Supporting Information

Ion-selective Uranium Capture from Seawater by UiO-66 Metal-

organic Framework Modified with Amidoxime Groups

Lin Ma^a, Chen Huang^{b,c}, Peng Sun^b, Yang Wang^a, Hua Shen^a, Hongjuan Ma^b, Yuxia Liu^{a,*}, Qingnuan Li^{a,*}

a. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

b. Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China

c. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study,

University of Chinese Academy of Sciences, Hangzhou 310024, China

1 1. Chemical reagents

2 All chemicals from commercial sources were reagent grade and used without further purification. Zirconium tetrachloride (ZrCl₄, 98%), N, N-Dimethylformamide (DMF, 3 99%), 2-Aminoterephthalic acid (BDC-NH₂, 98%), acrylonitrile stabilized with MEHQ 4 (AN, 99%), hydroxylamine hydrochloride (NH₂OH·HCl, 98%), triethylamine (99%), 5 ethanol (99%), sodium hydroxide (NaOH, 96%), hydrochloric acid (HCl, 36~38%), 6 sodium carbonate (Na₂CO₃, 99%), sodium bicarbonate (NaHCO₃, 99%), sodium 7 chloride (NaCl, 99%) were obtained from Sinopharm chemical reagent company. The 8 U and competing ions standard solution were purchased from Beijing North Weiye 9 Metrology Technology Research Institute. 10

11 2. Material characterizations

Fourier transform infrared spectroscopy (FT-IR) were collected on a Thermo Nicolet 12 iS50 spectrometer. The powder X-ray diffraction (PXRD) patterns were recorded on a 13 Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å) and a step 14 size of 0.02° in 20 from 5 to 50°. The morphologies of synthesized MOFs were 15 observed using a transmission electron microscope (JEOL JEM 2100F) and a scanning 16 electron microscope (Merlin). Thermogravimetric analysis (TG) was carried out on a 17 NETZSCH TG 209 F3 Tarus Thermo Microbalance. Nitrogen (N₂) adsorption curves 18 19 were obtained using a Quantachrome Autosorb Gas Sorption analyzer IQ station 2. Gas adsorption measurements for MOFs were carried out at 77 K in a liquid nitrogen bath. 20 X-ray photoelectron spectroscopy (XPS) was obtained using a Thermo Scientific K-21 Alpha spectrometer. The near-edge X-ray absorption fine structure (NEXAFS) of N K-22 edge, O K-edge were measured at the soft X-ray magnetic circular dichroism end 23 station (XMCD) of the National Synchrotron Radiation Laboratory (NSRL) in 24 University of Science and Technology of China (USTC). Inductively coupled plasma 25 mass spectrometry (ICP-MS) experiments were performed on a NexION 300D 26 instrument. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was 27 performed using an Optima 8000 instrument. 28

29 3. Preparation of UiO-66-NH₂, UiO-66-CN and UiO-66-AO

UiO-66-NH₂ was synthesized by hydrothermal method according to literature reports 30 and slightly modified.¹ There were two kinds of UiO-66-NH₂ with different molar ratios 31 of $ZrCl_4$ and $BDC-NH_2$, which were $ZrCl_4$: $BDC-NH_2 = 1:1.5$ and 1:1.0.0.40 g $ZrCl_4$ 32 (1.72 mmol), 3.08 g, 5.14 g, 8.00 g or 12.36 g acetic acid (1.0, 1.7, 2.6, 4.1 M) were 33 added to 24 mL DMF, which was recorded as A. 0.46 g BDC-NH₂ (2.54 mmol) was 34 added to 24 ml DMF, which was recorded as B. A and B were sonicated for 10 minutes 35 (min) to obtain the homogenous solution. Next, B was poured into A and sonicated for 36 another 10 min. Then, the solution was heated at 120 °C for 24 hours (h). After the 37 mixture was cooled to the ambient temperature, the yellow solid was collected by 38 centrifuging at 8000 r min⁻¹ for 10 min and washed with DMF (3×20 mL) and ethanol 39 $(3 \times 20 \text{ mL})$, respectively. The sample was soaked in ethanol at 60 °C for 12 h. Upon 40 cooling down the samples to room temperature, UiO-66-NH₂ were collected using 41 centrifugation and dried in an oven at 55 °C for 12 h. As mentioned above, the mass of 42 BDC-NH₂ was changed to 3.10 g and other conditions were unchanged when ZrCl₄: 43 BDC-NH₂ = 1:1.0. The yield of UiO-66-NH₂ was 80%, which was calculated using Eq. 44 S1. 45

47 0.60 g UiO-66-NH₂ above products (0.3 mmol) were added into the solution of 15 48 mL AN (0.227 mol) and 15mL DMF, respectively. The mixture was stirred and heated 49 at 120 °C for 12 h. After cooling to ambient temperature, the yellow solid was acquired 50 by centrifugation (8000 r min⁻¹), and washed by DMF (3×20 mL) and ethanol (3×20 51 mL), respectively. The solid was dried in oven at 55 °C overnight and UiO-66-CN was 52 obtained. The yield of UiO-66-CN was 64%, which was calculated by Eq. S1.

53 0.20 g the above products UiO-66-CN (0.1 mmol), 1.29 g NH₂OH·HCl (18.6 mmol) 54 and 1.88 g triethylamine (18.6 mmol) were dissolved in 50 mL of absolute ethanol 55 refluxing for 24 h, the yellow solid was isolated by centrifugation (8000 r min⁻¹) and 56 washed by ethanol (3×15 mL). UiO-66-AO was dried at 55 °C for 12 h in oven. The 57 yield of UiO-66-AO was 78%, which was calculated by Eq. S1.

58 4. Batch adsorption experiments

The effects of acetic acid concentration, ligand concentration, anion (Cl-) 59 concentration, contact time, the initial concentration and pH on adsorption of UO_2^{2+} 60 were investigated. Typically, the ratio of adsorbent mass to solution volume (m/V) was 61 0.02 mg/mL, an amount of the adsorbent (2.0 mg) was added to 100 mL UO_2^{2+} solution 62 of given concentration and pH value in a plastic bottle. But, the volume of UO_2^{2+} 63 solution was 500 mL when the effect of contact time was experimented, which was 64 convenient for sampling and reduced experimental errors. The pH was adjusted by 0.1 65 M or 1 M HCl and NaOH solution. After being stirred at 100 rpm and 25 °C for 24 h, 66 2 mL sample solution was sucked out and filtered by a 0.2 µm nylon membrane filter. 67 The sample was diluted by a certain multiple used 2% HNO₃, and the concentration of 68 UO_2^{2+} was determined by ICP-AES or ICP-MS. The adsorption capacity of UO_2^{2+} was 69 calculated using Eq. S2. 70

71

$$q_t = (\mathbf{c}_0 - \mathbf{c}_t) \times V/m \tag{S2}$$

where q_t (mg/g) is the adsorption amount of UO₂²⁺ after a contact time *t* (min), c₀ (mg/L) is the initial UO₂²⁺ concentration, c_t (mg/L) is the UO₂²⁺ concentration at *t* (min). *V* (L) is the volume of UO₂²⁺ solution, and *m* (g) is the weight of the adsorbent. The removal rate of UO₂²⁺ was calculated using Eq. S3.

76

removal rate (%) =
$$(c_0 - c_t)/c_0 \times 100\%$$
 (S3)

where c_t (mg/L) is the UO₂²⁺ concentration after adsorption; c_0 (mg/L) is the initial UO₂²⁺ concentration.

79 5. Adsorption test in simulated seawater

Simulated seawater was formulated according to previous study, and was consisted of ions as table S1, and 35 g/L sea salt. The pH value was adjusted to 7.8 ± 0.1 with Na₂CO₃. The initial concentrations of UO₂²⁺ was 330 ppb and competing ions, Pb, Zn, Cu, Ni, Co, Fe, V, Na and Ca in the simulated seawater system were about 100 times higher than those in natural seawater^{2,3}. The mixture was stirred for 24 h at 25 °C. The MOFs were filtered by a 0.2 µm nylon membrane filter and digested. Dilute the 86 digestion solution to 100 mL. The concentration of each ion concentration in the87 solution was determined by ICP-AES and calculated using Eq. S4.

 $q_t = c_t \times V/m \tag{S4}$

89 where q_t (mg/g) is the adsorption amount of UO_2^{2+} , c_t (mg/g) is the UO_2^{2+} 90 concentration measured by ICP-AES, V(L) is the volume of digestion solution, and m91 (g) is the weight of the adsorbent.

92 6. Adsorption test in seawater

88

108

Seawater was collected from Qingdao, China and adsorbed under laboratory or conditions. 37 mg UiO-66-AO was soaked in 18.66 L seawater and stirred at room temperature at 100 rpm for 16 days. 2 mL sample solution was sucked out and filtered by a 0.2 μ m nylon membrane filter in different time, and the MOFs were filtered by a 0.2 μ m nylon membrane filter after 16 days. Dilute the sample 40 times with 2% HNO₃. Analyze the UO₂²⁺ content in seawater samples using ICP-MS and calculate the adsorption capacity for U using Eq. S2.

100 7. Adsorption kinetics and adsorption isotherms

101 The pseudo first-order model could indicate the initial stage of adsorption process,102 which is expressed by the following Eq. S5.

$$\ln\left(q_{\rm e} - q_t\right) = \ln q_{\rm e} - K_1 t \tag{S5}$$

104 Where $q_e \text{ (mg/g)}$ and $q_t \text{ (mg/g)}$ are the equilibrium adsorption capacity and the specific 105 adsorption capacity at any time of UO₂²⁺ (mg/g), respectively. Besides K₁ is the 106 equilibrium rate constant of the pseudo first-order sorption (1/min).

107 The equation of pseudo second-order model is illustrated as Eq. S6:

$$\frac{t}{q_t} = \frac{t}{q_e} + \frac{1}{K_2 \times q_e^2}$$
(S6)

109 Where K₂ (g·mg⁻¹·h⁻¹) is the equilibrium rate constant of pseudo second-order. q_e 110 (mg/g) and q_t (mg/g) are the maximum adsorption capacity and the adsorbing capacity 111 at time *t* (min), respectively.⁴

112 The linear equation of Langmuir model is expressed as Eq. S7.

$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{{\rm b} \times q_{\rm max}} + \frac{c_{\rm e}}{q_{\rm max}}$$
(S7)

114 Where $q_e (mg/g)$ is the equilibrium adsorption capacity of UO_2^{2+} and $c_e (mg/L)$ is the 115 UO_2^{2+} concentration. $q_{max} (mg/g)$ represents the maximum capacity of UO_2^{2+} adsorbed 116 per unit mass of samples, and b (L/mg) is a constant related to the adsorption energy. 117 Through linear fitting the plots c_e/q_e as a function of c_e , a straight line with the slope 118 l/q_{max} and intercept $l/(b \times q_{max})$ is made so as to obtain the q_{max} and b.

The Freundlich model in linear form is based on the assumption that the adsorption process on heterogeneous surface with different adsorption energies. This model is expressed by Eq. S8.

122

$$\ln q_{\rm e} = \ln K_{\rm F} + \frac{1}{n} \ln c_{\rm e}$$
(S8)

Where K_F is a constant related to adsorption capacity (mg/g) and l/n is an empirical parameter corresponding to surface heterogeneity or adsorption intensity. Generally n in the range 2-10 means the adsorption is easy, 1-2 means relatively difficult, and less than 1 means the difficult adsorption process. The Freundlich constants K_F and l/n can be determined from the intercept and slope of linear plot of lnq_e against lnc_e, respectively.⁴ 8. Supplementary Figures S1-S5 and Table S1, S2.

Fig. S1 (a_0 - a_4) UiO-66-NH₂ prepared with the concentration of ZrCl₄: BDC-NH₂ =1.0 : 1.5, and the concentration of acetic acid are 0.0, 1.0, 1.7, 2.6, 4.1 M, respectively. (b_0 - b_4) UiO-66-CN introduced with cyanide group from UiO-66-NH₂ under different acetic acid concentration. (c_0 - c_4) UiO-66-AO prepared by amidoximation from UiO-66-CN under different acetic acid concentration.

Fig. S2 (a_0-a_4) UiO-66-NH₂ prepared with the concentration of ZrCl₄: BDC-NH₂ =1.0: 1.0, and the concentration of acetic acid are 0.0, 1.0, 1.7, 2.6, 4.1 M, respectively. (b₀-b₄) UiO-66-CN introduced with cyanide group from UiO-66-NH₂ under different acetic acid concentration. (c₀-c₄) UiO-66-AO prepared by amidoximation from UiO-66-CN under different acetic acid concentration.

Fig. S3 (a-i) SEM of UiO-66-AO in pH 2.0-10.0 aqueous solution with 24 h.

Fig. S4 SEM of UiO-66-AO after UO_2^{2+} adsorption in simulated seawater (U@UiO-66-AO), and Zr, O, U and C elemental mapping photographs of U@UiO-66-AO.

Fig. S5 (a) The effects of acetic acid concentration and ligand concentration on UO_2^{2+} adsorption ($c_0=200$ ppb, t=24h), (b) adsorption in seawater (m/V=2.0 mg/L in 18.7 L seawater).

Fig. S6 (a) U 4f spectrum of U@UiO-66-AO, (b) C, N and O elemental mapping photographs of UiO-66-AO after adsorbing UO_2^{2+} from seawater.

Element	U	V	Fe	Со	Ni	Cu	Zn	Pb	Mg	Ca
Natural Seawater (ppb)	3.3	1.5-2.5	1.0-2.0	0.05	1.0	0.6	4.0	0.03	1.3×10 ⁶	0.4×10 ⁶
Simulated Seawater (ppb)	330	150-250	100-200	5	100	60	400	300	1.2×10 ⁵	0.6×10 ⁵

Table.S1 Ions concentration in natural seawater and simulated seawater.^{3,5}

MOFs	Seawater Volume and adsorbent dosage	Adsorption Time	Adsorption Capacity(mg/g)	Ref.
	19 L the Bohai Sea		3.0	this
U1O-66-AO	water; 2.0 mg/L	3 days		work

Table.S2 MOFs for uranium extraction from seawater.

UiO-66-NH-	25 L the South China			6
	Sea water;	8 days	5.2	
(AO)	0.2 mg/L			
Co-SLUG-35	1 L actual seawater with			7
	5.35 ppb U;		1.0	
	10 mg/L			
UiO-66-AO	1 L Bohai seawater;	3 days	2.7	8
	1 mg/L	5 days		
UiO-66-	10 L actual seawater:			9
neomycin	0.5 mg/L	30 days	4.6	
2	0			
	100 L the South China		6.9	10
UiO-66-3C4N	Sea water with a flow	28 days		
	rate of 10 L/h;	5		
	0.2 mg/L			
BP@CNF-MOF	100 L the South China			11
	Sea water with a flow	6 weeks	4.4 (dark)	
	rate of 1 L/h;		6.8 (light)	
	1 mg/L			

References

1 X. Shi, X. Lian, D. Yang, X. Hu, J. Zhang, and X. H. Bu, *Dalton Trans.*, 2021, **50**, 17953-17959.

2 X. Xu, C. Huang, Y. Wang, X. Chen, Z. Wang, J. Han, M. Wu, G. Liu, L. Li, L. Xu,
H. Ma, *Chem. Eng. J.*,2022, 430, 133159-133170.

3 X. Xu, H. Zhang, J. AO, L. Xu, X. Liu, X. Guo, J. Li, L. Zhang, Q. Li, X. Zhao, B. Ye, D. Wang, F. Shen, H. Ma, *Energy. Environ. Sci.*, 2019, **12**, 1979–1988.

4 R. M. Abdelhameed, M. Taha, H. Abdel-Gawad, H. E. Emam, J. Mol. Struct., 2022, **1250**, 131914-131924.

5 C. Huang, L. Xu, X. Xu, L. Ma, H. Bao, J. Liao, J. Wang, J. Han, G. Xu, D. Huang,
B. Ye, H. Zhang, M. Wu, X. Zhao, H. Ma, *Chem. Eng. J.*, 2022, 443, 136312–136321.

6 L. Ma, J. Gao, C. Huang, X. Xu, L. Xu, R. Ding, H. Bao, Z. Wang, G. Xu, Q. Li, P. Deng, H. Ma, ACS Appl. Mater. Inter., 2021, 13, 57831-57840.

7 J. Q. Li, X. F. Feng, L. Zhang, H. Q. Wu, C. S. Yan, Y. Y. Xiong, H. Y. Gao, F. Luo,

Chem. Eng. J., 2017, **316**, 154–159.

8 L. Chen, Z. Bai, L. Zhu, L. Zhang, Y. Cai, Y. Li, W. Liu, Y. Wang, L. Chen, J. Diwu,
J. Wang, Z. Chai, S. Wang, ACS Appl. Mater. Inter., 2017, 9, 32446-32451.

9 Q. Yu, Y. Yuan, J. Wen, X. Zhao, S. Zhao, D. Wang, C. Li, X. Wang, N. Wang, Advanced Science, 2019, 6, 1900002.

10 Y. Yuan, S. Feng, L. Feng, Q. Yu, T. Liu, N. Wang, *Angew. Chem., Int. Ed.*, 2020, **59**, 4262–4268.

11 S. Tripathi, B. Sreenivasulu, A. Suresh, C. V. S. B. Rao, N. Sivaraman, *RSC Advances*, 2020, **10**, 14650-14661.