Electronic Supplementary Information

Mesoporous Mo-Doped NiCo₂O₄ Nanocrystals for Enhanced Electrochemical Kinetics in High-Performance Lithium-Ion Batteries

Zahid Abbas,^{a,b} Tanveer Hussain Bokhari,^b Zohaib Rana,^c Saman Ijaz,^b Eman Gul,^d Amina Zafar,^e Saqib Javaid,^f Maria Gul,^g Khan Maaz,^a Shafqat Karim,^a Guolei Xiang,^{*c} Mashkoor Ahmad,^{*a} Amjad Nisar^{*a}

^a Nanomaterials Research Group, PD, PINSTECH, Islamabad 44000, Pakistan

- ^b Department of Chemistry, GC University, Faisalabad 38000, Pakistan
- ^c State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, PR China

^d Institute of Chemical Sciences, University of Peshawar, Peshawar 25000, Pakistan

^e CAFD, PINSTECH, Islamabad 44000, Pakistan

^fTheoretical Physics Division, PINSTECH, Islamabad 44000, Pakistan

^g MFMG, PD, PINSTECH, Islamabad 44000, Pakistan

* Corresponding Authors at: Nanomaterials Research Group, PD, PINSTECH, Islamabad 44000, Pakistan & State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.

Email Addresses: <u>chempk@gmail.com</u> (A. Nisar), <u>mashkoorahmad2003@yahoo.com</u> (M. Ahmad), <u>xianggl@mail.buct.edu.cn</u> (G. Xiang),

Fig. S1. Schematic illustration of synthesis of Mo-NCO nanostructures.

Fig. S2: XRD pattern of NCO and Mo-NCO nanostructures.

Fig. S3. FTIR spectra NCO and Mo-NCO nanostructures.

Fig. S4. Zoomed FTIR spectra NCO and Mo-NCO nanostructures showing the peak shift.

Fig. S5. SEM image of NCO nanostructures.

Fig. S6. EDX spectrum of NCO nanostructures.

Fig. S7. XPS Survey spectrum of Mo-NCO nanostructures.

Fig. S8. Zoomed-in image of CV curve of 1^{st} cycle of Mo-NCO electrode.

Fig. S9. Zoomed-in image of CV curves of 2^{nd} , 3^{rd} , 4^{th} and 5^{th} cycle Mo-NCO electrode. (a) Cathodic peaks. (b) Anodic peaks

Fig. S10. CV curves of 1^{st} , 2^{nd} , 3^{rd} cycles of NCO electrode at a scan rate of 0.5 mV s⁻¹.

Fig. S11. Galvanostatic charge discharge profile of NCO electrode.

Material	Reversible capacity (mAh g ⁻¹)	Current density (mA g ⁻¹)	Number of cycles	Reference
Mo-NiCo ₂ O ₄	512	300	300	This work
NCO@Fe ₂ O ₃	479	100	100	1
Pomelo peels-derived carbon (PPC)/	473.7	500	210	2
P-doped NiCo ₂ O ₄	470	500	100	3
NCO@UNF	459	50	150	4
NiCo ₂ O ₄ /Ni	413	100	50	5
N-doped NiCo ₂ O ₄	398	500	500	6
NiCo ₂ O ₄ /Al ₂ O ₃	395	100	50	7
F-NiCo ₂ O ₄ @GO	387.4	400	100	8
NiCo ₂ O ₄ microsphere	330.4	100	100	9
NiCo ₂ O ₄ nanoplates	233	200	70	10

Table S1: Comparison of reversible capacity of $NiCo_2O_4$ with various materials.

Fig. S12. Comperision graph of different $NiCo_2O_4$ materials with Mo-NCO electrode.

Sample	$R_{s}\left(\Omega ight)$	$R_{ct}(\Omega)$
NiCo ₂ O ₄	6.5	193.3
Mo-NiCo ₂ O ₄	2.4	103.5

Table S2: Comparison of kinetic parameters of NCO and Mo-NCO electrodes

To elucidate the electrochemical properties of Mo-doped NiCo₂O₄, the apparent Li-ion diffusion coefficient $\begin{pmatrix} D \\ Li \\ \end{pmatrix}^{+}$ was determined from electrochemical impedance spectroscopy (EIS). The linear Warburg region observed in the EIS spectrum, characterized by a 45 degree inclination to the Z' axis, is ascribed to Li-ion diffusion within the bulk electrode material. The Warburg factor (σ) was subsequently calculated from the slope of the Z' versus $\omega^{-1/2}$ plot within this Warburg region using equation (1):

$$Z' = R_1 + R_{ct} + \sigma \omega^{\left(-\frac{1}{2}\right)} \quad (1)$$

Figure S1(a,b) present the linear fit of Z' versus $\omega^{-\frac{1}{2}}$ in the low frequency region of Nyquist plots (Figure 4) of Mo-doped and pure NiCo₂O₄. The Li-ion diffusion coefficient $\begin{pmatrix} D_{Li}^{+} \end{pmatrix}$ is given by equation (2):

$$D_{Li}^{+} = R^2 T^2 / 2A^2 n^2 F^4 C^2 \sigma^2$$
(2)

Importantly, the apparent Li-ion diffusion coefficient $\begin{pmatrix} D \\ Li \end{pmatrix}$ is inversely proportional to the square of the Warburg factor (σ)."

Where R is the gas constant, T the absolute temperature, A the electrode surface area, n the charge transfer number during the redox process, F is the Faraday constant, C is the molar Li^+ concentration and σ the Warburg factor.

Fig. S13. Linear fit of Z' versus $\omega^{-\frac{1}{2}}$ in the low frequency region (Left) Mo-doped (Right) pure NiCo₂O₄

Referances

- [1] Q.X. Chu, B. Yang, W. Wang, W.M. Tong, X.F. Wang, X.Y. Liu, J.H. Chen. Fabrication of a stainlesssteel-mesh-supported hierarchical Fe₂O₃@NiCo₂O₄ coreshell tubular array anode for lithium-ion battery. *ChemistrySelect* **2016**, *1*, 5569.
- [2] Y.D. Mo, Q. Ru, X. Song, J.F. Chen, X.H. Hou, S.J. Hu, L.Y. Guo, The design and synthesis of porous NiCo₂O₄ ellipsoids supported by flexile carbon nanotubes with enhanced lithium-storage properties for lithium-ion batteries. *RSC Adv.* **2016**, *6*, 31925.
- [3] Zhang, C., Xie, Z., Yang, W., Liang, Y., Meng, D., He, X., ... & Zhang, Z. (2020). NiCo2O4/biomassderived carbon composites as anode for high-performance lithium ion batteries. Journal of Power Sources, 451, 227761.
- [4] Y.D. Mo, Q. Ru, X. Song, J.F. Chen, X.H. Hou, S.J. Hu, L.Y. Guo, The design and synthesis of porous NiCo2O4 ellipsoids supported by flexile carbon nanotubes with enhanced lithium-storage properties for lithium-ion batteries. RSC Adv. 2016, 6, 31925.
- [5] G. H. Chen, J. Yang, J. J Tang and X. Y. Zhou, Hierarchical NiCo₂O₄ nanowire arrays on Ni foam as an anode for lithium-ion batteries, *RSC Adv.* **2015**, *5*, 23067.
- [6] Jin, R., Yue, H., Xia, J., Ren, C., & Gao, S. (2021). Oxygen-Vacancy Abundant NiCo₂O₄ on the N-Doped Carbon Nanosheets as Anode for High Performance Lithium Ion Batteries. *ChemistrySelect* 2021, *6*, 2029.

- Kou, H., Li, X., Shan, H., Fan, L., Yan, B., & Li, D. (2017). An optimized Al₂O₃ layer for enhancing the anode performance of NiCo₂O₄ nanosheets for sodium-ion batteries.
 J. Mater. Chem. A 2017, 5, 17881.
- [8] Rong, H., Qin, Y., Jiang, Z., Jiang, Z. J., & Liu, M. (2018). A novel NiCo₂O₄@ GO hybrid composite with core-shell structure as high-performance anodes for lithium-ion batteries. J. Alloys Compd. 2018, 731, 1095.
- [9] K. Dong, Z. Wang, D. Wang, Morphological evolution of hollow NiCo₂O₄ microspheres and their high pseudocapacitance contribution for Li/Na-ion battery anodes. *New J. Chem.* 2018, 42, 17762.
- [10] Chen, Y., M. Zhuo, J. Deng, Z. Xu, Q. Li and T. Wang, Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo₂O₄ nanoplates for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 4449.