C≡); 6.59-6.66 (2H, m, Ar); 6.94-7.00 (1H, m, Ar); 7.11 (1H, ddd, J=8.8; 5.5; 3.2 Ar); 7.16-7.25 (2H, m, Ar); 7.31-7.39 (2H, m, Ar); 7.41-7.51 (3H, m, Ar); 8.06-8.13 (3H, m, Ar).

¹³C NMR: (CDCl₃) δ=23.2 (γ-CH₂ Pro); 30.9 (β-CH₂ Pro); 57.2 (δ-CH₂ Pro); 59.5 (OCH₂); 63.0 (<u>C</u>H₂Ph); 70.57 (<u>C</u>HCH₂); 70.61 (α-CH Pro); 71.0 (<u>C</u>=CH); 71.3 (O<u>C</u>H₂C=); 75.2 (C=<u>C</u>); 120.6 (CH, Ar); 124.0 (CH, Ar); 126.7; 126.9 (CH, Ar); 127.9 (CH, Ar); 128.9 (2CH, Ar); 129.0(CH, Ar); 129.2 (CH, Ar); 129.9 (CH, Ar); 131.6 (2CH, Ar); 132.1 (CH, Ar); 133.2(CH, Ar); 133.5; 133.9; 142.9; 171.2; 177.3; 180.5.

Complex 10

To a mixture of 5 ml of 1,4-dioxane and 5 ml of triethylamine, 0.67 g (3.5 mmol) of copper iodide and 2.03 g (3.5 mmol) of complex **4a** were added. The reaction mixture was stirred at room temperature. The course of the reaction was monitored by TLC (SiO₂, 3/1 chloroform/acetone) until the disappearance of the initial complex. Based on TLC data, the reaction took 96 hours to complete. After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Yield 70% (1.42 g), Mp+190 0 C, $[\alpha]_{D}{}^{20}+1851,25^{0}$ (c=0.526, CH₃OH). Anal Calc. for: C₆₄H₆₀N₆Ni₂O₈ (1158.58) C 66.35; H 5.22; N 7.25; Found: C 66.31; H 5.25; N 7.29: MS, *m/z*: 1159.21:

¹H NMR: (CDCl₃) δ=0.99 (3H, d,J=6.4, CH₃);

1.90-2.08 (2H, m, γ, δ-Ha Pro); 2.51 (1H, m, β-Ha Pro);2.80 (1H, m, β- Hb Pro); 3.30-3.56 (3H, m, J=10.8, 6.2, α , γ, δ-Hb Pro); 3.53 (1H, d, J=12.6, CH₂Ph); 3.76 (1H, m, J=6.5, 2.1, CHCH₃) (17); 3.82 (1H, d, J=1.8, NCH) (1); 3.98 (1H, d, J=16.9, OCH₂) (19a); 4.41 (1H, d, J=12.6, CH₂Ph); 4.47 (1H, d, J=16.9, OCH₂); 6.59-6.66 (2H, m, C₆H₄); 6.87-6.92 (1H, m, Ar); 7.04-7.10 (1H, m, Ar); 7.13-7.25 (2H, m, Ar); 7.29-7.40 (3H, m, Ar); 7.43-7.54 (2H, m, orto-C₆H₅); 8,00-8.05 (2H, m, Ar), 8.26 (1H, b.d, J=8.6, Ar).

¹³C NMR: (CDCl₃) δ=15.7 (CH₃); 23.0 (γ-CH₂ Pro); 30.8 (β-CH₂ Pro); 57.0 (OCH₂); 57.3 (δ-CH₂ Pro); 62.8 (<u>C</u>H₂Ph); 69.9 (α-CH Pro); 70.5 (b., NCH); 74.2 (b.); 75.8 and 77.1 (<u>C</u>=C); 120.2 (CH); 123.8 (CH); 126.5 (C); 127.2 (CH); 128.0 (CH); 128.8 (3 CH); 128.9 (CH); 129.1 (CH); 129.7 (2 CH); 131.7 (2 CH); 131.9 (CH); 133.3 (C); 134.2 (C); 143.5 (C); 170.8 (C); 176.0 (C); 180.5 (C).

Complex 11

1.16 g (7.0 mmol) of 1-azido-2-nitrobenzene was dissolved in 5 ml of 1,4-dioxane in a roundbottomed flask, supplied with an argon gas flow, at room temperature. Then, 0.067 g (0.3 mmol) of CuI was added and the mixture was stirred for 5 min followed by addition of 0.738 ml (5.2 mmol) of Et₃N. After 30 min, 2 g (3.5 mmol) of complex **3a** was added and the reaction mixture was heated to 60° C with stirring. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 40 min to complete.

After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Yield 83% (2.37g), Mp+231°C, $[\alpha]_D^{20}$ +1884.82° (c=0.15, CH₃OH). Anal Calc. for: C₃₇H₃₃N₇NiO₆(730.39) C 60.84; H 4.55; N 13.42; Found: C 61.08; H 4.93; N 13.78: MS, *m*/*z*: 729.18:

¹H NMR: (CDCl₃) δ=1.97-2.13 (2H, m, γ, δ-H_a Pro); 2.43-2.58 (1H, m, β-H_a Pro); 2.67-2.79 (1H, m, β-H_b Pro); 3.43 (1H, dd, J=10.9, 5.9, α-

H Pro); 3.49 (1H, dd, J=9.6; 3.2; OC<u>H</u>₂CH); 3.56 (1H, d, J=12.6, C<u>H</u>₂Ph); 3.46-3.55 (1H, m, γ -H_b Pro); 3.81-3.96 (1H, m, δ -H_b Pro); 3.86 (1H, dd, J=9.6, 2.6, OC<u>H</u>₂CH); 4.04 (1H, dd, J=3.2, 2.6, CH); 4.35 (1H, d, J=12.6, CH₂Ph); 4.98 (1H, d, J=13.9) and 5.06 (1H, d, J=13.9, OCH₂); 6.58-6.64 (2H, m, Ar); 6.70-6.74 (1H, m, Ar); 7.07 (1H, ddd, J=8.8, 7.1, 3.0, Ar); 7.16-7.22 (2H, m, Ar); 7.26-7.29 (1H, m, Ar); 7.32-7.38 (2H, m, Ar); 7.41-7.51 (3H, m, Ar); 7.56-7.65 (2H, m, Ar); 7.91 (1H, s, =CHN); 7.95-8.01 (1H, m, Ar); 8.05-8.10 (3H, m, Ar).

¹³C NMR: (CDCl₃) δ=22.9 (γ-CH₂ Pro); 30.9 (β-CH₂ Pro); 57.2 (δ-CH₂ Pro); 63.1 (<u>C</u>H₂Ph); 64.7 (OCH₂); 70.5 (CH); 71.0 (α-CH Pro); 71.1 (OCH₂); 120.7 (CH); 123.9 (CH); 124.0 (CH); 125.5 (CH); 126.5; 126.8 (CH); 127.7 (CH); 127.8 (CH); 128.88 (2CH); 128.91 (CH); 129.1 (CH); 129.4 (CH); 129.8; 129.9 (CH); 130.5 (CH); 131.6 (2CH); 132.1 (CH); 133.3 (CH); 133.4; 133.6; 133.9 (CH); 142.5; 144.3; 145.8; 171.2; 177.5; 180.4.

Complex 12

1.13 g (6.9 mmol) of 1-azido-2-nitrobenzene was dissolved in 5 ml 1,4-dioxane in a roundbottomed flask, supplied with an argon gas flow, at room temperature. Then, 0.065 g (0.3 mmol) of CuI was added and the mixture was stirred for 5 min followed by the addition of 0.720 ml (5.2 mmol) of Et₃N. After 30 min, 2 g (3.4 mmol) of complex **4a** was added and the reaction mixture was heated to 60° C with stirring. The course of the reaction was monitored by TLC (SiO₂, 3/1 ethyl acetate/chloroform) until the disappearance of the initial complex. Based on TLC data, the reaction took 40 min to complete. After the completion, the mixture was extracted with ethyl acetate and distilled water, dried over MgSO₄ to remove trace amounts of water, and filtered through filter paper. The resulting filtrate was evacuated to dryness and the residue was recrystallized from acetone.

Yield 80% (2.27g), Mp +246^oC, $[\alpha]_D^{20}$ +2124.5^o (c=0.15, CH₃OH). Anal Calc. for: C₃₈H₃₅N₇NiO₆ (744.42) C 61.31; H 4.74; N 13.17; Found: C 61.55; H 5.12; N 13.51: MS, *m/z*: 743.20:

¹H NMR: (CDCl₃) δ=1.19 (3H, d, J=6.3, CH₃); 2.00-2.18 (2H, m, γ, δ-H_a Pro); 2.40-2.70 (2H, m, β-H_a Pro and β-H_b Pro); 3.45 (1H, dd,

J=10.9, 5.9, α -H Pro); 3.51 (1H, d, J=12.6, CH₂Ph); 3.53-3.59 (1H, m, δ -H_b Pro); 3.65 (1H, qd, J=6.3, 2.7, CHCH₃); 3.79 (1H, d, J=2.7, CHCHCH₃); 3.81-3.98 (1H, m, γ -H_b Pro); 4.42 (1H, d, J=12.6, CH₂Ph); 5.00 (1H, d, J=14.4) and 5.34 (1H, d, J=14.4, OCH₂); 6.45-6.53 (3H, m, Ar); 6.83-6.86 (1H, m, Ar); 6.87-6.96 (1H, m, Ar); 7.09-7.18 (2H, m, Ar); 7.26-7.32 (2H, m, Ar); 7.37-7.52 (5H, m, Ar); 7.86-7.89 (1H, m, Ar); 7.90 (1H, s, =CHN, Ar); 7.94 (1H, dt, J=8.6, 0.8, Ar); 8.03-8.08 (2H, m, Ar).

¹³C NMR: (CDCl₃) δ =14.8 (CH₃); 23.1 (γ-CH₂ Pro); 30.9 (β-CH₂ Pro);57.3 (δ-CH₂ Pro);61.4 (OCH₂);63.2 (<u>C</u>H₂-Ph); 70.2 (α-CH Pro); 74.4 (CH); 75.4 (CH); 126.6(Ar); 123.8(Ar); 123.9 (Ar); 125.3 (Ar); 126.1 (Ar); 126.9 (Ar); 127.6(Ar); 127.7 (Ar); 128.9 (3C, Ar); 129.0 (Ar); 129.3 (Ar); 129.4 (Ar); 129.9 (Ar); 130.2 (Ar); 131.6 (2C, Ar); 131.8 (Ar); 133.4 (Ar); 133.5 (Ar); 133.8(Ar); 142.2 (Ar); 143.9 (Ar); 146.2(Ar); 170.8 (Ar); 175.9 (Ar); 180.3(Ar).

General procedure for isolation of amino acids

A suspension of the complex in CH_3OH was slowly added to a vigorously stirred 2 M aqueous HCI solution at 50-60°C. After the complexes were decomposed (10-20 min), the free amino acids were purified using a cation-exchange column (Dowex-50 (H⁺ form)).

(S)-2-amino-3-(O-propargyl)propionic acid 5a

Yield 72% (0.4 g), Mp 190°C, $[\alpha]_D^{20}$ +15.5° (c=0.10, CH₃OH). Anal Calc. for: C₆H₉NO₃ (143.141) C 50.35; H 6.34; N 9.79; Found: C 50.63; H 6.62; N 10.03: MS,m/z: 143.058:

¹H NMR: (DMSO/CF₃COOD) δ =3.52 (1H, t, J=2.4, =CH); 3.79 (1H; dd; J=10.5; 3.2, OC<u>H</u>₂CH); 3.88 (1H, dd, J=10.5; 4.5, OCH₂CH); 4.22 (1H, dd, J=16.0; 2.4, OC<u>H</u>₂C=CH); 4.23 (1H, dd, J=16.0; 2.4, OC<u>H</u>₂C=CH); 4.24 (1H, br, CH); 8.37 (2H, br, NH₂).

¹³C NMR: (DMSO/CF₃COOD) δ=52.1 (CH); 58.1 (CH₂); 67.0 (CH₂); 78.1 (≡CH); 79.3 (≡C); 168.8 (CO).

(2S,3S)-2-amino-3-(O-propargyl)butanoic acid 6a

¹H NMR: (CDOD), δ=1.22 (3H, d,J=6.6, CH₃); 2.91 (1H, t, J=2.4, ≡CH);3.91 (1H, d, J=3.7, NCH); 4.27 (1H, dd, J=16.2, 2.4, OCH₂); 4.31 (1H, dd, J=16.2, 2.4, OCH₂); 4.32 (1H, qd, J=6.6, 3.7, C<u>H</u>CH₃).

¹³C NMR: (CDOD) δ= 14.2 (CH₃); 56.9 (OCH₂); 59.0 (NCH); 73.8 (OCH); 76.2 (≡CH); 80.5 (≡C); 171.5 (CO).

(S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)propanoic acid 13

Yield 47% (0.36 g), Mp +175.8°C, $[\alpha]_D{}^{20}$ +21° (c=0.2, 6N HCl). Anal Calc. for: C₁₂H₁₃NO₃ (219.24) C 65.74; H 5.98; N 6.39; Found: C 66.02; H 6.27; N 6.74: MS, *m/z*: 219.09:

¹H NMR: (D₂O) δ =3.88-3.99 (3H, m, C<u>H</u>₂C<u>H</u>); 4.42 (2H, s, OCH₂C=CPh); 7.32-7.42 (3H, m) and 7.45-7.50 (2H, m, C₆H₅).

¹³C NMR: (D₂O) δ=55.9 (CH); 60.3 (CH₂); 69.2 (CH₂); 86.2 (C=C); 88.4 (C=C); 123.1; 130.2

(2CH); 130.7 (2CH); 133.2 (2CH); 172.4 (CO).

(S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)butanoic acid 14

Yield 43% (0.31 g), Mp +189^oC, [α]_D²⁰ +21^o (c=0.2, 6N HCl). Anal Calc. for: C₁₃H₁₅NO₃ (233.26) C 66.94 H 6.48; N 6.00; Found: C 67.22; H 6.84; N 6.26: MS, *m/z*: 233.11:

¹H NMR: (CD₃OD) δ=1.26 (3H, d, J=6.6, CH₃); 3.96 (1H, d, J=3.7, NCH); 4.41 (1H, qd, J=6.6, 3.7, C<u>H</u>CH₃); 4.50 (1H, d, J=16.2, CH₂); 4.54 (1H, d, J=16.2, CH₂); 7.31-7.39 (3H, m, C₆H₅); 7.43-7.49 (2H, m, C₆H₅).

¹³C NMR: (CD₃OD) δ =14.2 (CH₃); 57.6 (CH); 59.1 (NCH); 73.8 (OCH₂); 85.8 (<u>C</u>=C); 87.3 (C=<u>C</u>); 123.8, 129.5 (2CH); 129.7 (CH); 132.7 (CH); 171.5 (CO).

(S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)propanoic acid 15

Yield 44% (0.47 g), Mp +114°C, $[\alpha]_D^{20}$ +9.36° (c=0.2, 6N HCl). Anal Calc. for: C₁₂H₁₃N₅O₅ (307.26) C 46.91; H 4.26; N 22.79; Found: C 47.16; H 4.63; N 23.08: MS, *m/z*: 307.09:

¹H NMR: (DMSO) δ=3.44 (1H, dd, J=7.7, 3.3, CH); 3.72 (1H, dd, J=10.3, 7.7, C<u>H</u>₂CH); 3.89 (1H, dd, J=10.3, 3.3, C<u>H</u>₂CH); 4.68 (2H, s, OCH₂); 7.81-7.99 (3H, m) and 8.21 (1H, dd, J=8.0, 1.2, C₆H₄); 8.73 (1H, s, =CHN).

¹³C NMR: (DMSO) δ=54.2 (CH); 63.5 (CH₂); 69.6 (CH₂); 125.2; 125.5; 127.3; 129.0; 131.1; 134.3; 144.0; 144.8; 167.3.

(S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid 16

Yield 45% (0.38 g), Mp +214^oC, $[\alpha]_D^{20}$ +23^o (c=0.2, 6N HCl). Anal Calc. for: C₁₃H₁₅N₅O₅ (321.29) C 48.60; H 4.71; N 21.80; Found: C 48.86; H 5.07; N 22.09: MS, *m/z*: 321.11:

¹H NMR: (DMSO-d₆) δ=1.09 (3H, d, J=6.5, CH₃); 3.56 (1H, d, J=3.5, NCH); 4.11 (1H, qd, J=6.5, 3.5, C<u>H</u>CH₃); 4.67 (1H, dd, J=12.6, 0.5, CH₂); 4.70 (1H, dd, J=12.6, 0.5, CH₂); 7.49 (2H, b, NH₂); 7.81-7.88 (2H, m), 7.93-7.99 (1H, m) and 8.21 (1H, dd, J=8.1, 1.5, C₆H₄); 8.69 (1H, t, J=0.5, =CHN).

¹³C NMR: (DMSO-d₆) δ=14.1 (CH₃); 56.7 (CH); 61.0 (NCH); 73.7 (OCH₂); 125.1 (CH); 125.4 (CH); 127.4 (CH); 129.0 (CH); 131.1 (CH); 134.3 (CH); 144.0 (CH); 145.2 (CH); 166.9 (CO).

¹³C NMR Complex 3c

¹H NMR (S)-2-amino-3-(O-propargyl)propionic acid, 5a

¹³C NMR (S)-2-amino-3-(O-propargyl)propionic acid, 5a

¹H NMR (2*S*,3*S*)-2-amino-3-(O-propargyl)butanoic acid, 6a

¹H NMR (S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)propanoic acid13

¹³C NMR (S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)propanoic acid13

¹H NMR (S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)butanoic acid 14

¹³C NMR (S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)butanoic acid 14

¹H NMR (S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)propanoic acid15

¹³C NMR (S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)propanoic acid15

¹H NMR(S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic

acid16

HPLC analysis

The analysis of non-proteinogenic amino acid samples was performed using a Waters Alliance 2695e Separation Module HPLC system equipped with a PDA detector (Waters Corporation, Milford, MA, USA). The analysis was conducted on a Nautilus-E column, 5 μ m, 4.6 mm × 250 mm (BioChemMak ST, Moscow, Russia). The mobile phase consisted of 20% of methanol and 80% of buffer (88 mM potassium dihydrogen phosphate). The separation was carried out at a flow rate of 0.5 mL/min, with the column temperature maintained at 30°C. The PDA detector was set to 200 nm for detection. The injection volume was 10 µL.

	Name	Retention	Area	% Area	Height
		Time			
1	(S)-5a	6.740	443874	47.04	40665
2	(<i>R</i>)-5a	7.792	499762	52.96	38686

	Name	Retention	Area	% Area	Height
		Time			
1	(S)-5a	6.731	905877	97.05	81759
2	(<i>R</i>)-5a	7.852	6543	0.70	545

HPLC analysis of **6a**

	Name	Retention	Area	% Area	Height
		Time			
1	(S)-6a	7.008	924711	99.00	71768
2	(<i>R</i>)-6a	7.552	9374	1.00	708

HPLC analysis of **13**

	Name	Retention	Area	% Area	Height
		Time			
1	(S)-13	15.154	46931083	96.53	1208663
2	(<i>R</i>)-13	20.180	1686989	3.47	37670

HPLC analysis of **14**

	Name	Retention Time	Area	% Area	Height
1	(<i>S</i>)-14	13.514	48584532	100.00	1430659
2	(<i>R</i>)-14				

HPLC analysis of 15

	Name	Retention	Area	% Area	Height
		Time			
1	(<i>S</i>)-15	14.881	38735680	89.30	876517
2	(<i>R</i>)-15	20.542	3518290	8.11	59553

HPLC analysis of 16

	Name	Retention	Area	% Area	Height
		Time			
1	(<i>S</i>)-16	12.177	4807855	100.00	88828
2	(<i>R</i>)-16				

MS spectra

LC-MS: Compounds were analyzed using a Prominence I LC-2030C 3D Plus (Shimadzu Corporation, Kyoto, Japan) LC system connected to a simple quadrupole MS system (LC-MS-2020, Shimadzu Corporation, Kyoto, Japan) equipped with electrospray ionization (ESI) source. The mobile phase contained 0.1 % formic acid in water and 0.1 % formic acid in methanol (20/80 v/v) at a flow rate of 0.2 mL/min. The mass spectrometer was operated in the positive electrospray ionization mode. The interface settings were as follows. Nebulizing-gas flow rate: 1.5 L/min; drying-gas flow rate: 15.0 L/min; interface temperature: 350 °C; heat block temperature: 200 °C, DL temperature: 250 °C. All the peak analyses for the LC-MS were performed using LabSolutions ver. 5.99 SP2 (Shimadzu, Japan).

Complex 3c

Peak#	Ret. Time	Area	Base Peak m/z
1	0.747	58677846	608.10
Total		58677846	

Complex 3e

Peak#	Ret. Time	Area	Base Peak m/z
1	0.755	107364113	718.05
Total		107364113	

Complex 4a

(S)-	2-amino-3-(O-prop	argyl)pro	pionic :	acid,	5a.

Total

S39

(2S,3S)-2-amino-3-(O-propargyl)butanoic acid, 6a

Peak#	Ret. Time	Area	Base Peak m/z
1	0.758	10531747	158.00
Tota	1	10531747	

Complex 7

Peak#:1 R.Time:0.735(Scan#:45) MassPeaks:195 Spectrum Mode:Averaged 0.717-0.750(44-46) BG Mode:Calc Segment 1 - Event 1

MASS Peak Table TIC

Peak	4]	Ret. Time	Area	Base Peak m/z
	1	0.735	111188434	679.95
To	tal		111188434	

Peak#	Ret. Time	Area	Base Peak m/z
1	0.834	1880388197	656.05
Total		1880388197	

MS Spectrum

MASS Peak Table TIC

Peak#	Ret. Time	Area	Base Peak m/z
1	0.739	29868945	1169.00
Total		29868945	

Peak#	Ret. Time	Area	Base Peak m/z
1	0.765	12720011	1197.15
Total		12720011	

MS Spectrum

MASS Peak Table TIC

Peak#	Ret. Time	Area	Base Peak m/z
1	0.799	130998021	767.95
Total		130998021	

(S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)propanoic acid 13

Peak#	Ret. Time	Area	Base Peak m/z
1	0.734	58125051	219.95
Total		58125051	

(S)-2-amino-3-((3-phenylprop-2-yn-1-yl)oxy)butanoic acid 14

(S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)propanoic acid15

Peak#	Ret. Time	Area	Base Peak m/z
1	0.735	107483483	345.80
Total		107483483	

Total

(S)-2-amino-3-((1-(2-nitrophenyl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid 16

Circular Dichroism

The CD analyzes was performed on ChirascanTM V100. As a standard, CD curves of (S,S)- and (S,R)-diastereomers were produced using the (S,R)-diastereomer of the alanine complex as the initial alkyne substrate, following a similar procedure^{*i*,*ii*}.

Complex 3a

C:0.2mg/ml. $\Delta \mathcal{E}_{max}(\lambda_{max})$: -6.56 (461); +20.92(539).

Complex 3c

C:0.2mg/ml. $\Delta \mathcal{E}_{max}(\lambda_{max})$: -6.56 (461); +10.87 (538).

Complex 3d

C:0.2mg/ml. $\Delta \epsilon_{max}(\lambda_{max})$: -4.87 (460); +11.66 (537).

Complex 3e

C:0.2mg/ml. $\Delta \epsilon_{max}(\lambda_{max})$: -2.44 (460);+8.81 (535).

Complex 4a

C:0.2mg/ml. $\Delta \epsilon_{max}(\lambda_{max})$: -1.60 (465); +7.94 (537).

Complex 7

C:0.2mg/ml. $\Delta \epsilon_{max}(\lambda_{max})$: -3.85 (466); +22.08 (536).

C:0.2mg/ml. $\Delta \mathcal{E}_{max}(\lambda_{max})$: -4.25 (464); +22.23 (536).

C:0.2mg/ml. $\Delta \mathcal{E}_{max}(\lambda_{max})$: -5.99 (461); +19.23 (536).

Complex 10

C:0.2mg/ml. $\Delta \mathcal{E}_{max}(\lambda_{max})$: -3.19 (461); +13.75 (534).

C:0.2mg/ml. $\Delta \mathcal{E}_{max}(\lambda_{max})$: -2.25 (462); +8.29 (537).

C:0.2mg/ml. $\Delta \epsilon_{max}(\lambda_{max})$: -2.76 (459); +11.41 (533).

X-ray 4a

The diffraction measurements of crystal of compound **4a** were carried out at a temperature of 100K on a XtaLAB Synergy-S diffractometer using Mo-K α radiation, ω -scans rotation. A multi-scan absorption correction for all samples was performed using CrysAlisPro 1.171.43.92a (Rigaku Oxford Diffraction, 2023) using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structures were solved by direct method and refined using the software package SHELXTL[ⁱⁱⁱ]. All hydrogen atoms were positioned geometrically and refined using riding model. All non-hydrogen atoms were refined anisotropically by full-matrix least squares methods. Crystallographic and experimental data are listed in Table 1. The full crystallographic data in CIF format are available at: <u>https://www.ccdc.cam.ac.uk/structures/?</u> (free of charge), deposition number is CCDC 2395037.

Crystal Data		
Compound	4a	
Formula	C ₃₂ H ₃₁ N ₃ O ₄ Ni, C ₂ H ₆ O, H ₂ O	
Formula Weight	644.39	
Crystal System	monoclinic	
Space group	P21	
a, b, c [Å]	9.4105(1), 11.8727(1), 14.0699(2)	
$\alpha, \beta, \gamma [deg]$	90, 95.565(1), 90	
V [Å ³]	1564.59(3)	
Ζ	2	
$D(calc) [g/cm^3]$	1.368	
μ (MoK α) [mm ⁻¹]	0.670	
F(000)	680	
Crystal Size [mm]	0.42×0.40×0.22	
Data	Collection	
Temperature (K)	100	
Radiation [Å]	ΜοΚα 0.71073	
$\theta_{\min}, \theta_{\max}$ [Deg]	2.2, 31.1	
Dataset	-13≤h≤12; -16≤k≤15; -19≤l≤18	
Tot., Uniq. Data, R(int)	46938, 8379, 0.026	
Observed data $[I > 2.0 \sigma(I)]$	8256	
Refinement		
Nref, Npar	8379, 406	
R, wR2, S	0.0226, 0.0583, 1.04	

Table 1. Crystallographic and experimental data

ⁱBelokon, Y. N., Sagyan, A. S., Djamgaryan, S. A., Bakhmutov, V. I., Vitt, S. V., Batsanov, A. S., Struchkov, Y. T., &Belikov, V. M. (1990). General method for the asymmetric synthesis of anti-diastereoisomers of β-substitutedL-2-aminobutanoic acids via chiral nickel(II) Schiff's base complexes of dehydroaminobutanoic acid. X-Ray crystal and molecular structure of the nickel(II) complex of the Schiff's base from [(benzylprolyl)amino]benzophenone and dehydroaminobutanoic acid. *Journal of the Chemical Society. Perkin Transactions I/Journal of the Chemical Society. Perkin Transactions. I*, *8*, 2301–2310. https://doi.org/10.1039/p19900002301

ⁱⁱSaghyan AS, Langer P. *Asymmetric Synthesis of Non-Proteinogenic Amino Acids*. John Wiley & Sons; 2016.

"G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8.