Supplementary Information

ZIF-8-derived Hybrid Nanocomposite Platform with Magnetic Hematite Nanoparticles as Enhanced Anode Materials for Lithium Storage

Do Thao Anh^{a,b,c}, Nguyen Bao Tran^{b,c}, Nguyen La Ngoc Tran^{b,c}, Tran Huu Huy^d, Tran Thi Kim Chi^e, Tran Thi Huong Giang^e, Van Man Tran^{b,f,g}, Nguyet N.T. Pham^{b,g}, Tuan Loi Nguyen^{h,i,*}, Nhu Hoa Thi Tran^{b,c,**}

^aCenter for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Vietnam

^bVietnam National University, Ho Chi Minh City 700000, Vietnam

^cFaculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam

^dQuy Nhon College of Engineering and Technology, Quy Nhon 590000, Vietnam

^eInstitute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Viet Nam

^fApplied Physical Chemistry Laboratory (APCLAB), University of Science, Ho Chi Minh City 700000, Vietnam

^gDepartment of Physical Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City 700000, Vietnam

^hInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam

ⁱFaculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City 50000, Vietnam

*, ** Corresponding authors: Tuan Loi Nguyen (Email: <u>nguyentuanloi@duytan.edu.vn</u>) and Nhu Hoa Thi Tran (Email: <u>ttnhoa@hcmus.edu.vn</u>)

Figure S1. XRD patterns of Fe_3O_4 and ZIF-8 nanomaterial.

Figure S2. XRD patterns of FZC4-300 and FZC4-500 nanocomposites.

Figure S3. (A-B) GCD test and (C) cycling performances at 0.1 A/g current rate of FZC4-300 and FZC4-500 electrodes.

Figure S4. Equivalent circuit models were used in the analysis of anode electrodes.

Anode electrode	Cycle	Discharge capacity (mAh g ⁻¹)	Charge capacity (mAh g ⁻¹)	CE (%)
	1	1165.9	740.7	63.5
FZC4-300	2	773.2	620.1	80.2
	3	645.5	547.5	84.8
FZC4-500	1	1428.5	1075.2	75.3
	2	1123.5	1054.3	93.8
	3	1115.6	1034.0	92.7

Table S1. Specific capacities and CE of the initial three charge/discharge cycles forFZC4-300 and FZC4-500 anode electrodes.

Table S2. EIS result of FZC4 and FZC5 anode electrodes.

Anode electrode	R1 (Ω)	R2 (Ω)	R3 (Ω)
FZC4	3.665	2.676	8.678
FZC5	5.523	2.107	19.96

Table S3: Electrochemical performance comparison of ZIF-8-based, ZnO-based and Fe_2O_3 -based anodes for lithium-ion batteries.

Anode material	Cycling performance (mAh/g)	Current dinsity (A/g)	Cycle number	Ref.
NC	349	0.05	50	1
NC-700	400	0.05	100	2
Bare ZnO	218	0.1	100	3

Bare ZnO	193	1	1000	4
Bare ZnO	340	1	200	5
ZnO/C	212	0.1	100	6
ZnO nanocrystal	500	0.2	100	7
Bare Fe ₂ O ₃	53,42	0.2	100	8
Bare Fe ₂ O ₃	619	0.5	500	9
Thin tripleshell a- Fe ₂ O ₃ hollow microspheres	1702	50	50	10
FZC4	587.8	0.1	80	This work

References

- 1 Q. Li, Y. Wang, X. Gao, H. Li, Q. Tan, Z. Zhong and F. Su, *J Alloys Compd*, 2021, **872**, 159712.
- Z. Tai, M. Shi, S. Chong, Y. Chen, C. Shu, X. Dai, Q. Tan and Y. Liu, *J Alloys Compd*, 2019, 800, 1–7.
- 3 J. Park, J. B. Ju, W. Choi and S. O. Kim, *J Alloys Compd*, 2019, **773**, 960–969.
- 4 Q. Xu, H. Jiu, L. Zhang, W. Song, T. Gao, H. Wei, C. Wang, Y. Zhang and X. Li, *Ionics* (*Kiel*), 2022, **28**, 1657–1666.
- 5 L. Zhang, Q. Xu, H. Jiu, W. Song, J. Yang, X. Li, H. Wei, C. Wang, X. Li and J. Zhao, J Alloys Compd, 2022, 915, 165353.
- E. Thauer, G. S. Zakharova, E. I. Andreikov, V. Adam, S. A. Wegener, J. H. Nölke, L. Singer, A. Ottmann, A. Asyuda, M. Zharnikov, D. M. Kiselkov, Q. Zhu, I. S. Puzyrev, N. V. Podval'naya and R. Klingeler, *J Mater Sci*, 2021, 56, 13227–13242.
- 7 W. Zhang, L. Du, Z. Chen, J. Hong and L. Yue, *J Nanomater*, 2016, **2016**, 8056302.
- 8 X. Liu, K. Xiong, H. Yuan and J. Zhao, *Ionics (Kiel)*, 2024, **30**, 1373–1381.
- 9 L. Hu, J. Huang, Z. Yang, J. Li, P. Wang, L. Wang and P. Sun, *Solid State Ion*, 2022, **383**, 115981.
- 10 S. Xu, C. M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao and D. Wang, *Energy Environ Sci*, 2014, 7, 632–637.