	Content	
S1. Chemistry		
S2. Biological testing		
S.3. In silico studies		
S.4. Spectral data		

Lab code	Paper code
WN-5	7a
WN-4	7b
WN-13	7c
WN-6	7d
WN-15	7e
WN-17	7 f
WN-16	7g

S.1. Chemistry

The chemicals, reagents, and reaction solvents used in this study were gained from Sigma-Aldrich, Alpha Chem, Fluka, and Loba and were not purified further. The melting points (mp), which have not been corrected, were measured using the SMP50 Digital Melting Point App provided by Bibby Scientific in Staffordshire. A Thermo Fisher Nicolet IS10 spectrophotometer was used to detect infrared spectra as solids on the potassium bromide disc (v_{max} in cm⁻¹) with a resolution of 4.0 cm⁻¹, covering 4000-400 cm⁻¹.¹H-NMR and ¹³C-NMR spectra (400 and 101 MHz) were recorded at the JNM-ECA 500 II Made by JEOL-JAPAN instrument through a solution of deuterated dimethyl sulfoxide. Proton chemical shifts are labeled in part per million (ppm), downfield from tetramethyl silane (TMS, δ =0) as an internal standard, and the following abbreviations (or a combination thereof) are used to describe splitting patterns: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and br, broad. Mass spectra were measured with a Thermo Scientific GCMS model (Isq Lt) using the Thermo X-Calibur software (Shimadzu, Kyoto, Japan) at the Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Nasr City, Cairo, Egypt. Elemental studies were conducted at the Regional Center for Microbiology and Biotechnology, Al-Azhar University, Cairo, Egypt, with results accurate to within 0.4%. Thin-layer chromatography (TLC) was carried out on silica gel plates by using DCM:

MeOH (95:5%), as the eluting system. The progress of the reaction and evaluation of product purity was determined using a UV indicator at 254 nm.

S2. Biological testing

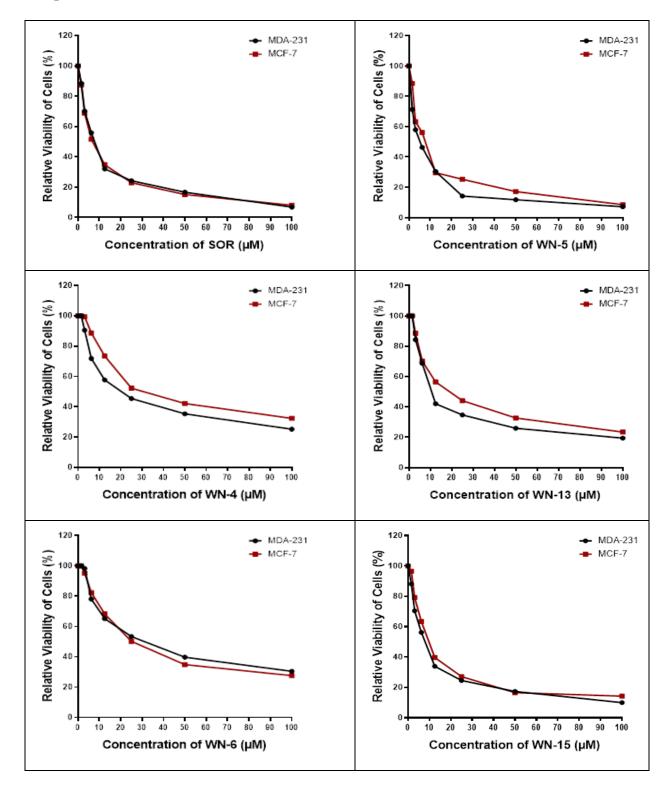
S.2.1. In vitro anti-proliferative activity

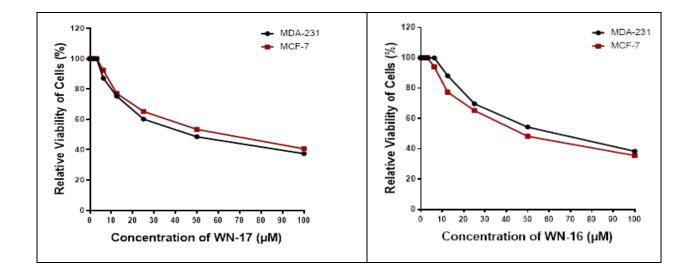
Materials and methods

Cell line

Mammary gland breast cancer (MCF-7) and (MDA-MB-231). The cell line was obtained from ATCC via Holding company for biological products and vaccines (VACSERA), Cairo, Egypt.

Sorafenib was used as a standard anticancer drug for comparison.


Chemical reagents


The reagents RPMI-1640 medium , MTT and DMSO (sigma co., St. Louis, USA), Fetal Bovine serum (GIBCO, UK) .

MTT assay

The cell lines mentioned above were used to determine the inhibitory effects of compounds on cell growth using the MTT assay. This colorimetric assay is based on the conversion of the yellow tetrazolium bromide (MTT) to a purple formazan derivative by mitochondrial succinate dehydrogenase in viable cells. Cell lines were cultured in RPMI-1640 medium with 10% fetal bovine serum. Antibiotics added were 100 units/ml penicillin and $100\mu g/ml$ streptomycin at 37 C in a 5% Co₂ incubator. The cell lines were seedes in a 96-well plate at a density of $1.0x10^4$ cells/well. at 37 C for 48 h under 5% Co₂. After incubation the cells were treated with different concentration of compounds and incubated for 24 h. After 24 h of drug treatment, 20 µl of MTT solution at 5mg/ml was added and incubated for 4 h. Dimethyl sulfoxide (DMSO) in volume of 100 µl is added into each well to dissolve the purple formazan formed. The colorimetric assay is measured and recorded at absorbance of 570 nm using a plate reader (EXL 800 ,USA). The relative cell viability in percentage was calculated as (A570 of treated samples/A570 of untreated sample) X 100.

*Dose response curves

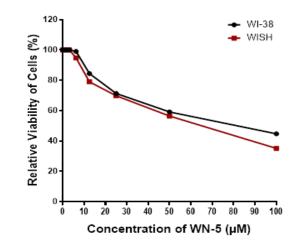
S.2.2. Safety assay

Materials and methods

Cell line

Human lung fibroblast cell line (WI-38) and Human amnion (WISH). The cell line was obtained from ATCC via Holding company for biological products and vaccines (VACSERA), Cairo, Egypt.

Chemical reagents


The reagents RPMI-1640 medium , MTT and DMSO (sigma co., St. Louis, USA), Fetal Bovine serum (GIBCO, UK) .

Sorafenib was used as a standard anticancer drug for comparison.

MTT assay

The different cell line mentioned above were used to determine the inhibitory effects of compounds on cell growth using the MTT assay. This colorimetric assay is based on the conversion of the yellow tetrazolium bromide (MTT) to a purple formazan derivative by mitochondrial succinate dehydrogenase in viable cells. The cells were cultured in RPMI-1640 medium with 10% fetal bovine serum. Antibiotics added were 100 units/ml penicillin and 100μ g/ml streptomycin at 37 C in a 5% Co₂ incubator. The cellswere seedesin a 96-well plate at a density of $1.0x10^4$ cells/well.at 37 C for 48 h under 5% Co₂. After incubation the cells were treated with different concentration of compounds and incubated for 24 h. After 24 h of drug treatment, 20 µl of MTT solution at 5mg/ml was added and incubated for 4 h. Dimethyl sulfoxide(DMSO) in volume of 100µl is added into each well to dissolve the purple formazan formed. The colorimetric assay is measured and

recorded at absorbance of 570nmusing a plate reader (EXL 800, USA). The relative cell viability in percentage was calculated as (A570 of treated samples/A570 of untreated sample) X 100.

*Dose response curves

S.2.4. In vitro VEGFR-2 inhibition

- The in vitro inhibitory activity of the tested compounds against **VEGFR-2** was accomplished using Kinase Assay Kit (BPS Bioscience, USA) at different concentrations 1, 0.1, and 0.01 µM.
- The activities of Kinases were observed by measuring chemiluminescence using BioTek[™] Synergy2 Microplate Reader (BioTek, USA).
- Different standards were used.
- All samples and controls were verified in triplicates to calculate the concentration that caused 50% inhibition of the kinase activity.

S.2.5. Cell cycle analysis

This assay was conducted according to the reported methods. In short, MDA-MB-231 cells were seeded into six-well plates (2×105 cells per each well) and incubated for 24 h at 37 °C and 5% CO2. After that, they were treated with 4.64 µM of compound **7a** dissolved in DMSO (1% v/v) for 48 h. After the cells were washed several times with cold phosphate buffered saline (PBS), fixed with ethyl alcohol (70%) and rinsed again with PBS, they were stained with the DNA fluorochrome propidium iodide and kept at 37 °C for 15 min in the

dark. The cell distribution was analyzed using Epics XL-MCL[™] Flow Cytometer (Beckman Coulter), and the data were analyzed using Flowing software (version 2.5.1, Turku Centre for Biotechnology, Turku, Finland).

S.2.6. Apoptosis analysis

Apoptosis detection was carried out using Annexin V fluorescein isothiocyanate (V-FITC)/PI kit according to the reported procedures. MDA-MB-231 cells cells were seeded and incubated for 24 h, then treated with (4.64 μ M) of compound **7a** for 48 h. The cells were then collected, washed 3 times with PBS, fixed with ice-cold absolute ethanol (70%) and stained with Annexin-V-FITC/propidium iodide (PI) using a double staining kit for 20 min in the dark. Epics XL-MCLTM Flow Cytometer was used to evaluate the apoptosis.

S.2.7. In vitro assay for BAX, Bcl-2, and caspase-3

MDA-MB-231 cells were cultured in suspension in complete culture medium (CCM) of RPMI 1640 culture medium (PAA; Pasching, Austria) containing 10% foetal bovine serum (FBS; PAA) and 1% penicillin/streptomycin (GIBCO, Invitrogen, Paisley, UK) into an incubator at 37 °C with 5% CO₂. Cells were cultured at a ratio of 0.2 10^6 cells/well in 96-wells plates and differentiated into macrophage-like cells with 10 ng/mL phorbol myristate acetate (PMA; Sigma Chemical Co.) for a period of 24 h. Cell rested then in CCM without PMA for another 24 h. After differentiation and resting periods, vehicle (DMSO; MERK, Whitehouse Station, NJ, USA) as control and compound 7a (at a concentration of 4.64 μ M) were added to each well and plates were pre-incubated at 37 °C with 5% CO₂ for 72 h.

Supernatants from *in vitro* assays were harvested and assayed for BAX, Bcl-2, and caspase- 3 using an enzyme-linked immunosorbent assay (ELISA) kit following the manufacturer's instructions. For caspase-3, DRG® Caspase-3 (human) ELISA (EIA-4860) was used. For BAX and Bcl2, DRG® Human Bax ELISA (EIA-4487) (DRG International, Inc., USA), and Zymed® Bcl-2 ELISA Kit (Invitrogen Corporation,1600 Faraday Avenue, Carlsbad, CA, USA) were used. The absorbance in each well was measured with a microplate reader at 450 nm and corrected at 570 nm. Concentrations of the tested proteins were obtained and the percentage of activation and/or inhibition as compared to control conditions.

S3. *In silico* studies S.3.1. Docking studies

Protein Preparation: The crystal structure of VEGFR-2 [PDB ID: 4ASD, resolution: 2.03 Å] was obtained from Protein Data Bank (https://www.rcsb.org). At first, the crystal structure of the VEGFR-2 complexed with the co-crystallized ligand was prepared by removing crystallographic water molecules. Only one chain was retained besides the co-crystallized ligand. The selected protein chain was protonated using the following setting. The used electrostatic functional form was GB/VI with a distance cut-off of 15 Å. The used value of the dielectric constant was 2 with an 80 dielectric constant of the used solvent. The used Van der Waals functional form was 800R3 with a distance cut-off of 10 Å. Then, the energy of the protein chain was minimized using Hamiltonian AM1 implanted in Molecular Operating Environment (MOE 2019 and MMFF94x (Merck molecular force field) for structural optimization. Next, the active site of the target protein was defined for ligand docking and redocking (in case of validation of docking protocol). The active site of the protein was identified as the residues that fall within the 5 Å distance from the perimeter of the co-crystallized ligand.

Ligand Preparation: 2D structures of the synthesized compounds and the standard compound, sorafenib were drawn using ChemBioDraw Ultra 6.0 and saved in MDL-SD file format. The 3D structures of the ligands were protonated, and the structures were optimized by energy minimization using MM2 force-field and 10000 iteration steps of 2 fs. The conformationally optimized ligands were used for docking studies.

Docking Setup and Validation of Docking Protocol: The protein-ligand docking studies were carried out using MOE version 2019. Validation of the docking protocol was carried out by redocking the co-crystallized reference ligand against the isolated pocket of VEGFR-2. The docking protocol was validated by comparing the heavy atoms RMSD value of the re-docked ligand pose with the corresponding co-crystallized reference ligand structure.

The docking setup for the tested compounds was established according to the protocol followed in the validation step. For each docking run, 30 docked solutions were generated using ASE for scoring function and rigid receptor for refinement. The pose with ideal binding mode was selected for further investigations. The docking results were visualized using Discovery Studio (DS) 4.0. Analysis of the docking results was carried out by comparing the interactions and docking score obtained for the docked ligands with that of the re-docked reference molecule.

S.3.2. MD simulations

Molecular Dynamic (MD) Simulation:

An unbiased molecular dynamics (MD) simulation was used to evaluate the binding affinity and stability of the VEGFR-2_7a complex. A 200 ns trajectory was made for the system using GROMACS 2021. CHARMM-GUI solution builder was used to prepare starting files. The system was solvated using water molecules with a transferable intermolecular potential of three points (TIP3P) in a 10 nm cubic box with a buffer distance of 1 nm. Neutralization was achieved by adding NaCl ions at a concentration of 0.154 M. The CHARMM36m force field was used for the VEGFR-2 protein, TIP3P water, and ions.

All simulation dimensions employed periodic boundary conditions. Potential energy minimization with the steepest descent method was first performed to remove steric conflicts. When the highest force on any atom fell below 100 kJ/(mol·nm) or after 100,000 steps, convergence was reached. Thermodynamic equilibrium was the aim of the two-step equilibration procedure. The average temperature in the first stage (NVT ensemble) was maintained at 310 K by the Velocity Rescale thermostat. The second stage (NPT ensemble) used the Berendsen barostat to regulate pressure at 1 atm and the Velocity Rescale algorithm to maintain a temperature of 310 K. A Parrinello-Rahman barostat was used to regulate pressure at 1 atm, and a Nose-Hoover thermostat was used for temperature control in the production run (NPT ensemble). The hydrogen atom bond lengths were maintained with the LINear Constraint Solver (LINCS) method. Using a 1.2 nm cutoff, the Particle Mesh Ewald (PME) approach was used to calculate electrostatic interactions.

The leap-frog integrator propagated the Newtonian equations of motion using time steps of 1 fs for equilibration and 2 fs for production. Two thousand simulation frames were obtained at intervals of 0.1 ns.

After periodic boundary conditions were eliminated and protein integrity was restored, VMD TK scripts were used to analyse the trajectories. Many calculations were performed, such as the Root Mean Square Deviation (RMSD) of the VEGFR-2 backbone and the ligand system **7a**. Other structural features that were evaluated included the number of hydrogen bonds between ligands and proteins, center of mass distances between ligands and proteins, radius of gyration (RoG), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF). Protein-Ligand Interaction Fingerprints (ProLIF), a Python program, assesses interactions between ligands and amino acids quantified and characterized the frequency and type of interactions in each frame.

Binding free energy calculation using MM-GBSA:

The ligands' binding free energies were ascertained by applying the Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) method through the gmx_MMPBSA program. To determine the contributing amino acids within a 1 nm radius of the ligand, a decomposition analysis was carried out. The ionic strength of 0.154 M and the solvation parameter (igb) of 5 were used in the simulations. The values of 1.0 and 78.5 were selected for the internal and external dielectric constants, respectively. Equation 1 describes in detail the basic free energy calculation approach.

$$\Delta G = \langle \text{Gcomplex} - (\text{Greceptor} + \text{Gligand}) \rangle$$
Equation 1

where $\langle \rangle$ is the mean of the enclosed free energy of the ligand, complex, and receptor throughout the computation frames. We employed the entire route (a total of 2000 frames) in our method. Equations 2 through 6 can be used to compute various energy terms in the following ways:

$\Delta Gbinding = \Delta H - T\Delta S$	Equation 2
$\Delta H = \Delta Egas + \Delta Esol$	Equation 3
$\Delta Egas = \Delta Eele + \Delta EvdW$	Equation 4
$\Delta Esolv = EGB + ESA$	Equation 5
$ESA = \gamma . SASA$	Equation 6

Where:

 ΔH is the enthalpy which can be calculated from gas-phase energy (E_{gas}) and solvation-free energy (E_{sol}). -T ΔS is the entropy contribution to the free binding energy. E_{gas} is composed of electrostatic and van der Waals terms; E_{ele}, E_{vdW}, respectively. E_{sol} can be calculated from the polar solvation energy (E_{GB}) and nonpolar solvation energy (E_{SA}) which is estimated from the solvent-accessible surface area.

Principal Component Analysis:

The mobility of the α -carbon of VEGFR-2 was evaluated using Principal Component Analysis (PCA) and the mass-weighted covariance matrix (C). The final equilibrium frame of the VEGFR-2_7a system for combined analysis (for the free energy landscape) and the final equilibrium frame of each trajectory for individual trajectories are referred to during the alignment process. Using gmx covar to diagonalize the covariance matrix in GROMACS, eigenvectors representing the dominating atomic motions were found. Eigenvalues indicated the amount of motion; the first principal component captured the largest variance, while the contributions from the other components decreased. The gmx anaeig command was utilized for analysis with GROMACS. We computed the dimensions of the critical subspace using three parameters. 1) The variance gathered by each additional eigenvector was visualized, and the cumulative sum of the eigenvalues was calculated using extra eigenvectors. Furthermore, 2) a scree plot was generated, which displayed each eigenvalue in relation to its corresponding eigenvector index. The index with the largest slope reduction indicated the critical subspace size. Moreover, 3) the distribution of the eigenvectors was evaluated.

When a distribution other than a Gaussian distribution emerged, it indicated that the corresponding eigenvectors had meaningful dynamics.

We computed the cosine content (ci) of each eigenvector of the C matrix, which may take values ranging from 0 (no cosine) to 1 (perfect cosine). The following is the cosine content equation:

$$c_i = \frac{2}{T} \left(\int \cos(i\pi t \, p_i(t) \, dt)^2 \, \left(\int p_i^2(t) \, dt \right)^{-1} \right)$$

Where T is the time of the simulation. Abnormally large ci values, which represent random motion, are related to insufficient sampling. When the cosine content of the first few PCs is near 1, the behavior of proteins on a large scale is analogous to diffusion. Accordingly, the first 10 PCs were used to calculate their cosine content.

Free Energy Landscape (FEL):

A protein's free-energy landscape (FEL) can be used to determine the different conformations it can adopt, which is necessary to understand the protein's dynamics and function. In this investigation, conformational sampling methods are often used, such as molecular dynamics (MD) simulations, which mimic the intrinsic temperature changes in proteins over time. Here, we have revealed the FEL of our protein of interest through molecular dynamics simulations. To improve its visual appeal, we projected this complex onto two chosen response coordinates. The free energy (G α) of the protein in a state described by these coordinates is related to the probability of detecting the protein in that state via the exponential relationship e-G α /kT. These computations can be used to determine the entire FEL:

$$G\alpha = -kT \ln(\frac{P(q_{\alpha})}{P_{max}(q)})$$

Where *k* is the Boltzmann constant, *T* is the temperature of simulation, $P(q_{\alpha})$ is an estimate of the probability density function obtained from a histogram of the MD data and $P_{max}(q)$ is the probability of the most probable state. We derived two-dimensional representations of the free-energy landscapes by considering two separate reaction coordinates: qi and qj. These representations were obtained by analyzing the joint probability distributions, referred to as P(qi,qj), which describe the system. The GROMACS gmx sham command was utilized for this purpose.

S.3.4. Density Function Theory (DFT) calculations

DFT calculations

The Gaussian 9 package under B3LYP/6-311+G (d, p) level has been used to calculate density function theory (DFT). Several tools have been used, including Avogadro, GaussView 0.3, and Multiwfn. The following formulas were used to calculate the reactivity descriptors: ionization energy (I), chemical potential (μ), electron affinity (A), electrophilicity (χ), maximal charge acceptance (Δ Nmax), softness (σ), and hardness (η):

 $IP = -E_{HOMO}$ $EA = -E_{LUMO}$ $\mu = (IP+EA)/2$ $\eta = (IP-EA)$ $\chi = -\mu$ $\omega = \mu^{2}/(2 \eta)$ $\sigma = 1/\eta$ $\Delta N = -(\mu/\eta)$ $\Delta E = -\omega$

 $E_{gap} = E_{LUMO} - E_{HOMO}$

S.3.5. ADMET studies

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the compounds were determined using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the tested compounds were prepared and minimized according to the preparation of small molecule protocol.

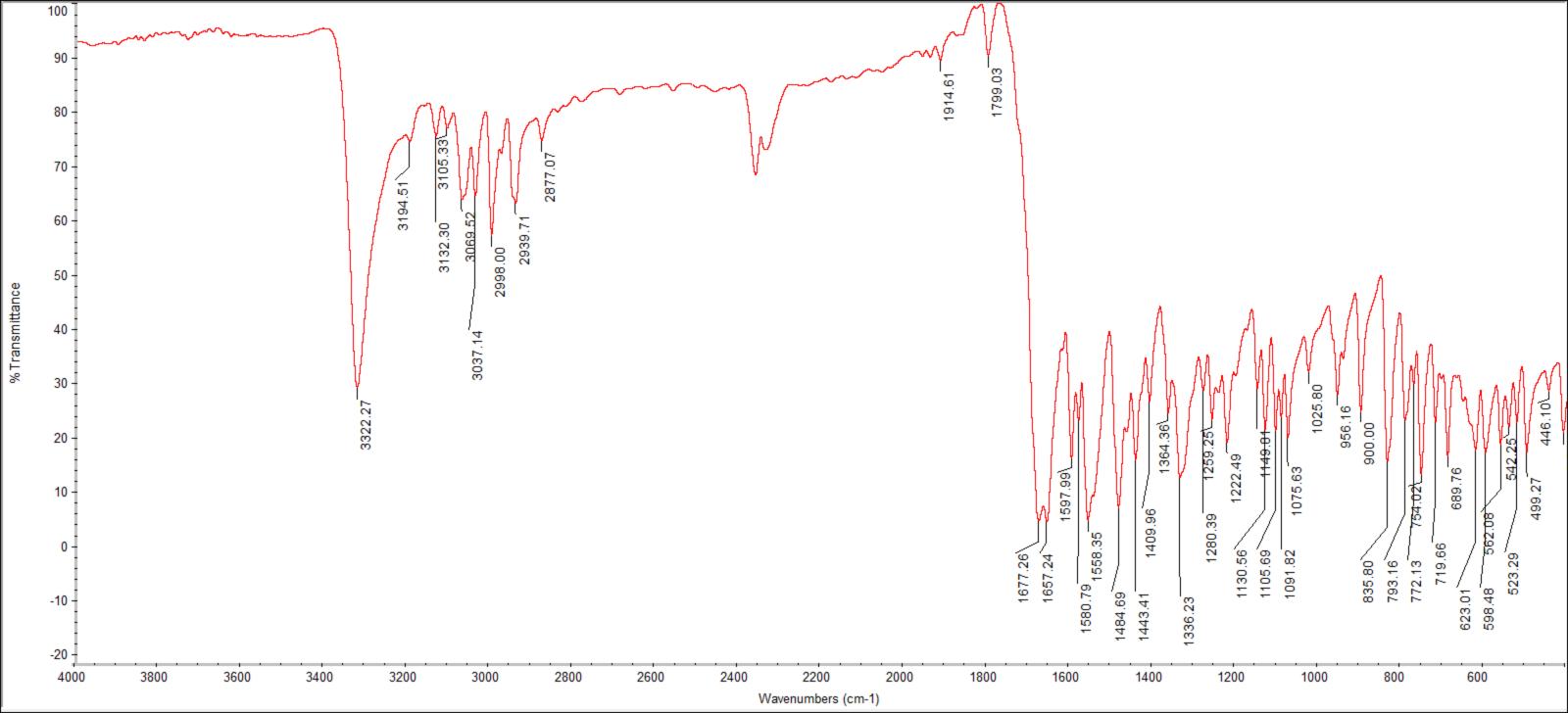
• Preparation of the tested compounds:

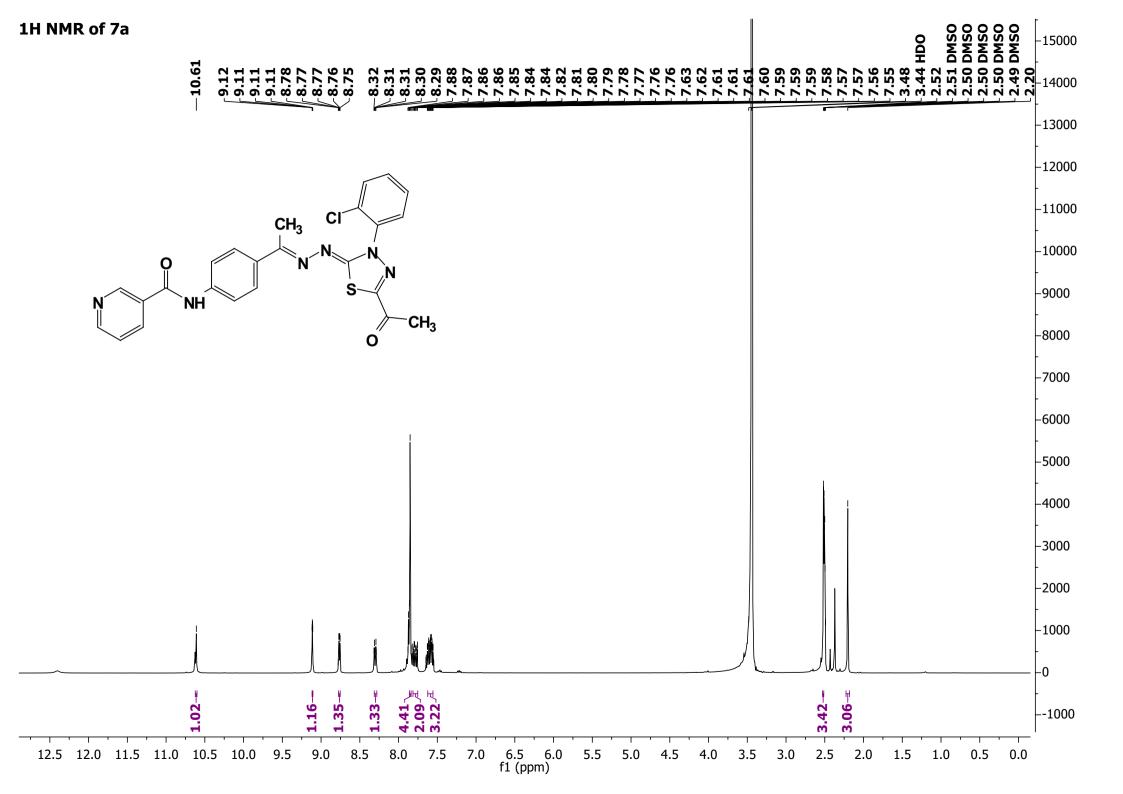
In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

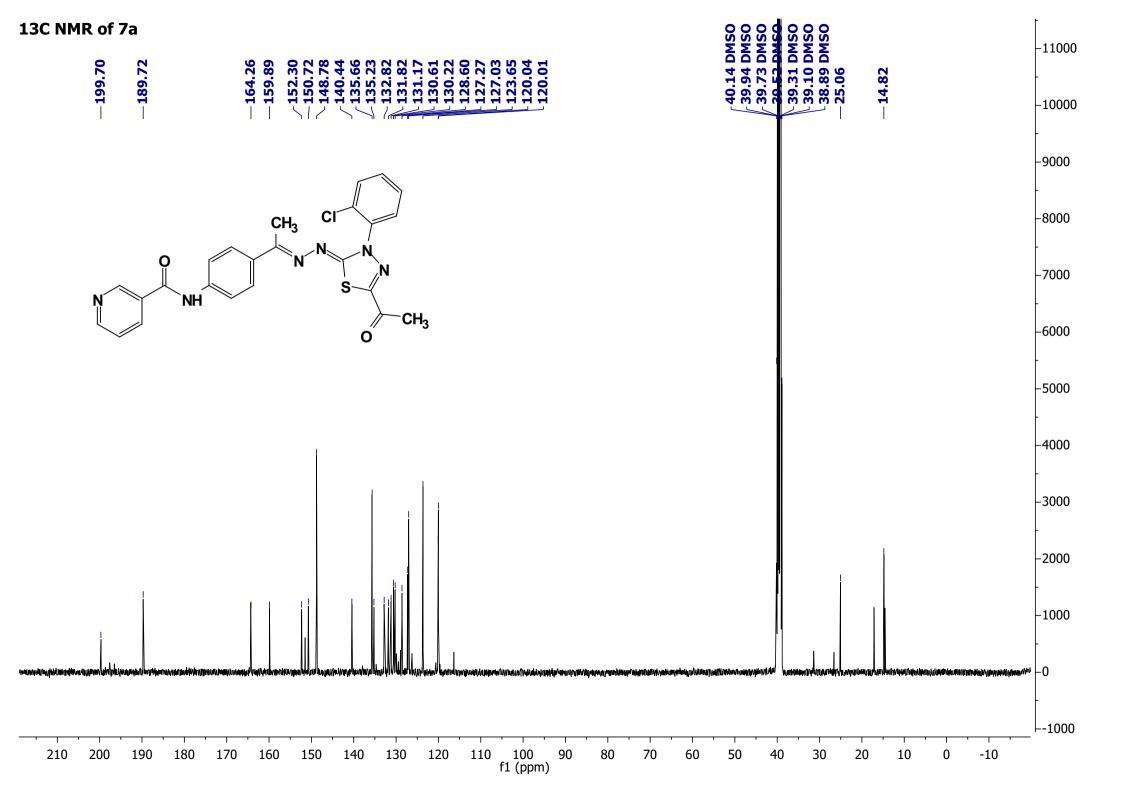
• Running of ADMET protocol

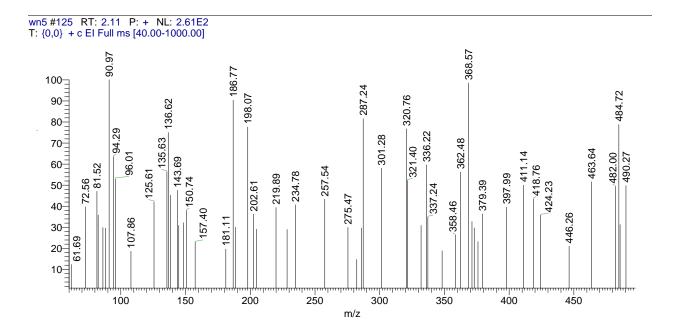
In this protocol, the small molecules panel was utilized with the activation of the ADMET descriptors option. Then, we selected the prepared compounds as the input ligands. Further, all the ADMET parameters (aqueous solubility, Blood brain barrier, intestinal absorption, CYP2D6, and plasma protein binding) were selected. Then, the output of the running protocol was visualized to give the ADMET chart.

S.3.6 Toxicity studies

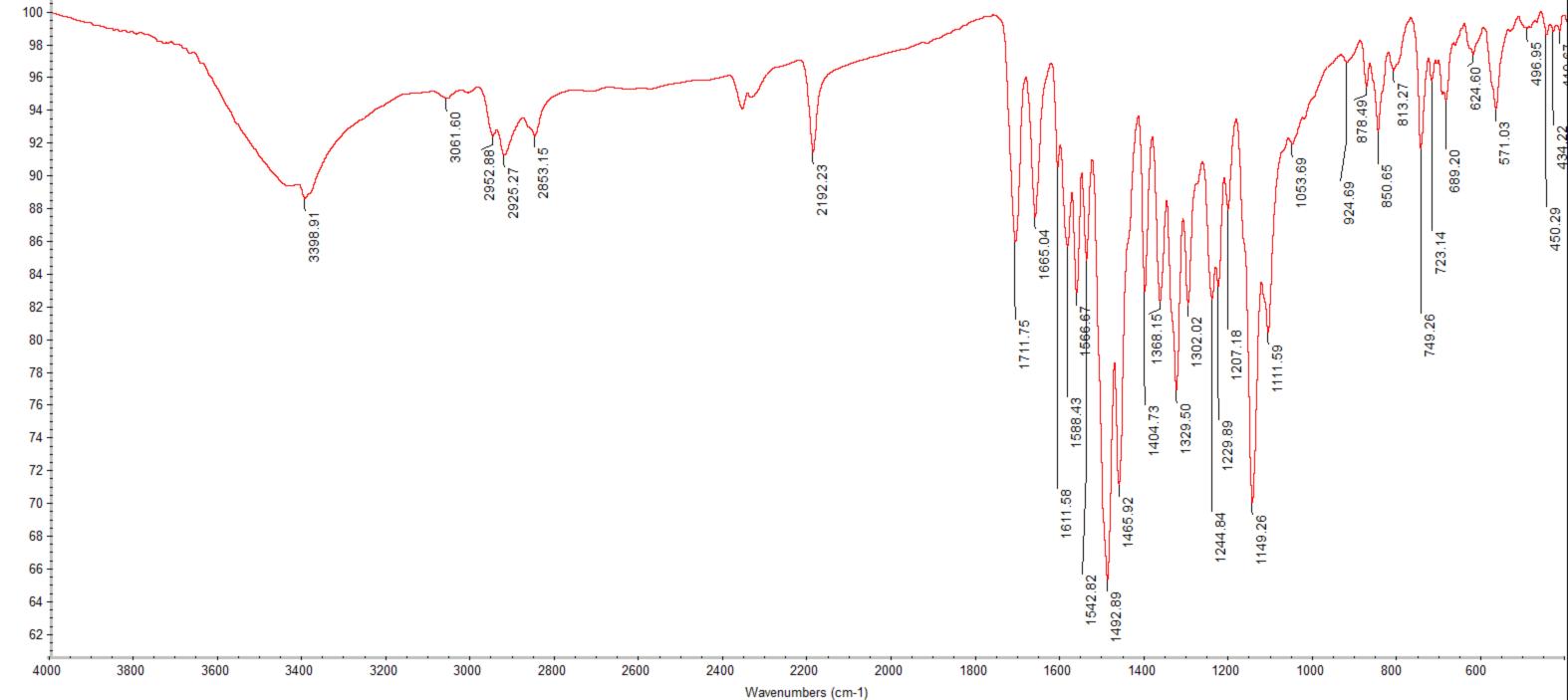

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference molecule. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol.

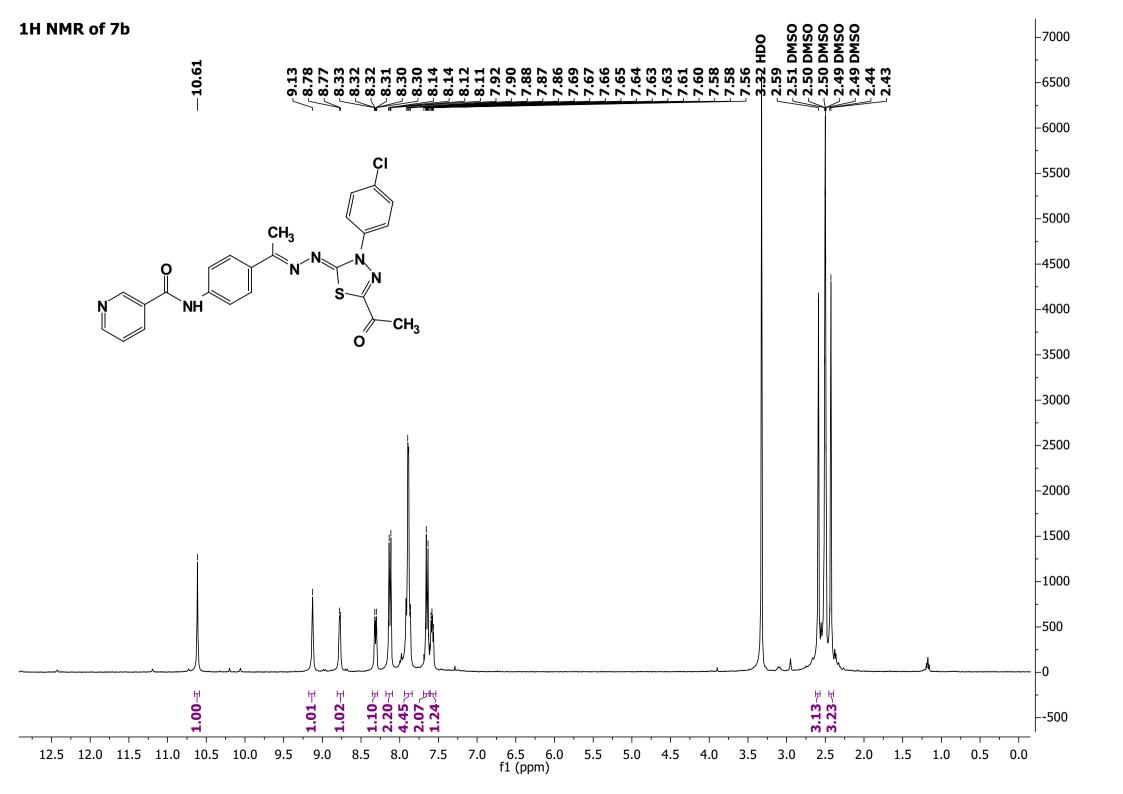

• Preparation of the tested compounds:

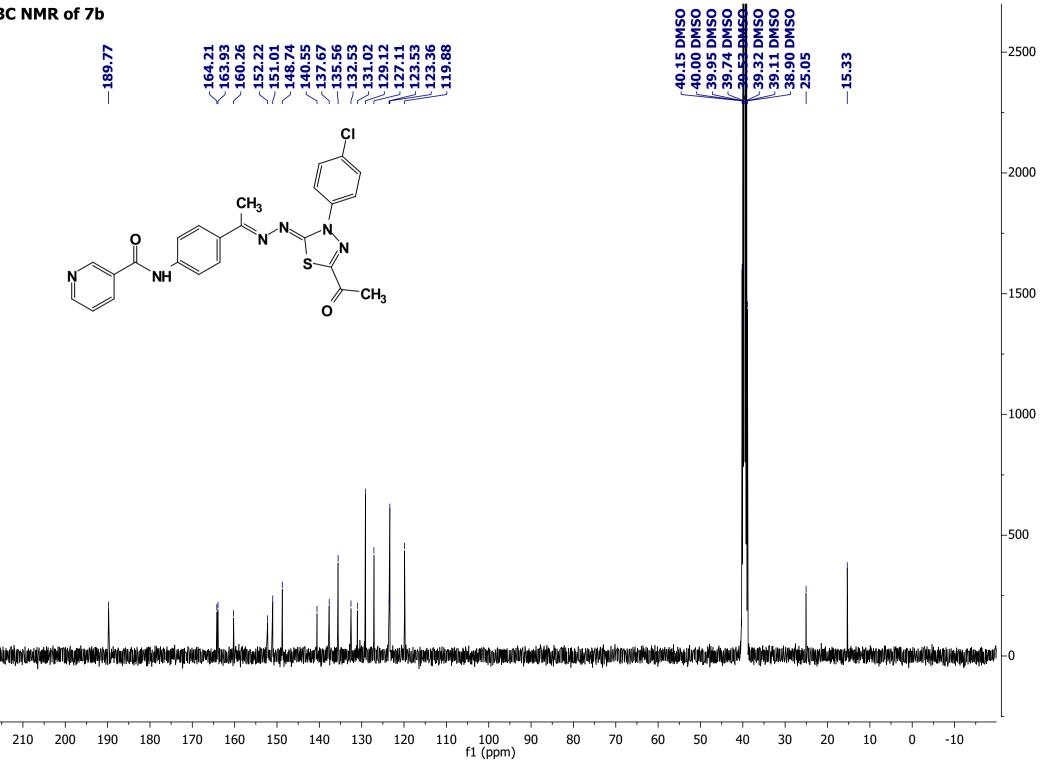

In this protocol, the general-purpose panel was utilized with the activation of the Prepare ligand option. The change ionization was switched on the true option using the Rule based as an ionization method. In Rule based task, we used the carboxylate as an acid ionization. Additionally, the primary, secondary, and tertiary amines were selected as Base ionization. The ionization enumeration option was switched on the one protomer. Under the filter smart option, we selected all options. The false option was selected for tasks Generate tautomers, generate isomers, Fix bad valencies, and parallel processing. The generate coordinates task was switched on the 3D option. Finally, the duplicate structure task was activated on the remove option.

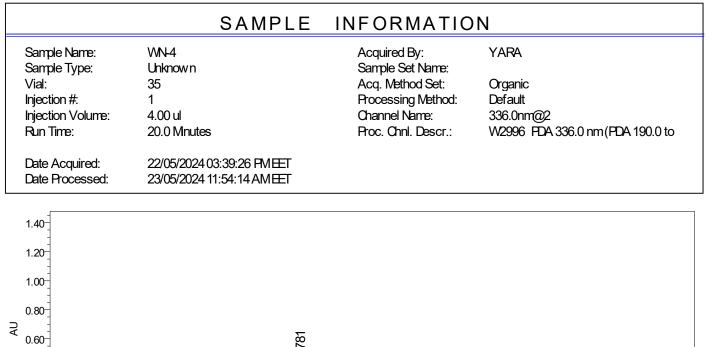

• Running of Toxicity protocol

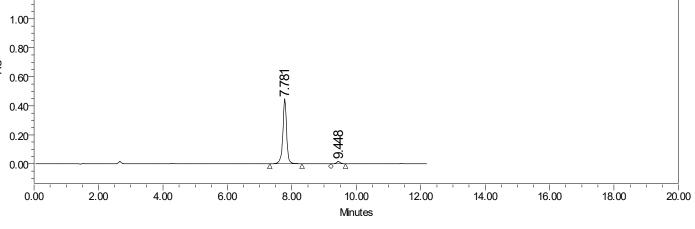
In this protocol, the small molecules panel was utilized with the activation of the toxicity prediction (extensible) option. Then, we selected the prepared compounds as the input ligands. Further, the different toxicity models were selected from the model panel. The similarity search task was activated to be true. The detailed report task was switched on as a PDF file. Then, the output of the running protocol was visualized to give the toxicity PDF report.

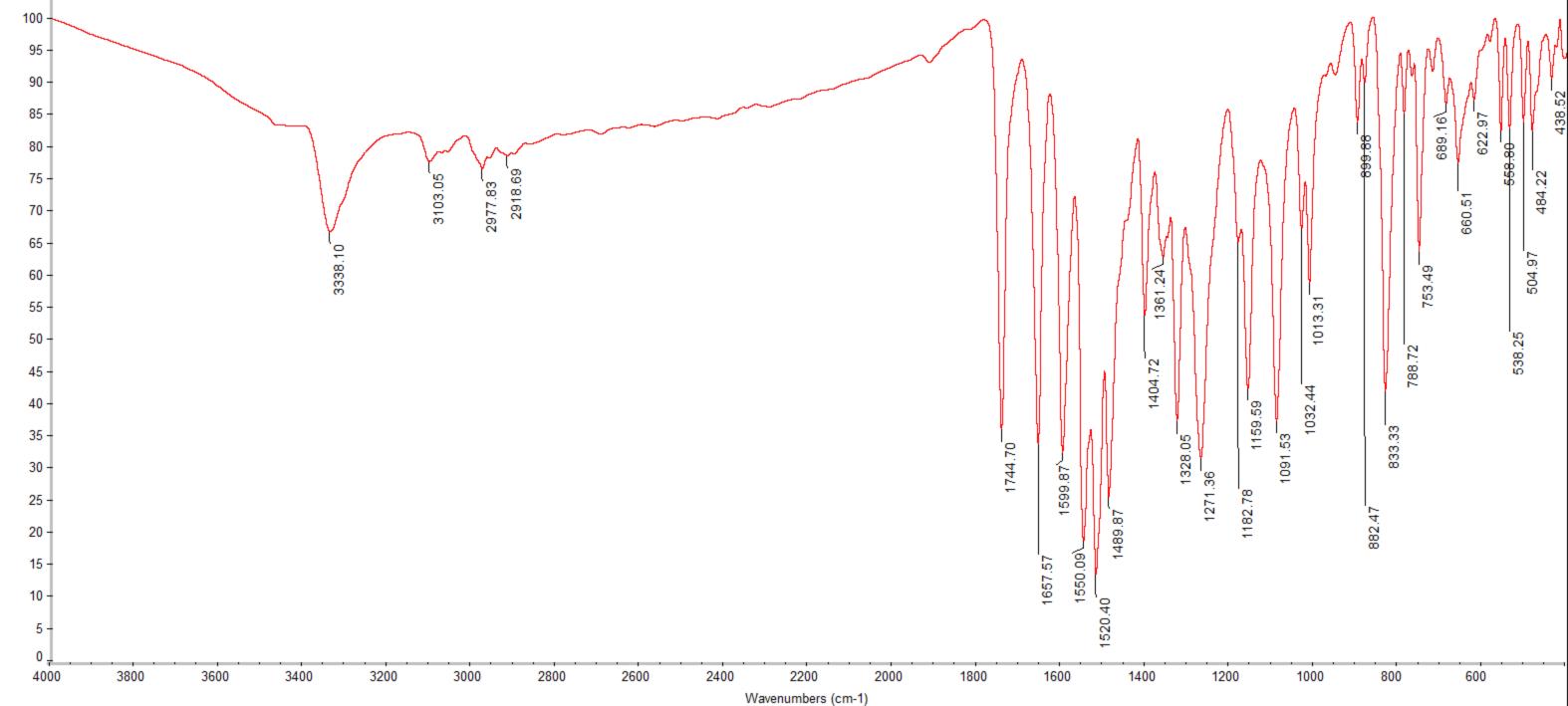


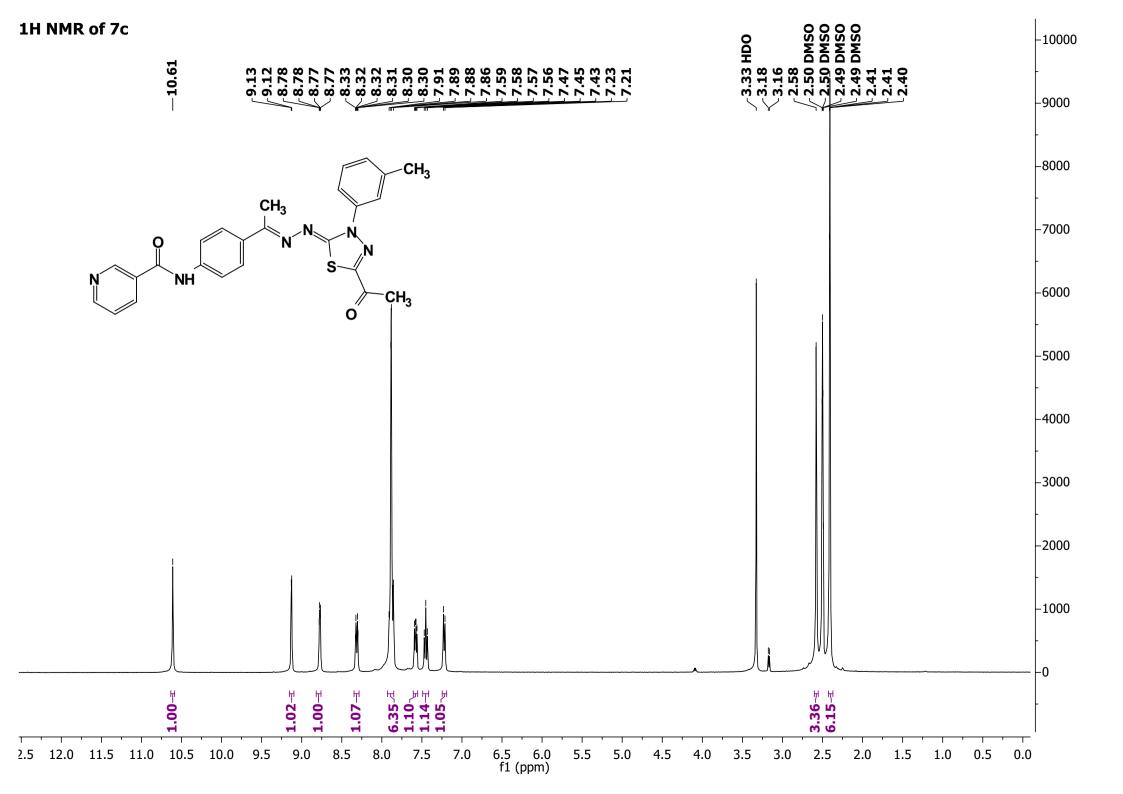


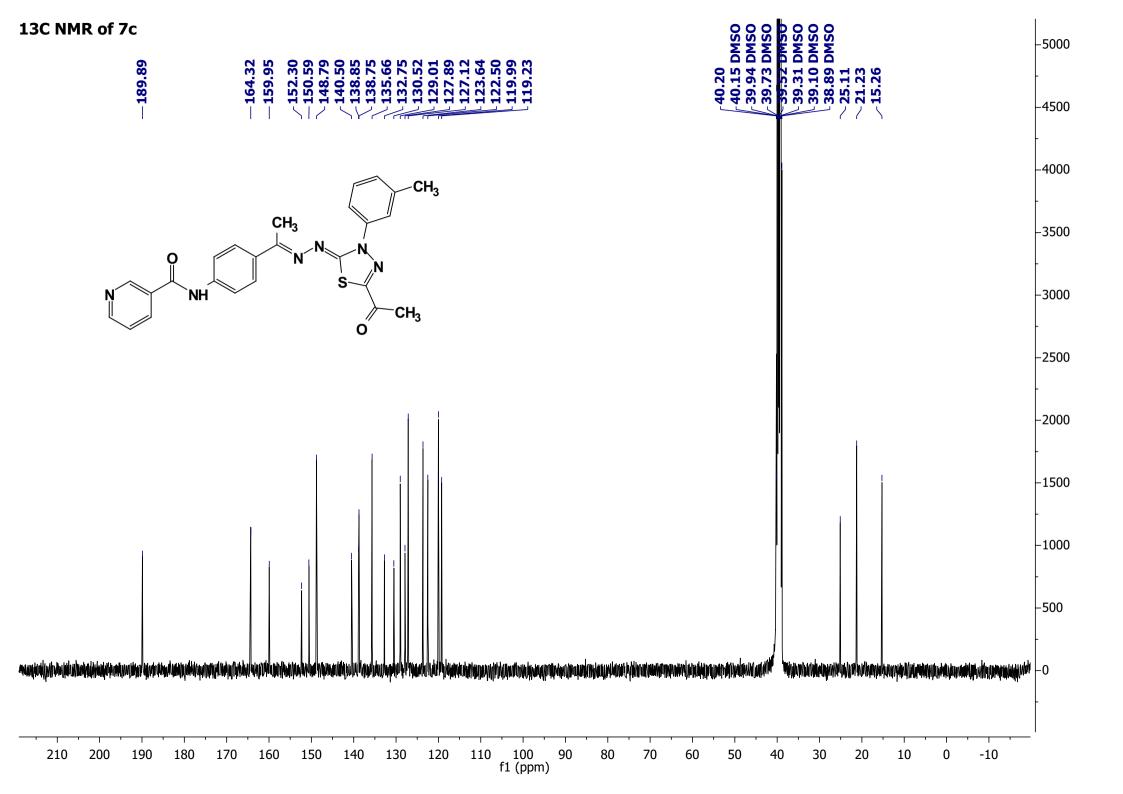

Mass spec. of compound 7a

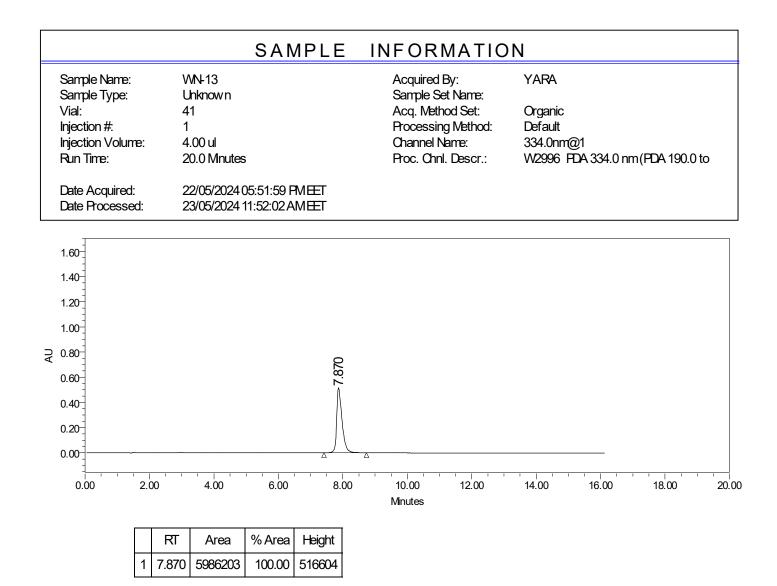


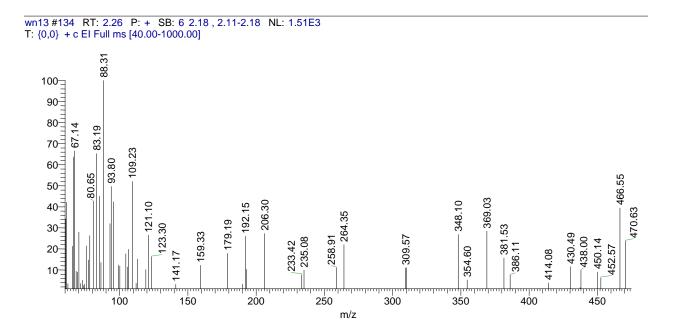

% Transmittance

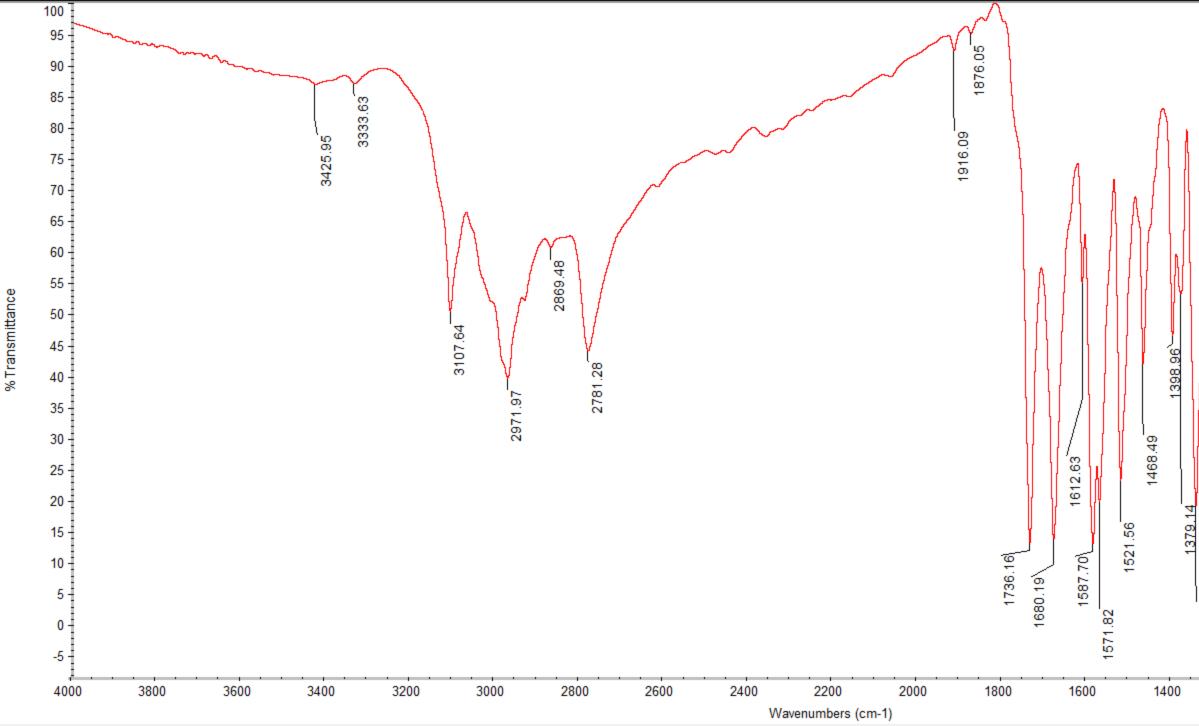


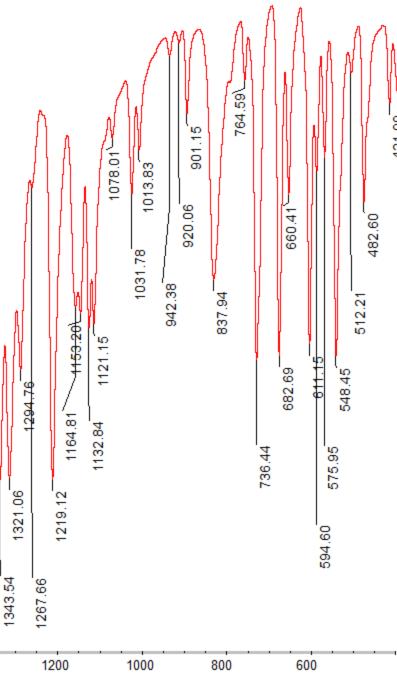


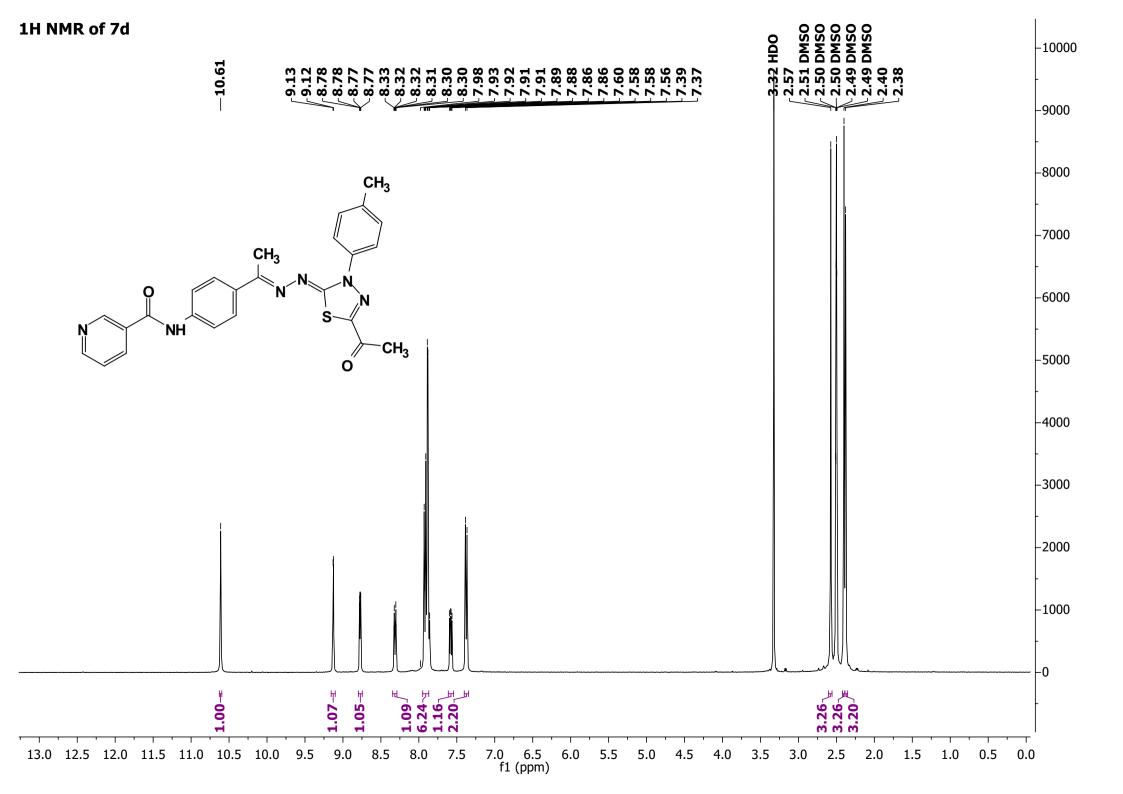


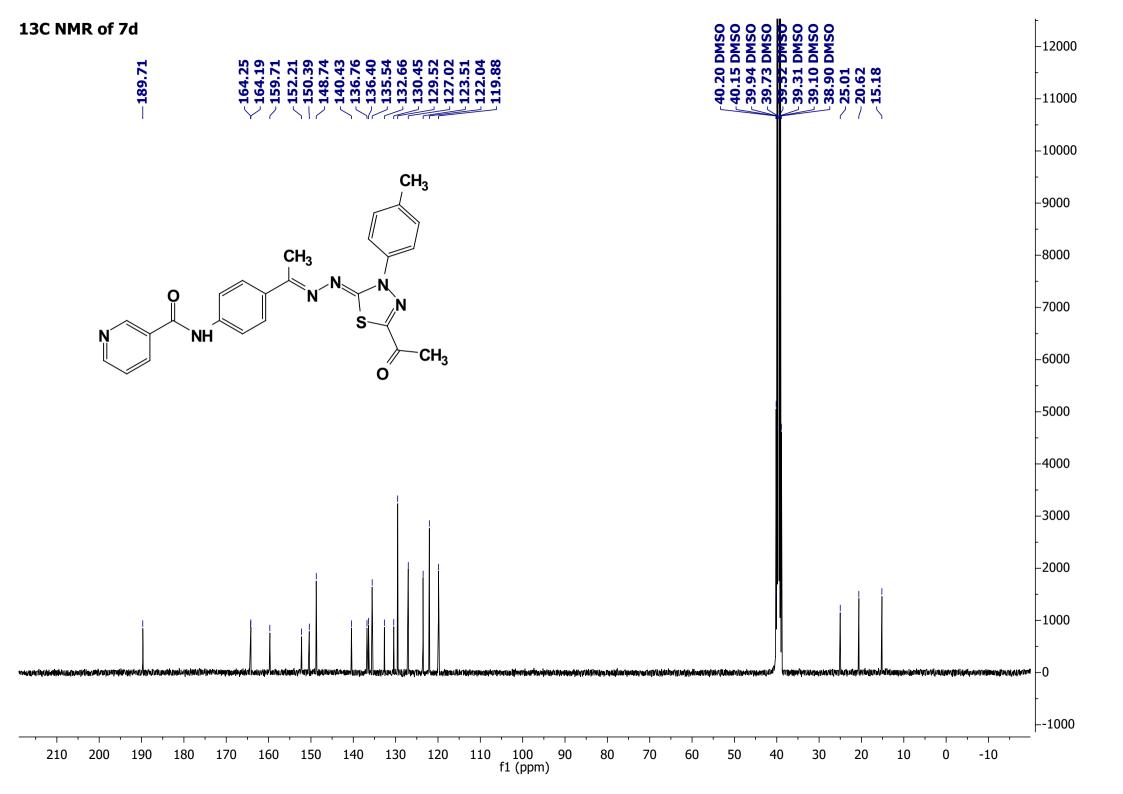

	RT	Area	% Area	Height
1	7.781	3660422	96.71	445448
2	9.448	124459	3.29	15606

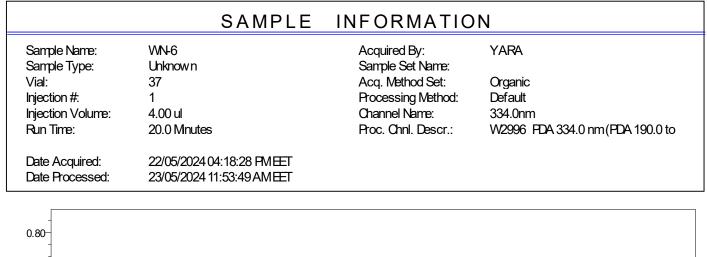

Reported by User: Dr Yara Nagah (YARA) Report Method: Multi Sample Summary Report Method ID: 50[,] 50171 Page: 28 of 47 Project Name: Analysis 2024\Organic impurities Date Printed: 23/05/2024 01:18:46 ã Africa/Cairo

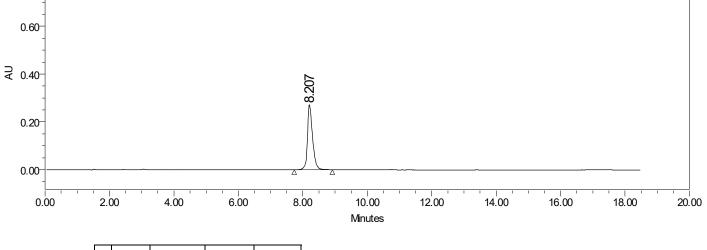


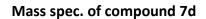


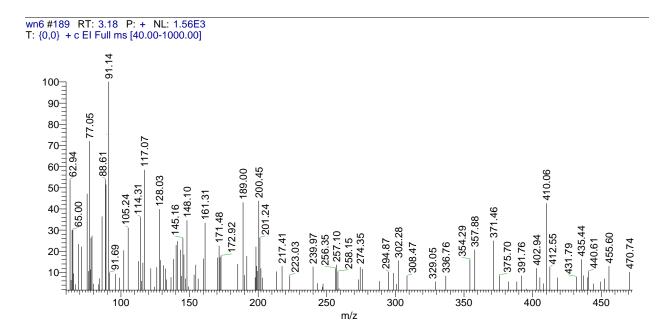


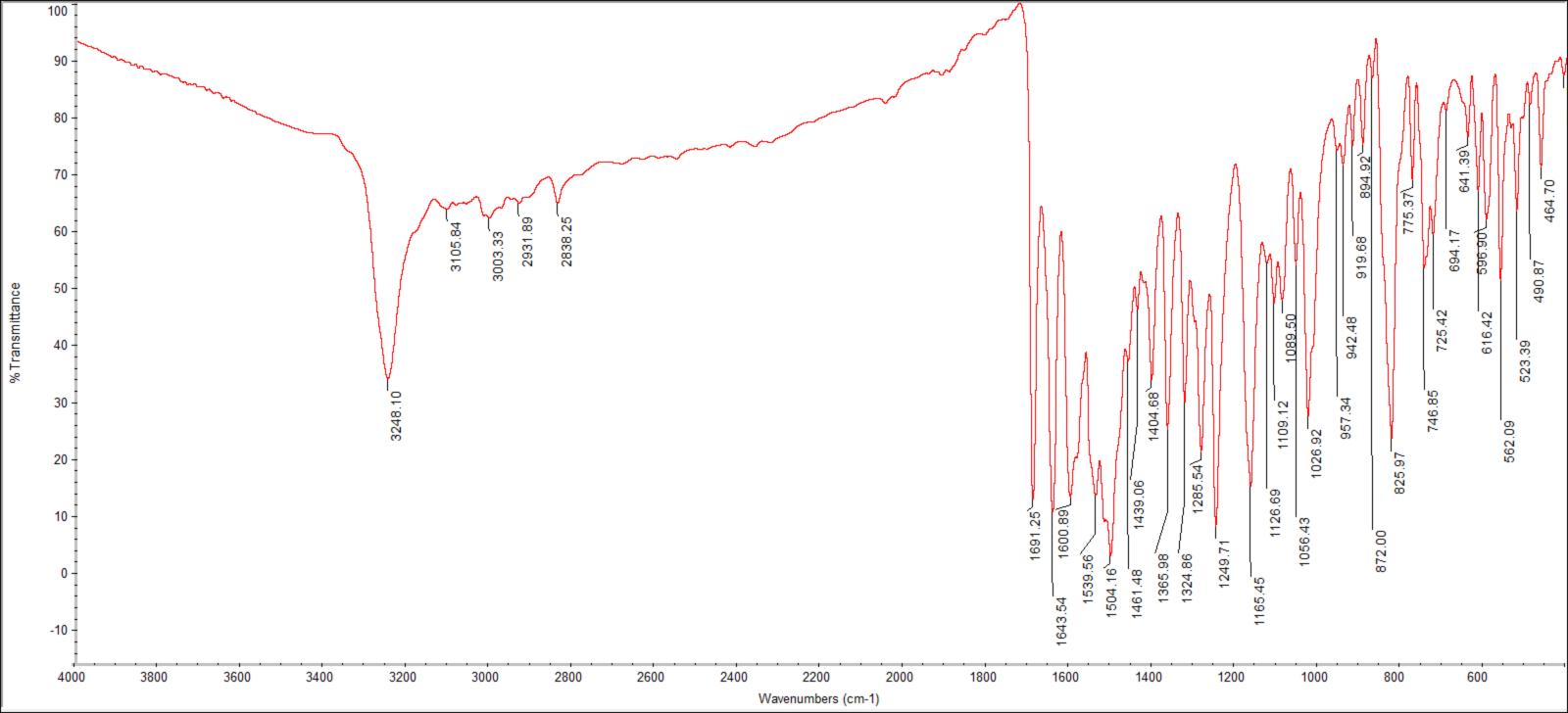



Mass spec. of compound 7c

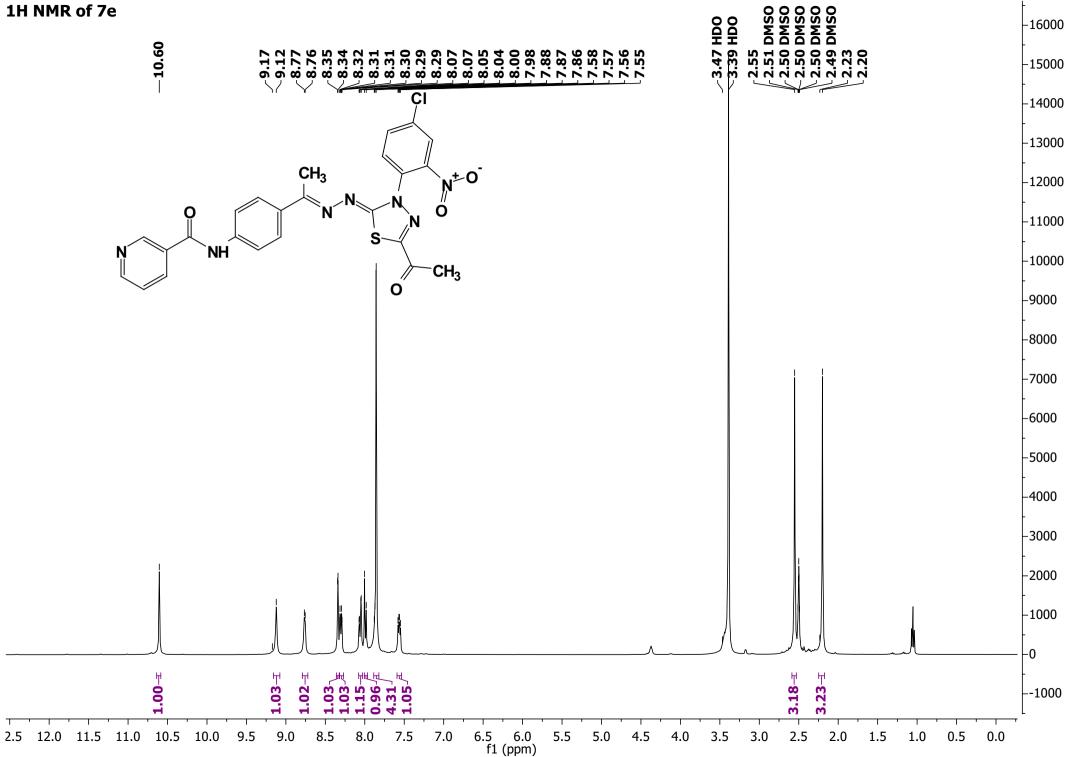


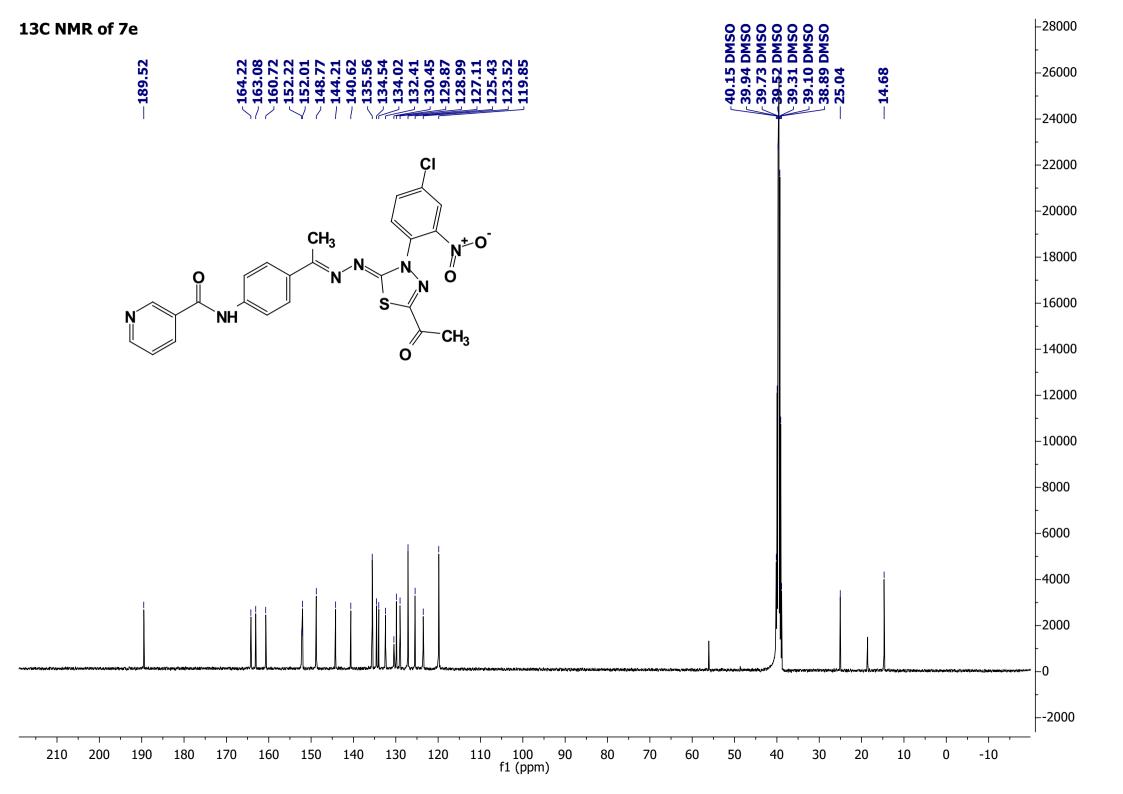


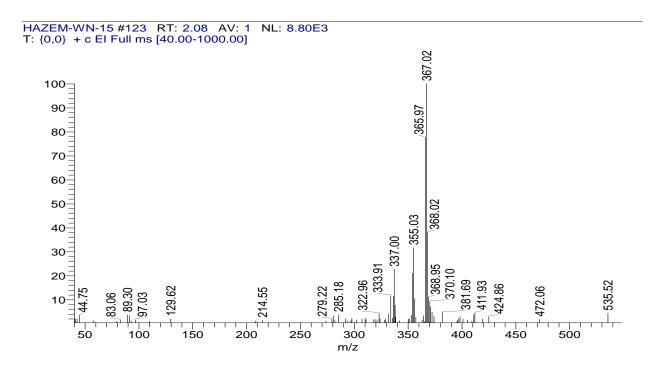


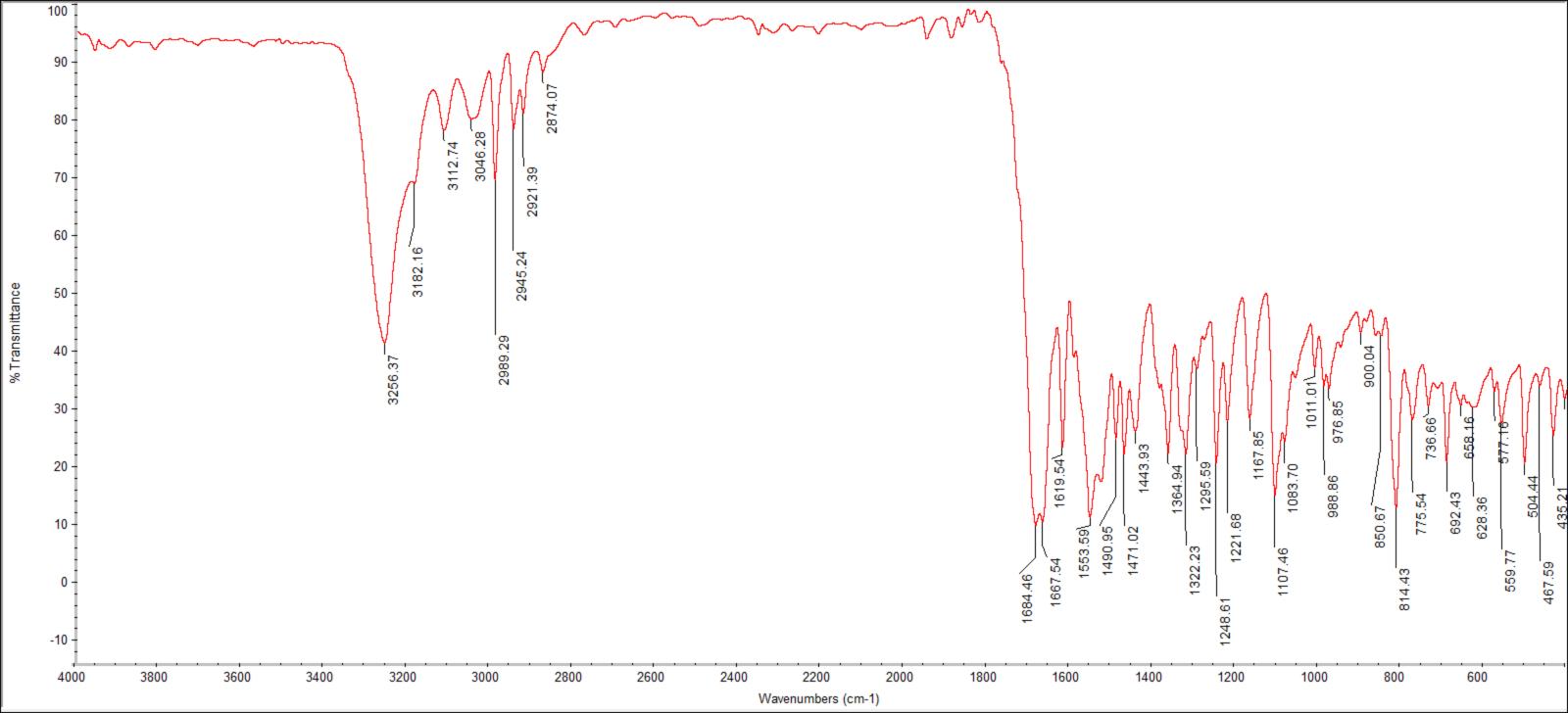


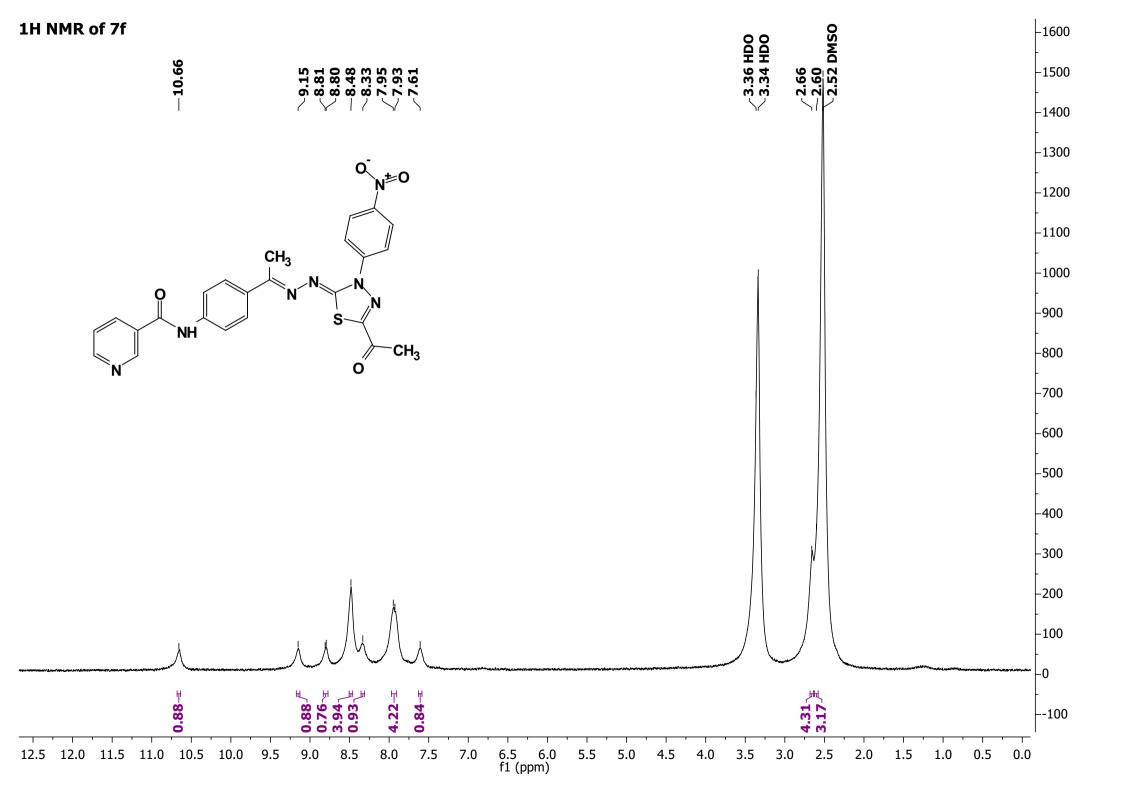
	RT	Area	% Area	Height
1	8.207	3010648	100.00	273113

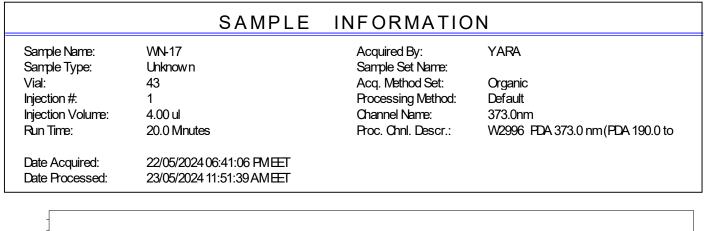

Reported by User: Dr Yara Nagah (YARA) Report Method: Multi Sample Summary Report Method ID: 50[,] 50171 Page: 30 of 47 Project Name: Analysis 2024\Organic impurities Date Printed: 23/05/2024 01:18:46 ã Africa/Cairo

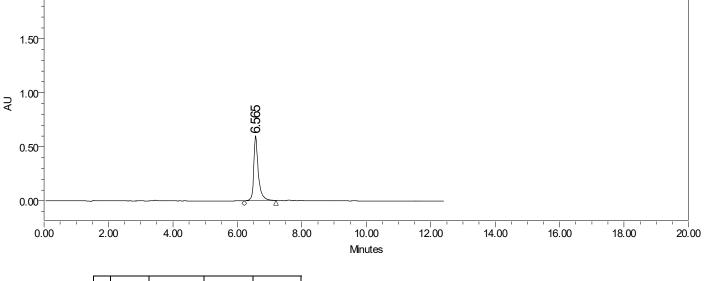


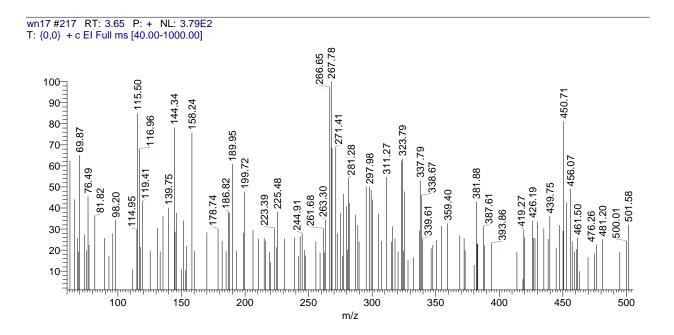


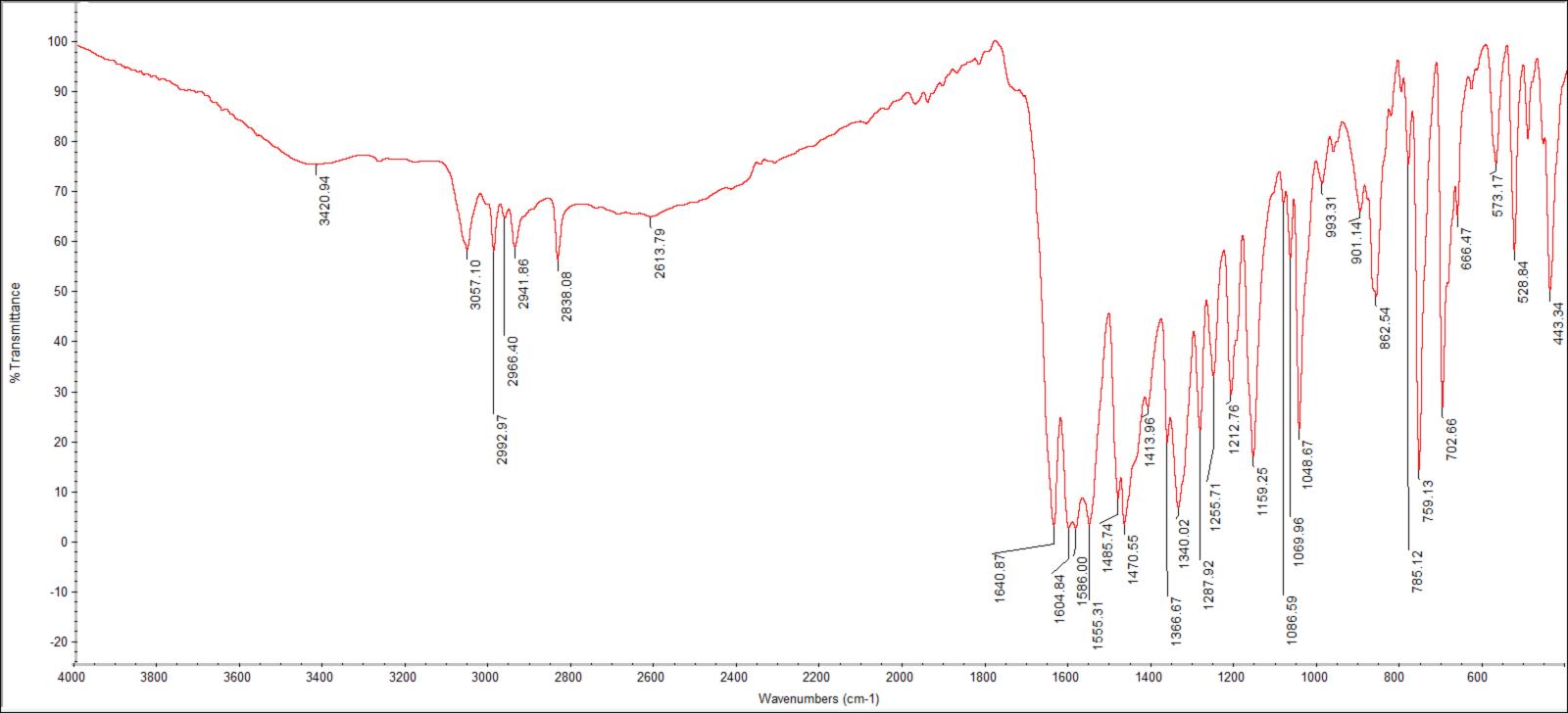


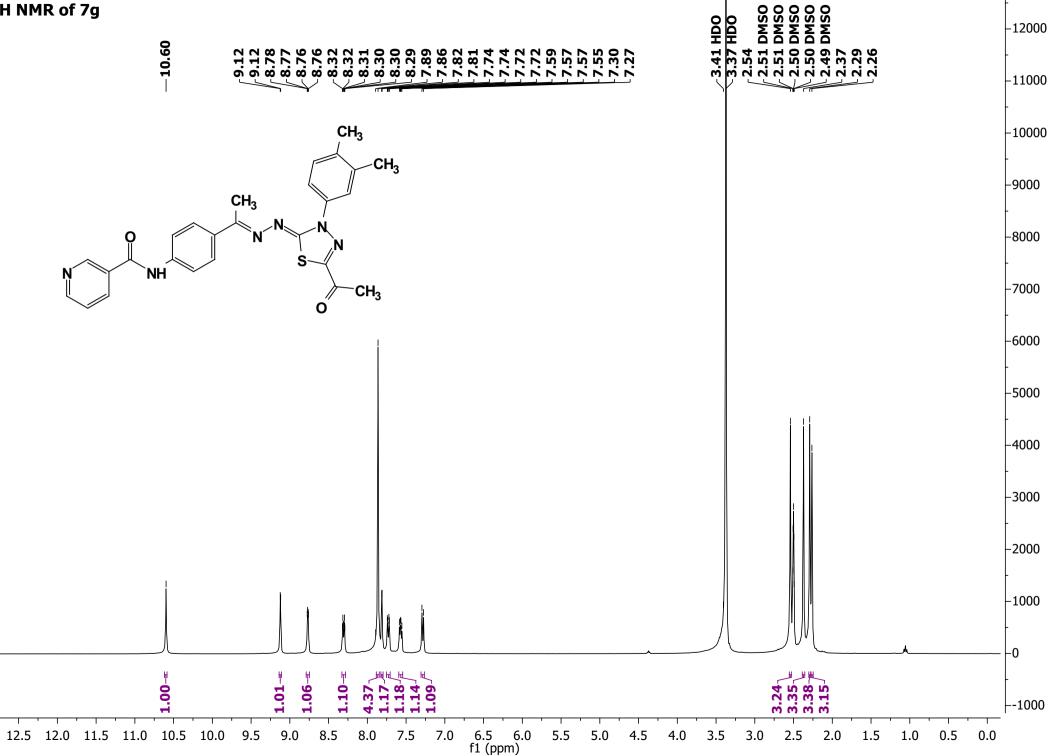

1H NMR of 7e



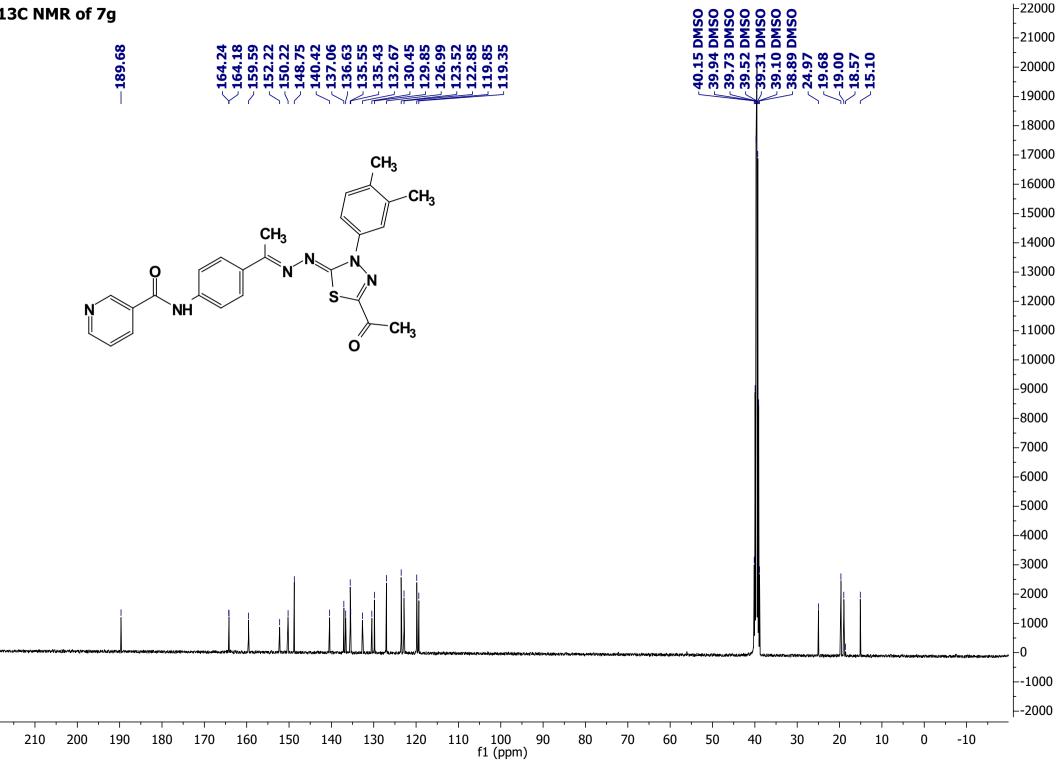


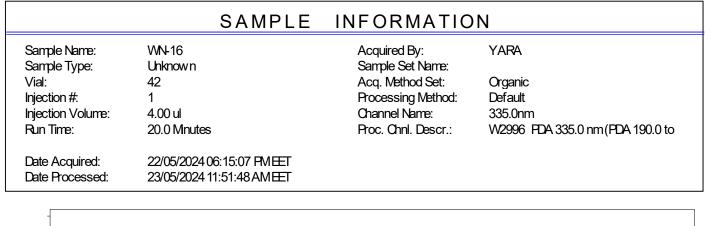


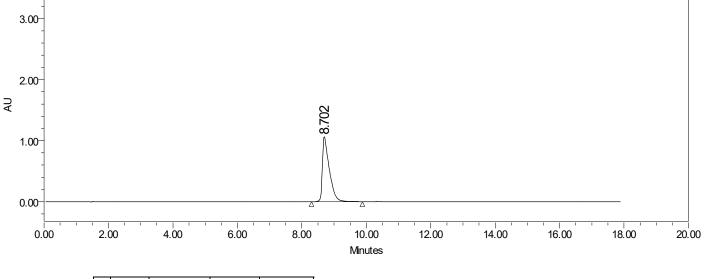




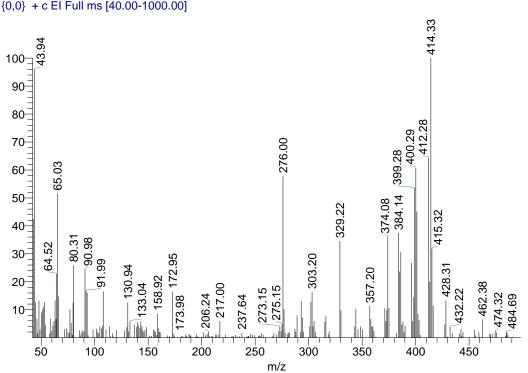
	RT	Area	% Area	Height
1	6.565	5907342	100.00	597572


Reported by User: Dr Yara Nagah (YARA) Report Method: Multi Sample Summary Report Method ID: 50[,] 50171 Page: 36 of 47 Project Name: Analysis 2024\Organic impurities Date Printed: 23/05/2024 01:18:46 ã Africa/Cairo





1H NMR of 7g



	RT	Area	% Area	Height
1	8.702	15883187	100.00	1063707

Reported by User: Dr Yara Nagah (YARA) Report Method: Multi Sample Summary Report Method ID: 50[,] 50171 Page: 35 of 47 Project Name: Analysis 2024\Organic impurities Date Printed: 23/05/2024 01:18:46 ã Africa/Cairo

Mass spec. of compound 7g

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.607

Enrichment: 1.09

Bayesian Score: -4.84

Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 2.47e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	3567-69-9	83621-06-1	1936-15-8	
Structure	Na of the test of test		Na o	
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen	
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen	
Distance	0.574	0.608	0.612	
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[c](:[cH]):[*])C(=O)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24	

SCFP_12	818445224	[*][c]1:[cH]:[cH]:[c] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	124026986	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*	0.429	33 out of 37
	Top Fea	tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	903335088	["]NC(=O)[c]1:[cH]:[c H]:[']:n:[cH]:1	-0.762	0 out of 2
SCFP_12	1165971455	(']NC(=O)[c]1:[cH]:[c H]:[cH]:n:[cH]:1	-0.762	0 out of 2

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.605

Enrichment: 1.08

Bayesian Score: -4.88

Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 2.47e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	3567-69-9	83621-06-1	1936-15-8		
Structure	Na of the test of test		Na o		
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen		
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen		
Distance	0.577	0.603	0.615		
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24	

SCFP_12	818445224	Ci N N N N N C (*][c]1:[cH]:[cH]:[c] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	124026986	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*	0.429	33 out of 37
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	$\begin{bmatrix} c_{1} & & \\ & $	-0.998	0 out of 3
SCFP_12	-331724199	$[^{1}]_{N}=C(/C)/[c](:[^{n}])$	-0.762	0 out of 2
SCFP_12	1165971455	CI N, S N, S (']NC(=O)[c]1:[cH]:[c H]:[cH]:n:[cH]:1	-0.762	0 out of 2

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.674

Enrichment: 1.21

Bayesian Score: -2.75

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 9.97e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	3567-69-9	1936-15-8	2783-94-0	
Structure	Na of the test of the test of the test of the test of		Na o I I I I I I I I I I I I I	
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen	
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen	
Distance	0.590	0.598	0.600	
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c]1:[cH]:[c H]:[*]:[cH]:[cH]:1	0.447	22 out of 24	

SCFP_12	818445224	[*][c]1:[cH]:[cH]:[c] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	2096901122	[1]:[cH]:[c](NC(=O)[c](:[1]):[cH]:[*]	0.429	33 out of 37
	Top Feat	tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	1165971455	[¹]NC(=O)[c]1:[cH]:[c H]:[cH]:n:[cH]:1	-0.762	0 out of 2
SCFP_12	903335088	[']NC(=O)(c]1:[cH]:[c H]:[']:n:[cH]:1	-0.762	0 out of 2

Helma, C., Cramer, T.,

Kramer, S., and De Raedt,

L., J. Chem. Inf. Comput.

Sci., 2004, pp. 1402-1411

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.685

Enrichment: 1.23

Bayesian Score: -2.35

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 9.97e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	3567-69-9	1936-15-8	2783-94-0		
Structure	Na o o o o No		Na o Star Control		
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen		
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen		
Distance	0.593	0.600	0.600		

Model Applicability

Reference

_

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Helma, C., Cramer, T.,

Kramer, S., and De Raedt,

L., J. Chem. Inf. Comput.

Sci., 2004, pp. 1402-1411

1. All properties and OPS components are within expected ranges.

Helma, C., Cramer, T.,

Kramer, S., and De Raedt,

L., J. Chem. Inf. Comput.

Sci., 2004, pp. 1402-1411

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[c](:[cH]:[c H]:[*]:[cH]:[cH]:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[cH]:[c](:[c](:[cH]:[c](:[cH]:[c](:[c](:[c](:[cH]:[c](:[c](:[c](:[cH]:[c](:[c](:[cH]:[c](:[c](:[c](:[c](:[cH]:[c](:[c](:[c](:[c](:[c](:[c](:[c](:[c]	0.447	22 out of 24	

SCFP_12	818445224	[*][c]1:[cH]:[cH]:[c] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
SCFP_12	2096901122	[']:[cH]:[c](NC(=O)[c](:"):[']):[cH]:[*]	0.429	33 out of 37
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	1165971455	(")NC(=O)[c]1:[cH]:[c H]:[cH]:n:[cH]:1	-0.762	0 out of 2
SCFP_12	903335088	(']NC(=0)[c]1:[cH]:[c H]:[']:n:[cH]:1	-0.762	0 out of 2

 $CI \xrightarrow{O}_{N} \xrightarrow{N}_{O} \xrightarrow{N}_{N} \xrightarrow{O}_{O} \xrightarrow{N}_{O} \xrightarrow{N}_{O$

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.688

Enrichment: 1.23

Bayesian Score: -2.21

Mahalanobis Distance: 12.9

Mahalanobis Distance p-value: 8.03e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	ar Compounds		
Name	3567-69-9	6471-49-4	1936-15-8
Structure	Na of the test of test		Na o
Actual Endpoint	Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.599	0.632	0.636
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

			ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-990000384	[*]N([*])[6]1:[cH]:[*]:[c]([*]):[cH]:[c]: 1[N+](=O)[O-]	0.507	50 out of 52

7e

SCFP_12	555539852	CI C	0.447	22 out of 24
SCFP_12	818445224	CI CI NHCN NS [*][c]1:[cH]:[cH]:[c] (NC(=O)[c](:[*]):[*]):[cH]:[cH]:1	0.434	12 out of 13
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	1165971455	CI C	-0.762	0 out of 2
SCFP_12	-331724199		-0.762	0 out of 2

 $C_{24}H_{19}N_7O_4S$ Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Mutagen

Probability: 0.744

Enrichment: 1.33

Bayesian Score: 0.275

Mahalanobis Distance: 12.5

Mahalanobis Distance p-value: 5.91e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

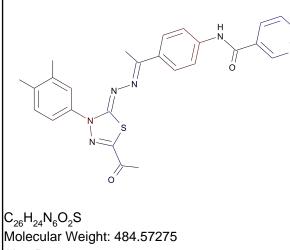
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simi	ilar Compounds		
Name	1936-15-8	2783-94-0	3567-69-9
Structure	Na o O O O O Na O Na O Na O O Na O O Na O O Na O O O Na O O O Na O O O O Na		
Actual Endpoint	Non-Mutagen	Non-Mutagen	Mutagen
Predicted Endpoint	Non-Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.599	0.599	0.632
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1729573318	[*]N(f))[c]1:[cH]:[c H]:[c](:[cH]:[cH]:1) [N+](=O)[O-]	0.488	36 out of 38

SCFP_12	555539852	[*]:[cH]:[cH]:[cH]:1	0.447	22 out of 24
SCFP_12	818445224	[*][CH]:[CH]:[CH]:1	0.434	12 out of 13
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	903335088	[']NC(=0)[c]1:[cH]:[c H]:[']:n:[cH]:1	-0.762	0 out of 2
SCFP_12	-331724199	[']/N=C(/C)/[c](:[']) :[']	-0.762	0 out of 2

Molecular Weight: 484.5727 ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Mutagen

Probability: 0.683

Enrichment: 1.22

Bayesian Score: -2.42

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 9.65e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

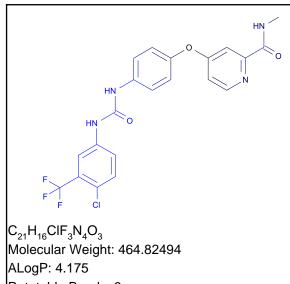
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simil	ar Compounds		
Name	3567-69-9	110004-69-8	83621-06-1
Structure			
Actual Endpoint	Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.581	0.621	0.622
Reference	Helma, C., Cramer, T., Kramer, S., and De Raedt, L., J. Chem. Inf. Comput. Sci., 2004, pp. 1402-1411	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure		Mutagen in training set	
SCFP_12	555539852	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.447	22 out of 24	

SCFP_12	818445224	(NC(=O)[c](:[1]):[1]	0.434	12 out of 13
SCFP_12	2096901122	[*]:[c+]:[c](NC(=O)]c](:"):[*]):[c+]:[*]]	0.429	33 out of 37
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	[*]C1=[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-331724199		-0.762	0 out of 2
SCFP_12	903335088	(")NC(=0)[c]1:[cH]:[c H]:[']:n:[cH]:1	-0.762	0 out of 2

Sorafenib

Rotatable Bonds: 6 Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Mutagen

Probability: 0.0531

Enrichment: 0.0951

Bayesian Score: -19.7

Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

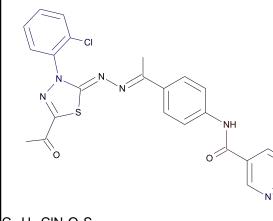
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ames_Mutagenicity

Name	GLYBURIDE	38914-96-4	93957-54-1
Structure	HN ISO		
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.590	0.592	0.600
Reference	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	US Environmental Protection Agency at http://www.epa.gov/NCCT dsstox/sdf_isscan_externa I.html


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	-347281112	[*]N[c]:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.337	18 out of 22	

SCFP_12	1208843554	[*]N[c]f:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	0.337	6 out of 7
SCFP_12	-1943080297	[*]Nig17_CcH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	0.304	5 out of 6
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	816802409	$["]{}^{(1)} C(=0) N[c]1:[cH]:[c](T]):[cH]:[cH]:[c](T]):[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]$	-1.82	0 out of 9
SCFP_12	-1903175541	[*][c](:[*]):[c](:[cH]:[*])C(F)(F)F	-1.51	3 out of 30
SCFP_12	-300280774	[*]:[c](:[*])C(F)(F)F	-1.51	3 out of 30

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.42

7a

Enrichment: 0.798

Bayesian Score: -3.74

Mahalanobis Distance: 10.6

Mahalanobis Distance p-value: 0.0037

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Acemetacin	Beclomethasone Dipropionate	Hydrocortisone-17- butyrate-21-propionate	
Structure			HO the second se	
Actual Endpoint	Non-Toxic	Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Toxic	Toxic	
Distance	0.632	0.646	0.687	
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 21:441-466; 1981	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18

SCFP_6	903335088	["]NC(=O)(c]1:[cH]:[c H]:[1]:n:[cH]:1	0.271	1 out of 1
SCFP_6	-331724199	[']N=C(/C)/[c](:[']) :[']	0.271	1 out of 1
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	1557430596	[*]N([*])[c]1:[cH]:[*]:[cH]:[cH]:[c]:1Cl	-0.594	1 out of 5
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[c H]:[cH]:[*]:[c]:1[*]	-0.449	6 out of 19

 $C_{24}H_{19}CIN_6O_2S$

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.463

Enrichment: 0.88

Bayesian Score: -2.37

Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.00263

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Acemetacin	Beclomethasone Dipropionate	Hydrocortisone-17- butyrate-21-propionate	
Structure	of of of other of the other other of the other ot		HO the second se	
Actual Endpoint	Non-Toxic	Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Toxic	Toxic	
Distance	0.622	0.645	0.686	
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 21:441-466; 1981	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18

SCFP_6	903335088	Cl N, N, N	0.271	1 out of 1
SCFP_6	-331724199	$[]^{(I)}_{N=C((C))[c]([])}$	0.271	1 out of 1
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[c H]:[cH]:['][c]:1[']	-0.449	6 out of 19
SCFP_6	-704135030	$(\mathbf{I}) \subset [\mathbf{I}] \subset [$	-0.422	0 out of 1

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.439

Enrichment: 0.834

Bayesian Score: -3.12

Mahalanobis Distance: 10.6

Mahalanobis Distance p-value: 0.00398

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

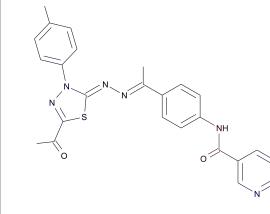
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Acemetacin	Beclomethasone Dipropionate	Hydrocortisone-17- butyrate-21-propionate	
Structure			HO the second se	
Actual Endpoint	Non-Toxic	Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Toxic	Toxic	
Distance	0.625	0.656	0.685	
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 21:441-466; 1981	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 4.5388. Training min, max, SD, explained variance: -3.5766, 3.955, 1.214, 0.0216.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18	

SCFP_6	903335088	[¹]NC(=0)(c]1:[cH]:[c H]:[¹]:n:[cH]:1	0.271	1 out of 1
SCFP_6	-331724199	[']N=C(/C)/[c](:[']) :[']	0.271	1 out of 1
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[c H]:[cH]:[t]]	-0.449	6 out of 19
SCFP_6	-704135030	["]C(=["])C1=N["]["]S	-0.422	0 out of 1

C₂₅H₂₂N₆O₂S Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.456

Enrichment: 0.868

Bayesian Score: -2.57

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00091

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

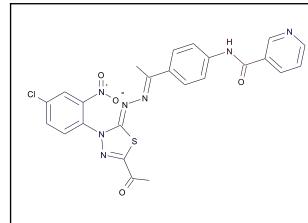
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Acemetacin	Beclomethasone Dipropionate	Hydrocortisone-17- butyrate-21-propionate
Structure	of o		HO the second se
Actual Endpoint	Non-Toxic	Toxic	Toxic
Predicted Endpoint	Non-Toxic	Toxic	Toxic
Distance	0.624	0.656	0.685
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 21:441-466; 1981


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 4.4401. Training min, max, SD, explained variance: -3.5766, 3.955, 1.214, 0.0216.

Fingerprint	Bit/Smiles			Top features for positive contribution						
	Divonnes	Feature Structure	Score	Toxic in training set						
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18						

SCFP_6	903335088	[*]NC(=O)[c]1:[cH]:[c H]:[']:n:[cH]:1	0.271	1 out of 1
SCFP_6	795925860	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	0.271	1 out of 1
	Top Feat	tures for negative of	contribution	l _
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[c H]:[cH]:[*]:[c]:[*]	-0.449	6 out of 19
SCFP_6	-704135030	$[]^{N}C(=[^{*}])C1=N[^{*}][^{*}]S$	-0.422	0 out of 1

 $C_{24}H_{18}CIN_7O_4S$ Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.422

Enrichment: 0.803

Bayesian Score: -3.65

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.000497

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

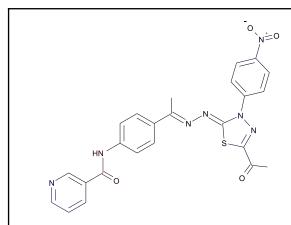
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structura	Similar	Compounds
-----------	---------	-----------


Name	Reserpate	Beclomethasone Dipropionate	e Hydrocortisone-17- butyrate-21-propionate	
Structure			HO the second se	
Actual Endpoint	Toxic	Toxic	Toxic	
Predicted Endpoint	Toxic	Toxic	Toxic	
Distance	0.736	0.756	0.775	
Reference	Oyo Yakuri 18:105-124; 1979	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 21:441-466; 1981	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution Top features for positive contribution						
SCFP_6	1257084377	CI C	0.362	14 out of 18		
	·	•		·		

SCFP_6	903335088	CI C	0.271	1 out of 1
SCFP_6	1907765814	CI CI CH:[CH]:[C] [*][C]1:[CH]:[CH]:[C] (CI):[CH]:[C]:1[N+](=[*])[*]	0.271	1 out of 1
		tures for negative of		1
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	C ^I C ^N Or ^N N ^M S [*][C]1:[*]:n:[CH]:[C H]:[CH]:1	-0.646	2 out of 9
SCFP_6	1807097289	C' C' NHC' NS [*][c]1:[*]:[cH]:[c](CI):[cH]:[c]:1[N+](= [*])[*]	-0.594	1 out of 5
SCFP_6	-1380909229	CI C	-0.449	6 out of 19

 $C_{24}H_{19}N_7O_4S$ Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.44

Enrichment: 0.836

Bayesian Score: -3.09

Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 0.00224

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

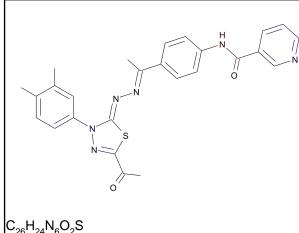
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Lenampicillin .HCI (Free base form)	Cyclic AMP Bucladesine	Bacampicillin .HCI (Free base form)	
Structure	HN VH2 HN O Str N O O O O O O O O O O O O O O O O O O O			
Actual Endpoint	Non-Toxic	Non-Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Non-Toxic	Non-Toxic	
Distance	0.758	0.759	0.770	
Reference	Chemotherapy 32:130- 145; 1984	Oyo Yakuri 27(3):585-597; 1984	Chemotherapy 27:30-35; 1979	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution Top features for positive contribution					
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18	

SCFP_6	-331724199	["] N=C(/C) [c](:[*]) :["]	0.271	1 out of 1
SCFP_6	903335088	["]NC(=0)[c]1:[cH]:[c H]:[*]:n:[cH]:1	0.271	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[c H]:[cH]:[']:[c]:1[*]	-0.449	6 out of 19
SCFP_6	1311339974	[*][N+](=O)[*]	-0.446	3 out of 10

TOPKAT_Developmental_Toxicity_Potential

Molecular Weight: 484.57275 ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Toxic

Probability: 0.456

Enrichment: 0.868

Bayesian Score: -2.57

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.000762

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

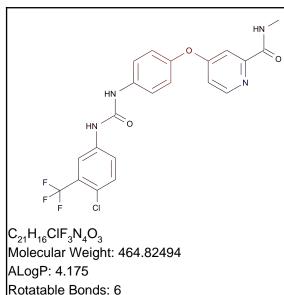
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Acemetacin	Beclomethasone Dipropionate	Hydrocortisone-17- butyrate-21-propionate	
Structure	OC OH		HO to the total of	
Actual Endpoint	Non-Toxic	Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Toxic	Toxic	
Distance	0.639	0.649	0.689	
Reference	Oyo Yakuri 22(6):777-786; 1981	Oyo Yakuri 18(6):1021- 1038; 1979	Oyo Yakuri 21:441-466; 1981	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 4.4679. Training min, max, SD, explained variance: -3.5766, 3.955, 1.214, 0.0216.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	0.362	14 out of 18	

SCFP_6	1789155233	[*][c]1:[*]:[cH]:[c](C):[c](C):[cH]:1	0.271	1 out of 1
SCFP_6	-331724199		0.271	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.646	2 out of 9
SCFP_6	-1380909229	[*]N([*])[c]1:[cH]:[c H]:[cH]:[*]:[c]:1[*]	-0.449	6 out of 19
SCFP_6	-704135030	[']C(=['])C1=N['][']S	-0.422	0 out of 1

Sorafenib

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Toxic

Probability: 0.592

Enrichment: 1.13

Bayesian Score: 1.15

Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

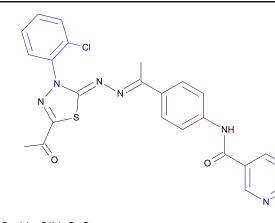
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Chenodiol	Amsacrine	Ochratoxin a
Structure	OH 	NI H	OH WNH HO WA HI HO WA HI HO WA HI OH OH HO WA
Actual Endpoint	Toxic	Toxic	Toxic
Predicted Endpoint	Toxic	Toxic	Toxic
Distance	0.631	0.637	0.644
Reference	Arch Int Pharm 246:149- 158; 1980	Fundam Appl Toxicol 7(2):214-20; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_6	-488587948	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.381	2 out of 2
SCFP_6	-975241316	[*][c]1:[cH]:[cH]:[cH] [:[']):[cH]:[cH]:1	0.381	2 out of 2
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1794974220	[*]C([*])([*])F	-0.55	2 out of 8
SCFP_6	-937094999	PF CI [*]1:[cH]:[cH]:n :[cH]:1	-0.358	3 out of 9
SCFP_6	-496201075	[*][c](:[*]):[cH]:n:[*]	-0.289	8 out of 21

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.208

Enrichment: 0.649

Bayesian Score: -7.85

Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 7.34e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluticasone	Moricizine	Doxazosin	
Structure	$HO_{t} \xrightarrow{F}_{F} \xrightarrow{F}_{F}$			
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.661	0.666	0.695	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC28 out of range. Value: 3.6547. Training min, max, SD, explained variance: -2.8298, 3.1935, 1.043, 0.0111.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		

ECFP_6	-1087070950		0.724	10 out of 14
ECFP_6	738938915	[]N-[]	0.617	2 out of 2
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-1625071872	[*][c]1:[cH]:[cH]:[cH]:[cH]:[c]1:[c]	-0.935	0 out of 5
ECFP_6	2013347047	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.805	0 out of 4

ECFP_6	1641317964		-0.789	1 out of 11
		م∾ [*][c]1:[*]:[cH]:[cH] :[cH]:[c]:1Cl		

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205

Enrichment: 0.64

Bayesian Score: -6.85

Mahalanobis Distance: 15.5

Mahalanobis Distance p-value: 2.29e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluticasone	Moricizine	Doxazosin
Structure	HO to the product of		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.661	0.681	0.699
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
	ł		·		
	Bit/Smiles	Bit/Smiles Feature Structure	Bit/Smiles Feature Structure Score		

ECFP_6	-1087070950		0.724	10 out of 14
ECFP_6	738938915	[*]N=[*]	0.617	2 out of 2
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]	-0.805	0 out of 4
ECFP_6	2013347047	CI NNSNN CNNSNNN CNNSNNN CNNSNNN CNNSNNN CNNSNNN CNNSNNN CNNSNNNN CN	-0.805	0 out of 4

ECFP_6	129482634		-0.657	0 out of 3
		[*]C(=[*])C(=O)C		

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.214

Enrichment: 0.668

Bayesian Score: -8.94

Mahalanobis Distance: 14

Mahalanobis Distance p-value: 1.35e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Fluticasone	Doxazosin
Structure			N N H ₂ N ^N H ₂ N ^N N
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.656	0.667	0.676
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
	·	·		•	

ECFP_6	-1087070950		0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:[1]	0.617	2 out of 2
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-179515162	[*]:[cH]:[c](C):[cH]: [*]	-1.41	0 out of 10
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]	-0.805	0 out of 4

ECFP_6	2013347047		-0.805	0 out of 4
		° ℃ [*][c]1:[*]:n:[cH]:[c H]:[cH]:1		

C₂₅H₂₂N₆O₂S Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.226

Enrichment: 0.706

Bayesian Score: -10.3

Mahalanobis Distance: 13.6

Mahalanobis Distance p-value: 6.08e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

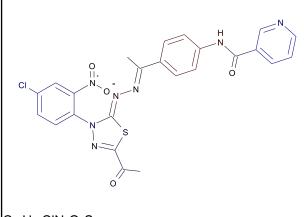
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Fluticasone	Doxazosin
Structure			H ₂ N ⁴⁰
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.658	0.666	0.679
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	

ECFP_6	-1087070950		0.724	10 out of 14
	720020045	[*]N=[*]	0.617	
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
	Top Fea	atures for negative (contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-179515162	[*]:[cH]:[c](C):[cH]: [*]	-1.41	0 out of 10
ECFP_6	-210573707	[*][c]1:[*]:[cH]:[c](C):[cH]:[cH]:1	-1.25	0 out of 8

ECFP_6	-533780882		-1.05	0 out of 6
		C[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1		

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.209

Enrichment: 0.652

Bayesian Score: -8.12

Mahalanobis Distance: 16.1

Mahalanobis Distance p-value: 1.72e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

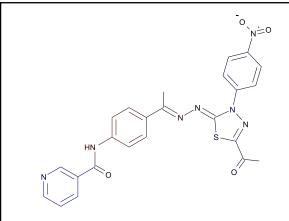
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Doxazosin	Reserpine	Nicardipine
Structure			The second secon
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.778	0.802	0.820
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 5. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 7. Unknown ECFP_2 feature: -1956535100: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 8. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 11. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 12. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 13. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure		Carcinogen in training set	

ECFP_6	-1087070950		0.724	10 out of 14
ECFP_6	738938915	CI CI NH NH O CI CI C	0.617	2 out of 2
ECFP_6	-177077903	C' C	0.279	4 out of 9
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	2013347047	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.805	0 out of 4
ECFP_6	129482634	CI C	-0.657	0 out of 3

ECFP_6	912478223	N	-0.638	1 out of 9
		[*]S[*]		

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205

Enrichment: 0.639

Bayesian Score: -6.25

Mahalanobis Distance: 14.3

Mahalanobis Distance p-value: 5.32e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

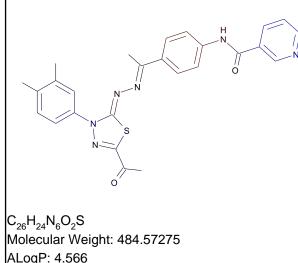
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Doxazosin	Bacampicillin	Nimodipine
Structure	N N H ₂ N H ₂ N N N N N N N N N N N N N N N N N N N	$H_{N}^{n} = 0$	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.737	0.782	0.794
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 5. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: -179073144: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]
- 8. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 9. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 10. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 11. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 12. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 13. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure		Carcinogen in training set	

ECFP_6	-1087070950		0.724	10 out of 14
		[*]N=[*]		
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	2013347047	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.805	0 out of 4
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]	-0.805	0 out of 4

ECFP_6	129482634	- ° _N ô	-0.657	0 out of 3
		ϕ		
		[*]C(=[*])C(=O)C		

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205

Enrichment: 0.641

Bayesian Score: -5.58

Mahalanobis Distance: 14.1

Mahalanobis Distance p-value: 1.02e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

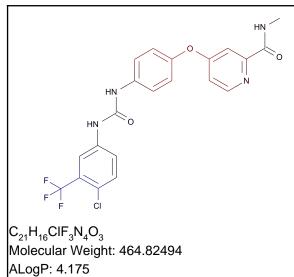
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluticasone	Moricizine	Doxazosin
Structure	$HO _{\mathbf{r}} _{\mathbf$		N N H ₂ N ^N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.663	0.686	0.713
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 3. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 4. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 5. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
	·	·	•	•	

ECFP_6	-1087070950		0.724	10 out of 14
ECFP_6	738938915	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2
ECFP_6	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.279	4 out of 9
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-175021654	[*]N([*])[c](:[cH]:[*]):[cH]:[*]	-0.805	0 out of 4
ECFP_6	2013347047	[*][c]1:[r]:n:[cH]:[c H]:[cH]:1	-0.805	0 out of 4

ECFP_6	129482634		-0.657	0 out of 3
		S Z Z S		
		∘ [*]C(=[*])C(=O)C		

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.257

Enrichment: 0.801

Bayesian Score: -0.321

Mahalanobis Distance: 14.9

Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

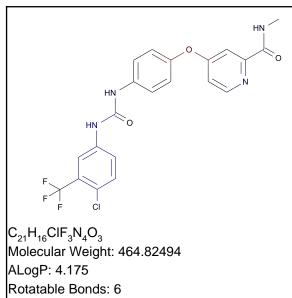
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glimepride	Glyburide	Fluvastatin
Structure	The second secon	HIN CO	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.605	0.615	0.625
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	738938915	FF CI [*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2	

ECFP_6	1338334141	$F_{F C [}^{N} C = [*])NC$	0.442	2 out of 3
ECFP_6	1305253718	N P F F [*]:[c](:[*])O[c](:[*]):[*]	0.424	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.669	3 out of 22
ECFP_6	1336678434	^N ^N ^H ₀ ^F ^F ^F ^C [*][c](:[t [*]]):[c](:[cH]:[t [*]])C([t [*]])[t [*]]	-0.657	0 out of 3
ECFP_6	-1952889961	[*]:[c](:[*])C(F)(F)F	-0.657	0 out of 3

Sorafenib

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.283

Enrichment: 0.691

Bayesian Score: -3.89

Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Female_FDA_Single_vs_Multiple

Structural Similar Compounds

Name	Glimepride	Labetalol	Lansoprazole
	Gimepride		
Structure	NH	HN HNH 2	
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.599	0.808	0.820
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1336678434: [*][c](:[*]):[c](C([*])([*])[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1952889961: [*]:[c](:[*])C(F)(F)F

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	-834094296	[¹]:[dH]?[c](O[c](:[c H]:[⁴]):[cH]:[⁴]):[c H]:[⁴]	0.351	1 out of 1

ECFP_4	1407472008	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.351	1 out of 1
ECFP_4	143734695	[*][0]14*]:[cH]:[cH] :[c](0[c](:[*]):[*]) :[cH]:1	0.351	1 out of 1
		tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.8	0 out of 3
ECFP_4	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.8	0 out of 3
ECFP_4	1338334141	$F_{F \in Cl}$	-0.597	0 out of 2

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.229

Enrichment: 0.779

Bayesian Score: -3.3

Mahalanobis Distance: 18.4

Mahalanobis Distance p-value: 5.07e-015

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluticasone	Moricizine	Doxazosin
Structure	$HO_{t} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F}$		N N H ₂ N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.645	0.661	0.680
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC16 out of range. Value: -3.3134. Training min, max, SD, explained variance: -3.1219, 5.3717, 1.291, 0.0175.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7

FCFP_6	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.46	1 out of 1
FCFP_6	1294255210	[*]C(=[*])N[c](:[*]): [*]	0.441	12 out of 28
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-2095752315	[*][c]1:[cH]:[cH]:[cH]:[cH]:[c]:1Cl	-1.13	0 out of 8
FCFP_6	1153798395	[*]C(=[*])[c]1:[cH]:[*]:[cH]:n:[cH]:1	-0.582	0 out of 3
FCFP_6	-1549192822	["]N=C(/C)(c](:["])	-0.489	3 out of 21

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.281

Enrichment: 0.956

Bayesian Score: -0.944

Mahalanobis Distance: 18.1

Mahalanobis Distance p-value: 1.78e-014

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluticasone	Moricizine	Doxazosin	
Structure	$HO _{\mathbf{r}} _{\mathbf$			
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.644	0.670	0.688	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
CFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7

FCFP_6	-319371573	Cl N, N, N, C, N,	0.46	1 out of 1
FCFP_6	675799546	$\begin{bmatrix} c_{1} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	0.46	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1153798395	CI NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	-0.582	0 out of 3
FCFP_6	-1549192822	$["]^{(l)} \\ ([]^{(l)} \\ ([]^$	-0.489	3 out of 21
FCFP_6	551850122	[*][c]1:[*]:[cH]:[c]:1Cl	-0.433	8 out of 49

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.285

Enrichment: 0.968

Bayesian Score: -0.796

Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 8.37e-020

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

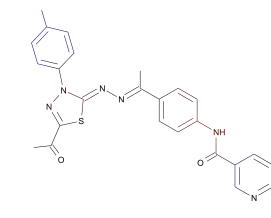
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Fluticasone	Doxazosin
Structure			H ₂ N ^M
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.642	0.654	0.664
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7	

FCFP_6	-319371573	[*]=C1[*][*]=NN1[c]2: [cH]:[cH]:[*]:[cH]:[cH]:2	0.46	1 out of 1
FCFP_6	-198775421	[*][c]1:[cH]:[cH]:[cH]]:[c](:[cH]:1)N2N=[*][*]C2=[*]	0.46	1 out of 1
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1773728142	[*][c]1:[*]:[cH]:[cH] :[c](C):[cH]:1	-1.29	0 out of 10
FCFP_6	1153798395	[*]C(=[*])[c]1:[cH]:[*]:[cH]:n:[cH]:1	-0.582	0 out of 3
FCFP_6	-1549192822	[']/N=C(/C)/[c](:[']) :[']	-0.489	3 out of 21

C₂₅H₂₂N₆O₂S Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.264

Enrichment: 0.896

Bayesian Score: -1.68

Mahalanobis Distance: 18.7

Mahalanobis Distance p-value: 7.74e-016

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

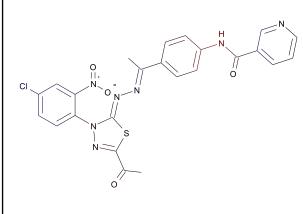
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	Moricizine	Fluticasone	Doxazosin	
Structure		HO to the product of	H ₂ N ^M N H ₂ N ^M N N N N N N N N N N N N N	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.646	0.653	0.667	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7
	·	·		

FCFP_6	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.46	1 out of 1
FCFP_6	-319371573	[*]=C1[*][*]=NN1[c]2: [cH]:[cH]:[] cH]:2	0.46	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1773728142	[*][c]1:[*]:[cH]:[cH]:1	-1.29	0 out of 10
FCFP_6	2109043264	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-0.947	0 out of 6
FCFP_6	1153798395	[*]C(=[*])[c]1:[cH]:[*]:[cH]:n:[cH]:1	-0.582	0 out of 3

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.282

Enrichment: 0.958

Bayesian Score: -0.917

Mahalanobis Distance: 18.5

Mahalanobis Distance p-value: 2.22e-015

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

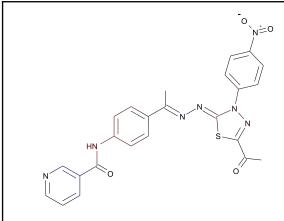
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Doxazosin	Reserpine	Nicardipine	
Structure			N C C C C C C C C C C C C C C C C C C C	
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.772	0.795	0.807	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Feature Co	ntribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
		I.	_Į	l.	

FCFP_6	-1838187238		0.565	4 out of 7
FCFP_6	675799546	$[cH]:[^{*}]:[cH]:[cH]:1$	0.46	1 out of 1
FCFP_6	1294255210	[*]):[*]	0.441	12 out of 28
	Top Fea	tures for negative (contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1153798395	[*]C(=[*])[c]1:[cH]:[*]:[cH]:n[cH]:1	-0.582	0 out of 3
FCFP_6	-1549192822		-0.489	3 out of 21

FCFP_6	551850122		8 out of 49
		0	
		[*][c]1:[*]:[cH]:[cH]	
		:[cH]:[c]:1Cl	

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.336

Enrichment: 1.14

Bayesian Score: 1.04

Mahalanobis Distance: 18

Mahalanobis Distance p-value: 2.98e-014

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

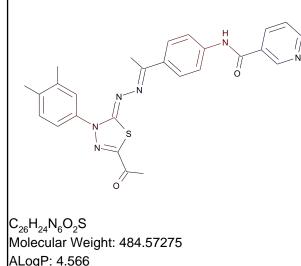
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Doxazosin	Bacampicillin	Nimodipine	
Structure	N N H ₂ N H ₂ N O	$H_{N}^{n} = 0$		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.727	0.771	0.774	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

	Top fe	atures for positive o	ontribution	
ingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set

FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	675799546	[*]=C1[*][*]=NN1[c](: [*]):[*]	0.46	1 out of 1
FCFP_6	-319371573	["]=C1["]["]=NN1[c]2: [cH]:[cH]:["]:[cH]:[cH]:2	0.46	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1153798395	[*]C(=[*])[c]1:[cH]:1	-0.582	0 out of 3
FCFP_6	-1549192822	[']N=C(/C)\[c](:[']) :[']	-0.489	3 out of 21

FCFP_6	1888947587		-0.423	0 out of 2
		(*][c]1:[cH]:[cH]		
]:n:[cH]:1		

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.35

Enrichment: 1.19

Bayesian Score: 1.5

Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.69e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

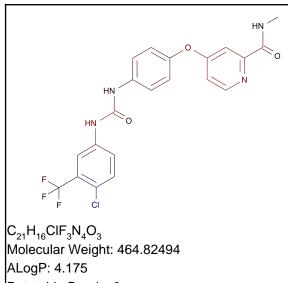
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluticasone	Moricizine	Doxazosin	
Structure			N N H ₂ N ^M H ₂ N ^M	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.650	0.677	0.705	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7		

FCFP_6	-319371573	[*]=C1[*][*]=NN1[c]2: [cH]:[cH]:[*]:[cH]:[cH]:2	0.46	1 out of 1
FCFP_6	1075826633	[*][c]1:[*]:[cH]:[c](C):[c](C):[cH]:1	0.46	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1153798395	[*]C(=[*])[c]1:[cH]:[*]:[cH]:n:[cH]:1	-0.582	0 out of 3
FCFP_6	-1549192822	["]IN=C(/C)/[c](:["]) :["]	-0.489	3 out of 21
FCFP_6	1888947587	[*][c]1:[cH]:[cH]:1	-0.423	0 out of 2

Sorafenib

Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.444

Enrichment: 1.51

Bayesian Score: 4.21

Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds					
Name	Glyburide	Glimepride	Fluvastatin		
Structure					
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.594	0.599	0.603		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	71953198	$ \begin{array}{c} $	0.612	12 out of 23	
		[*]C([*])([*])F			

FCFP_6	-1838187238	PF CI [*]C(=[*])N[c]1:[cH]: [cH]:[']:[cH]:[cH]:1	0.565	4 out of 7
FCFP_6	-1270820019	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	0.46	1 out of 1
		tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	2104062943	[*]Ct[*])[c]1:[c H]:[*]:[cH]:[c] :1Cl	-1.01	1 out of 17
FCFP_6	551850122	[*][c]1:[*]:[cH]:[cH] :[cH]:[c]:1CI	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])Cl	-0.406	10 out of 59

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.142

Enrichment: 0.471

Bayesian Score: -14.4

Mahalanobis Distance: 16.5

Mahalanobis Distance p-value: 1.72e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Bicalutamide	Simvastatin	Lovastatin
Structure	HO HO HN RANGE F	CH CH	o
Actual Endpoint	Single-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Single-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Distance	0.833	0.843	0.847
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC2 out of range. Value: 4.2927. Training min, max, SD, explained variance: -5.2888, 4.2744, 2.566, 0.1229.
- 2. OPS PC5 out of range. Value: 3.9023. Training min, max, SD, explained variance: -3.5268, 3.8048, 1.733, 0.0560.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.4	1 out of 1	

FCFP_12	565998553	$\begin{bmatrix} C_{1} & & \\ & $	0.194	6 out of 14
FCFP_12	567484887	[*]N([*])[c]1:[cH]:[c H]:[c](CI):[cH]:[cH] :1	0.174	1 out of 2
		tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	$\begin{bmatrix} C_{i} \\ V_{i} \\ V_$	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	730557100	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.859	0 out of 4

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617

ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8

Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.15

Enrichment: 0.498

Bayesian Score: -11.5

Mahalanobis Distance: 17.9

Mahalanobis Distance p-value: 1.42e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

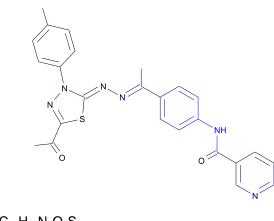
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Simvastatin	Lovastatin	Bicalutamide
Structure		CH CH	F C C C C C C C C C C C C C C C C C C C
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Distance	0.832	0.833	0.838
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 2.6425. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

Fingerprint Bit/Smiles Feature Structure Score Multiple-					
Ingerprint	BlySinnes		Score	Carcinogen in training set	
FCFP_12	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.4	1 out of 1	

FCFP_12	565998553	[']C(=['])C1=N['][']S 1	0.194	6 out of 14
FCFP_12	-1549103449	[*]NC(=0)[c]:[*]):[*	0.168	3 out of 7
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4

C₂₅H₂₂N₆O₂S Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.147

Enrichment: 0.49

Bayesian Score: -10.8

Mahalanobis Distance: 18.6

Mahalanobis Distance p-value: 4.71e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Simvastatin	Lovastatin	Bicalutamide	
Structure		OH	F C C C C C C C C C C C C C C C C C C C	
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen	
Predicted Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Single-Carcinogen	
Distance	0.833	0.833	0.838	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 2.3406. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

ingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in
CFP_12	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.4	training set

FCFP_12	565998553	["]C(=["))C1=N["]["]S 1	0.194	6 out of 14
FCFP_12	-1549103449	[*]NC(=O)[c](:[*]):[*	0.168	3 out of 7
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.149

Enrichment: 0.494

Bayesian Score: -13.6

Mahalanobis Distance: 17.9

Mahalanobis Distance p-value: 1.53e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

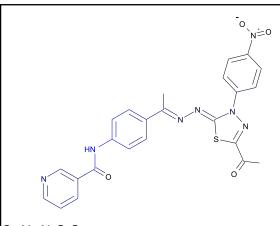
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Reserpine	Sulfasalazine	Bicalutamide
Structure	-O ⁴⁴ -O		F C C C C C C C C C C C C C C C C C C C
Actual Endpoint	Multiple-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.814	0.966	1.038
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC2 out of range. Value: 4.412. Training min, max, SD, explained variance: -5.2888, 4.2744, 2.566, 0.1229.
- 2. OPS PC5 out of range. Value: 3.8935. Training min, max, SD, explained variance: -3.5268, 3.8048, 1.733, 0.0560.
- 3. Unknown FCFP_2 feature: 5: [*][O-]
- 4. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 5. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 7. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
			•	

FCFP_12	547884906	CI C	0.4	1 out of 1
FCFP_12	565998553		0.194	6 out of 14
FCFP_12	567484887	[*]N([*])[c]1:[cH]:[c H]:[c](CI):[cH]:[cH] :1	0.174	1 out of 2
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877		-0.998	1 out of 13

FCFP_12	730557100	- N	-0.859	0 out of 4
		ر		
		[*][c]1:[*]:n:[cH]:[c H]:[cH]:1		

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.151

Enrichment: 0.501

Bayesian Score: -11.7

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 2.38e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

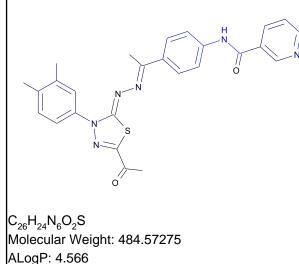
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Reserpine	Sulfasalazine	Dihydroxymethylfuratrizin e	
Structure			-O-NO -O	
Actual Endpoint	Multiple-Carcinogen	Single-Carcinogen	Multiple-Carcinogen	
Predicted Endpoint	Multiple-Carcinogen	Single-Carcinogen	Multiple-Carcinogen	
Distance	0.872	0.932	1.010	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set

FCFP_12	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.4	1 out of 1
FCFP_12	565998553	⁰ ⁴⁰ ¹ ¹ ¹ ¹	0.194	6 out of 14
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.168	3 out of 7
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877		-0.998	1 out of 13

FCFP_12	730557100	- - -	-0.859	0 out of 4
		[*][c]1:[*]:n:[cH]:[c H]:[cH]:1		

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.148

Enrichment: 0.491

Bayesian Score: -10.9

Mahalanobis Distance: 18.7

Mahalanobis Distance p-value: 3.9e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

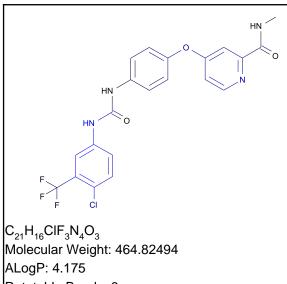
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Simvastatin	Lovastatin	Reserpine
Structure		CH CH	
Actual Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Multiple-Carcinogen	Multiple-Carcinogen	Multiple-Carcinogen
Distance	0.833	0.839	0.854
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 2.3509. Training min, max, SD, explained variance: -3.4599, 2.3291, 1.246, 0.0290.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.4	1 out of 1

FCFP_12	565998553	[']C(=[*])C1=N[*][*]S 1	0.194	6 out of 14
FCFP_12	565968762	[*]C(=[*])C(=O)C	0.168	3 out of 7
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.859	0 out of 4

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.139

Enrichment: 0.461

Bayesian Score: -14.7

Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 4.93e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

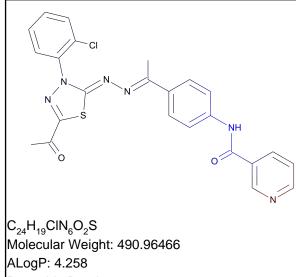
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Mouse_Male_FDA_Single_vs_Multiple

Structural Similar Compounds

Name	Glimepride	Bicalutamide	Lansoprazole	
Structure	NH	HN ANCOLANT		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen	
Distance	0.626	0.700	0.866	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure Score	Multiple- Carcinogen in training set		
FCFP_12	1499521844	0.39	5 out of 9		
	·				

FCFP_12	-904785030	[*]:[cH]:[c](:n:[*])C (=O)NC	0.174	1 out of 2
FCFP_12	-1549103449	["]NC(=O)[c](:[*]):[*]	0.168	3 out of 7
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	$[^{n}]_{C(=[^{*}])N[c](:[^{*}]):}^{N}$	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1462709112	N ^N ^N ^O F [→] _F Ci [*]C(=[*])[c]1:[cH]:[*]:[cH]:[cH]:n:1	-0.994	0 out of 5

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.629

Enrichment: 0.914

Bayesian Score: -4.62

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00185

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-	
Structure				
Actual Endpoint	Moderate_Severe	Mild	Mild	
Predicted Endpoint	Moderate_Severe	Mild	Mild	
Distance	0.763	0.804	0.853	
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4	

FCFP_10	-1695756380	[*]1:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11
FCFP_10	-124655670	[*][c](:[*]):[cH]:n:[*]	0.259	14 out of 16
	Top Feat	tures for negative of	contributior	ı
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1175232969	$["]:[c](NC(=O)]c \\](:"):["):[cH]:["] \\]$	-1.29	0 out of 4
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*	-1.29	0 out of 4
FCFP_10	-759256695	["] = C1["]["] = NN1[c]2:[cH]:[cH]:["]:[cH]:[c]:2Cl	-0.507	0 out of 1

 $C_{24}H_{19}CIN_6O_2S$

Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.722

Enrichment: 1.05

Bayesian Score: -3.11

Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00185

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

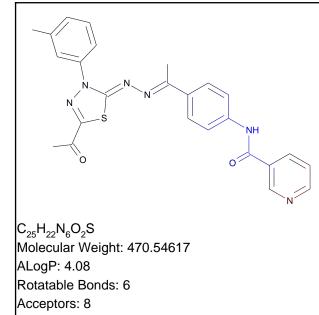
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-	
Structure				
Actual Endpoint	Moderate_Severe	Mild	Mild	
Predicted Endpoint	Moderate_Severe	Mild	Mild	
Distance	0.763	0.808	0.853	
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1508180856	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	0.329	16 out of 17	

FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4
FCFP_10	-745491832	CI[c]1:[cH]:[cH]:1*]:	0.304	29 out of 32
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1175232969	CI N/S ^N N/S	-1.29	0 out of 4
FCFP_10	-1925475824	Ci NNS O [*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*]	-1.29	0 out of 4
FCFP_10	-790336137	Cl N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,	-0.507	0 out of 1

Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.664

Enrichment: 0.963

Bayesian Score: -4.12

Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.015

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

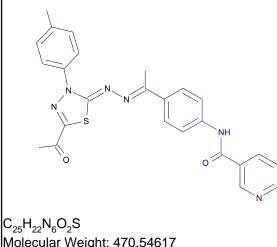
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds					
Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-		
Structure					
Actual Endpoint	Moderate_Severe	Mild	Mild		
Predicted Endpoint	Moderate_Severe	Mild	Mild		
Distance	0.726	0.801	0.828		
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4	

FCFP_10	-1695756380	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11
FCFP_10	-124655670	[*][c](:[*]):[cH]:n:[*]	0.259	14 out of 16
	Top Feat	tures for negative of	contribution	ı
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*]	-1.29	0 out of 4
FCFP_10	1175232969	$[^{1}:[cH]:[c](NC(=O)[c])[cH]:[^{1}]:[^{1}]:[cH]:[^{1}]}]$	-1.29	0 out of 4
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.717

Enrichment: 1.04

Bayesian Score: -3.2

Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 0.015

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

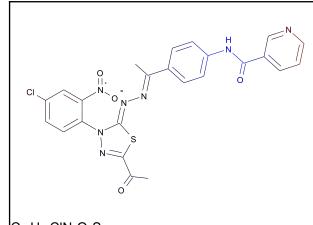
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Cimilar	Compounds
Siluciulai	Siiiiiai	Compounds

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDIN) L)PHENYL)-
Structure			
Actual Endpoint	Moderate_Severe	Mild	Mild
Predicted Endpoint	Moderate_Severe	Mild	Mild
Distance	0.729	0.804	0.827
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4	

FCFP_10	633795852	[*]N([*])[c]1:[cH]:[c H]:[c](C):[cH]:[cH]: 1	0.294	3 out of 3
FCFP_10	-1695756380	[*]1:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1175232969	[']:[cH]:[c](NC(=O)[c](:[']):[']):[cH]:[']	-1.29	0 out of 4
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*	-1.29	0 out of 4
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.709

Enrichment: 1.03

Bayesian Score: -3.36

Mahalanobis Distance: 12

Mahalanobis Distance p-value: 6.04e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	COLCHICINE	2;2'-Stilbenedisulfonic acid; 4;4'-dinitro-	2;7-Naphthalenedisulfonic acid;
Structure		OH OH	C C C C
Actual Endpoint	Moderate_Severe	Mild	Moderate_Severe
Predicted Endpoint	Moderate_Severe	Mild	Moderate_Severe
Distance	0.929	0.955	0.984
Reference	AJOPAA 31;837;48	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1062;86	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J ;1300;86

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
	•	•	•	•	

FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4
FCFP_10	-745491832	CI[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.304	29 out of 32
FCFP_10	-1695756380	CI CI NH S NG N NS (*)1:[CH]:[CH]:[CH]:n :[CH]:1	0.285	10 out of 11
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]:[*])C(=O)N[c](:[*]):[*]	-1.29	0 out of 4
FCFP_10	1175232969	CI C	-1.29	0 out of 4

FCFP_10	-790336137	- N	-0.507	0 out of 1
		Not Not Not		
		[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]:		
		1)C(=[*])[*]		

$C_{24}H_{19}N_7O_4S$

Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.67

Enrichment: 0.973

Bayesian Score: -4.02

Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.00137

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

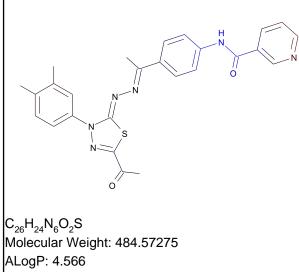
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds
------------	---------	-----------

Name	COLCHICINE	2;2'-Stilbenedisulfonic acid; 4;4'-dinitro-	2;7-Naphthalenedisulfonic acid;
Structure		OH OH OF OF	CITATION CITATION
Actual Endpoint	Moderate_Severe	Mild	Moderate_Severe
Predicted Endpoint	Moderate_Severe	Mild	Moderate_Severe
Distance	0.881	0.896	0.953
Reference	AJOPAA 31;837;48	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1062;86	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J ;1300;86

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set		
		·	•	•		

FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4
FCFP_10	-1695756380	[*]1:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11
FCFP_10	-124655670	[*][c](:[*]):[cH]:n:[*]	0.259	14 out of 16
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1175232969	[']:[cH]:[c](NC(=0)[c]((')):[cH]:[']	-1.29	0 out of 4
FCFP_10	-1925475824	[*]:[c](:[c]):[*])C(=O)N[c](:[*]):[*	-1.29	0 out of 4

FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]:	-0.507	0 out of 1
		[cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]		

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Mild

Probability: 0.716

Enrichment: 1.04

Bayesian Score: -3.23

Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 0.00942

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

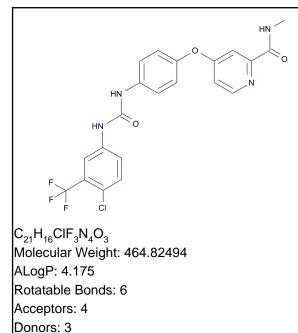
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Com

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-
Structure			
Actual Endpoint	Moderate_Severe	Mild	Mild
Predicted Endpoint	Moderate_Severe	Mild	Mild
Distance	0.772	0.793	0.843
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	547884906	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	0.317	4 out of 4	

FCFP_10	-1695756380	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11
FCFP_10	-124655670	[*][c](:[*]):[cH]:n:[*]	0.259	14 out of 16
	Top Feat	tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1925475824	[*]:[cH]:[c](:[cH]):[*])C(=O)N[c](:[*]):[*	-1.29	0 out of 4
FCFP_10	1175232969	[']:[cH]:[c](NC(=0)[c)(:['):['):[cH]:[']	-1.29	0 out of 4
FCFP_10	-790336137	[*]C(=[*])N[c]1:[cH]: [cH]:[c](:[cH]:[cH]: 1)C(=[*])[*]	-0.507	0 out of 1

Sorafenib

Model Prediction

Prediction: Mild

Probability: 0.776

Enrichment: 1.13

Bayesian Score: -1.8

Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

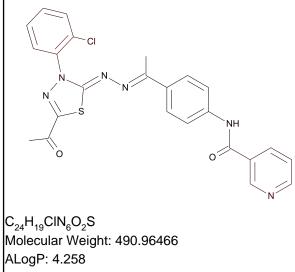
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

Structural Similar Compounds Name 4;4'-DIAMINO-1;1' 5-NORBORNEN

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	METHANE;TRIS(4- AMINOPHENYL)-
Structure	NH 2 HN rts HN rts HN rts O HN RTS O H	OHCI CI OHCI CI OHCI CI OHCI CI CI CI	H ₂ N NH ₂
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe
Distance	0.799	0.816	0.827
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1695756380	[*]1:[cH]:[cH]:n :[cH]:1	0.285	10 out of 11	

FCFP_10	-124655670	N ^H O FFF Cl [*][c](:[*]):[cH]:n:[*]	0.259	14 out of 16
FCFP_10	-885550502	[*]C(=[*])NC	0.239	54 out of 64
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	2104062943	[*]C [*] ([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	-0.745	7 out of 24
FCFP_10	-174293376	[']N[6]f:[cH]:[c](CI):[c](:[cH]:1)C(['])([*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	$["]{}^{N}NC(=O)[c](:["]):["]{}^{N}$	-0.504	2 out of 6

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.96

Mahalanobis Distance: 8.11

Mahalanobis Distance p-value: 0.898

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

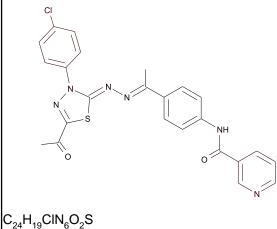
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-
Structure			
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.742	0.791	0.844
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	[*]:[cH]:n:[cH]:[*]	0.208	44 out of 44	
	•		•		

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-62776068	[*]N([*])[c]1:[cH]:[*]:[cH]:[cH]:[c]:1Cl	0.197	13 out of 13
		atures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	[']C(=['])C1=N['][']S 1	-0.0662	198 out of 262
FCFP_12	0	[*]C(=[*])[*]	0	1184 out of 1397
FCFP_12	1		0	872 out of 1051

Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 4.06

Mahalanobis Distance: 8.11

Mahalanobis Distance p-value: 0.898

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

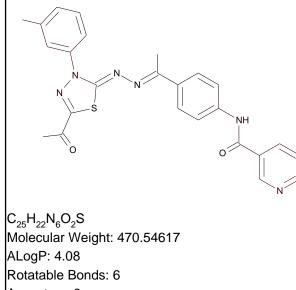
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-
Structure			
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.742	0.795	0.844
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	Ci Ci N N S Ci N N N N N N N N N N N N N	0.208	44 out of 44	

FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[c] (CI):[cH]:[cH]:1	0.2	17 out of 17
FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.2	16 out of 16
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	$(1) \qquad (1) $	-0.0662	198 out of 262
FCFP_12	-773983804	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0	102 out of 121
FCFP_12	1175232969	CI N, N, N, N, N, C, N, I'':[cH];[c](NC(=O)[c](:[']):[']):[cH];[']	0	4 out of 5

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.34

Mahalanobis Distance: 8.04

Mahalanobis Distance p-value: 0.916

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	COLCHICINE	COLCHICINE ANTHRAQUINONE; 1;1'- IMINODI-	
Structure			
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.708	0.786	0.820
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	[*]:[cH]:n:[cH]:[*]	0.208	44 out of 44	

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1695756380	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	0.194	11 out of 11
	Top Fea	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553		-0.0662	198 out of 262
FCFP_12	1		0	872 out of 1051
FCFP_12	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0	319 out of 382

Nolecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.45

Mahalanobis Distance: 8.04

Mahalanobis Distance p-value: 0.916

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

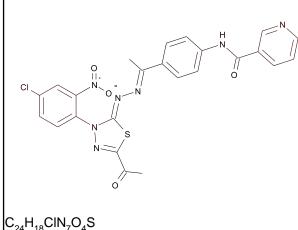
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	1;4-PENTADIENE-3- ONE;1;5-BIS(4-(2;3- DIDEHYDROTRIAZIRIDINY L)PHENYL)-
Structure			
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.711	0.790	0.820
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	28ZPAK-;123;72


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

FingerprintBit/SmilesFeature StructureScoreFCFP_121747237384\0.208	Irritant in training set
FCFP 12 1747237384 0.208	
	44 out of 44

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1695756380	[*]1:[cH]:[cH]:[cH]:1	0.194	11 out of 11
	Top Fea	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	('JC(=['])C1=N['][']S	-0.0662	198 out of 262
FCFP_12	1		0	872 out of 1051
FCFP_12	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0	319 out of 382

Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.67

Mahalanobis Distance: 8.87

Mahalanobis Distance p-value: 0.585

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

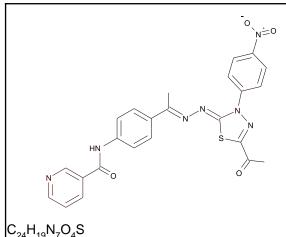
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds
------------	---------	-----------

Name	COLCHICINE	2;2'-Stilbenedisulfonic acid; 4;4'-dinitro-	2;7-Naphthalenedisulfonic acid;	
Structure		OH OH OF OF		
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.909	0.947	0.958	
Reference	AJOPAA 31;837;48	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1062;86	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J ;1300;86	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
		·	•		

FCFP_12	1747237384	CI CI NH S NH S NH S NH S NH S NH S NH S NH S	0.208	44 out of 44
FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1695756380	[*]1:[cH]:[cH]:1	0.194	11 out of 11
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553		-0.0662	198 out of 262
FCFP_12	8		-0.0561	3 out of 4

FCFP_12	203677720	0 #N	319 out of 382
		o [*]C(=[*])[c](:[cH]:[
]):[cH]:[]	

Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 2.8

Mahalanobis Distance: 8.74

Mahalanobis Distance p-value: 0.65

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

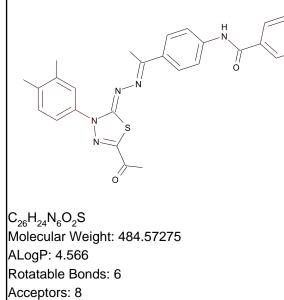
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structura	l Similar	Compounds
-----------	-----------	-----------

Name	COLCHICINE	2;2'-Stilbenedisulfonic acid; 4;4'-dinitro-	2H-Naphtho(1;2-d)triazole- 6;8-disulfonic acid;
Structure		OF THE OF	C C C C C C C C C C C C C C C C C C C
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Irritant
Distance	0.869	0.895	0.905
Reference	AJOPAA 31;837;48	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1062;86	Prehled Prumyslove Toxikologie; Organicke Latky; Marhold; J. pp 1065;86

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 3. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 4. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 5. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
		•	•	•	

FCFP_12	1747237384		0.208	44 out of 44
FCFP_12	-124655670	[*]:[cH]:n:[cH]:[*]	0.2	16 out of 16
FCFP_12	-1695756380	[*]1:[cH]:[cH]:n :[cH]:1	0.194	11 out of 11
	Top Fea	tures for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	[']C(=['])C1=N['][']S 1	-0.0662	198 out of 262
FCFP_12	8	[*][N+](=[*])[*]	-0.0561	3 out of 4

FCFP_12	1		0	872 out of 1051
		[*]=O		

Donors: 1

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.54

Mahalanobis Distance: 8.13

Mahalanobis Distance p-value: 0.895

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

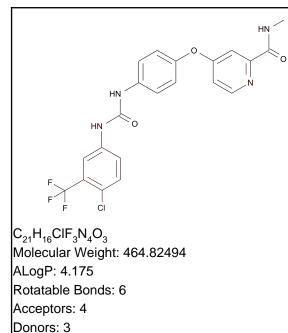
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	COLCHICINE	ANTHRAQUINONE; 1;1'- IMINODI-	Benzoic acid; p-(N-butyl- 2-(butylamino)acetamido) ; butyl ester;
Structure			
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Irritant	Non-Irritant
Distance	0.748	0.781	0.830
Reference	AJOPAA 31;837;48	28ZPAK-;125;72	Arzneimittel-Forschung 8;609;58

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	1747237384	[*]:[cH]:n:[cH]:[*]	0.208	44 out of 44		

FCFP_12	-124655670	[*][C](:[*]):[CH]:n:[*]	0.2	16 out of 16
FCFP_12	-1695756380	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	0.194	11 out of 11
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	565998553	["]C(=["])C1=N["]["]S	-0.0662	198 out of 262
FCFP_12	-1925475824	[*]:[cH]:[c](:[cH]):[*])C(=O)N[c](:[*]):[*	0	4 out of 5
FCFP_12	-1143715940	[*]C1=[*][*]C(=[*])S1	0	454 out of 590

Sorafenib

Model Prediction

Prediction: Irritant

Probability: 1

Enrichment: 1.18

Bayesian Score: 3.04

Mahalanobis Distance: 6.28

Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Ocular_Irritancy_None_vs_Irritant

Structural Similar Compounds					
Name	BENZANILIDE;2';2'''- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-		
Structure		HN rts of the second se			
Actual Endpoint	Non-Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Irritant	Irritant		
Distance	0.743	0.791	0.801		
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
FCFP_12	1747237384	F _F C _I [*]:[cH]:n:[cH]:[*]	0.208	44 out of 44	

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[0.2	16 out of 16
FCFP_12	-1539132615	[*]C(=[*])[C](:[CH]:[*]):n:[*]	0.197	13 out of 13
		ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-747629521	[*]N[6] £![cH]:[cH]:[c](O[c]:([*]):[*]):[c H]:[cH]:1	-0.268	1 out of 2
FCFP_12	702861189	[*]Net]ccH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]((*)):[cH]:2):[cH]:[cH]:1	-0.268	1 out of 2
FCFP_12	-215363676	[*][[±1:[cH]:[cH] :[c](O[c]2:[cH]:[cH] :[*]:[cH]:[cH]:2):[c H]:1	0	4 out of 5

 $C_{24}H_{19}CIN_6O_2S$

Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.255

Enrichment: 0.792

Bayesian Score: -2.44

Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 0.00042

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin	
Structure				
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.666	0.698	0.713	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
			-	•		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	1641317964	[*][c]1:[*]:[cH]:[c]:1Cl	-0.929	1 out of 13

ECFP_12	99947387		-0.817	8 out of 62
		[*]:[c](:[*])Cl		

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.241

Enrichment: 0.749

Bayesian Score: -3.4

Mahalanobis Distance: 13.5

Mahalanobis Distance p-value: 2.05e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin
Structure			H ₂ N ^M 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.668	0.708	0.715
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
	ł		·		
	Bit/Smiles	Bit/Smiles Feature Structure	Bit/Smiles Feature Structure Score		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	$\begin{bmatrix} c_{i}\\ c_{i}$	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[cH]:1	0.454	5 out of 9
		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	99947387	$\begin{bmatrix} c \\ c $	-0.817	8 out of 62
ECFP_12	1854732111	[*][c]1:[*]:[cH]:[c](CI):[cH]:[cH]:1	-0.816	4 out of 33

ECFP_12	129482634		-0.811	0 out of 4
		لا _م ا [*]C(=[*])C(=O)C[

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.354

Enrichment: 1.1

Bayesian Score: 2.44

Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 3.69e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Nisoldipine		
Structure					
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.666	0.683	0.691		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
	·				
	Bit/Smiles	Bit/Smiles Feature Structure	Bit/Smiles Feature Structure Score		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Fea	tures for negative	contribution	l l
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	129482634		-0.811	0 out of 4
ECFP_12	2007300961	[*]C(=[*])C(=O)C	-0.426	7 out of 36

ECFP_12	912478223		-0.318	2 out of 10
		[*]S[*]		

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.263

Enrichment: 0.818

Bayesian Score: -1.93

Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 8.3e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

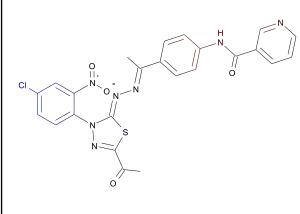
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Nisoldipine
Structure	WHICH IN CONTRACT OF THE CONTRACT.		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.668	0.686	0.691
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
			-1		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[*]] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	-533780882	C[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	-1.06	0 out of 6
ECFP_12	-1926229349	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-1.06	0 out of 6

ECFP_12	129482634		-0.811	0 out of 4
		[*]C(=[*])C(=O)C		

 $C_{24}H_{18}CIN_7O_4S$ Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.233

Enrichment: 0.725

Bayesian Score: -3.98

Mahalanobis Distance: 14.1

Mahalanobis Distance p-value: 1.16e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Nicardipine	Carbenicillin	Doxazosin
Structure	H H H H H H H H H H H H H H H H H H H		N N H ₂ N ^N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.784	0.793	0.794
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 5. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 6. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 7. Unknown ECFP_2 feature: -1956535100: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 8. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 10. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 11. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 12. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 13. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[cH]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Fea	tures for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	99947387		-0.817	8 out of 62
ECFP_12	1854732111	CI CI CI):[CH]:[CH]:1	-0.816	4 out of 33

ECFP_12	129482634		0 out of 4
		N=r_	
		-	
		[*]C(=[*])C(=O)C	

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.292

Enrichment: 0.906

Bayesian Score: -0.345

Mahalanobis Distance: 13.6

Mahalanobis Distance p-value: 1.21e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structura	Structural Similar Compounds				
Name	Doxazosin	Nimodipine	Nicardipine		
Structure	C + + 0	H N	0		

	H 2 NV		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.751	0.762	0.784
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 5. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: -179073144: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]
- 8. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 9. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 10. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 11. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 12. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 13. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure		Carcinogen in training set	

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Feat	tures for negative of	contribution	I
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	129482634	[*]C(=[*])C(=O)C	-0.811	0 out of 4
ECFP_12	-2137232509	[*]N(T))[c]1:[cH]:[*]:[c]([*]):[cH]:[cH]]:[c]([*]):[cH]:[cH]	-0.485	0 out of 2

ECFP_12	912478223		-0.318	2 out of 10
		[*]S[*]		

 $C_{26}H_{24}N_6O_2S$ Molecular Weight: 484.57275 ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8

Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.325

Enrichment: 1.01

Bayesian Score: 1.23

Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 3.8e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

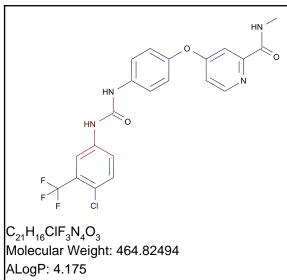
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Nicardipine
Structure			N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Carcinogen
Distance	0.682	0.714	0.728
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 3. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 4. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 5. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
			1		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[r]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	129482634	[*]C(=[*])C(=O)C	-0.811	0 out of 4
ECFP_12	-2137232509	[*]N([*])[c]1:[cH]:[*]:[c]([*]):[cH]:[cH] :1	-0.485	0 out of 2

ECFP_12	912478223	S-NH C	-0.318	2 out of 10
		°-		
		[*]S[*]		

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236

Enrichment: 0.734

Bayesian Score: -3.76

Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glimepride	Glyburide	Fluvastatin
Structure	HH H H H H H H H H H H H H	HN CO	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.620	0.635	0.635
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	ntribution				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-970385855	[*]N[c]3:[cH]:[*]:[c] ([*])([cH]:1)C([*])([*])[*]	0.613	2 out of 2	

ECFP_12	-177077903	[*]N[C](:[CH]:[*]):[C H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	FFF CI [*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	PF CI [*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1413420509		-0.661	0 out of 3

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.537

Enrichment: 1.44

Bayesian Score: 1.89

Mahalanobis Distance: 17.3

Mahalanobis Distance p-value: 1.75e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

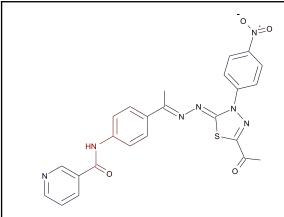
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Nicardipine	Moricizine	Diltiazem
Structure	H H H H H H H H H H H H H H H H H H H		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen
Distance	0.660	0.660	0.738
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 3.5752. Training min, max, SD, explained variance: -2.8991, 3.0113, 1.313, 0.0255.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
SCFP_4	1631845520	[*]C(=[*])N[c](:[*]):	0.601	6 out of 9	

SCFP_4	17		0.548	10 out of 17
SCFP_4	-1375926917	[*]N[c]1:[cH]:[cH]:[cH]:1	0.522	6 out of 10
		tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	1188429584	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	-0.666	0 out of 3
SCFP_4	-352263424	[*]N([*])[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	-0.489	0 out of 2
SCFP_4	-1212387212	[*][c]1:[*]:[cH]:[cH] :[c](C):[cH]:1	-0.489	0 out of 2

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.632

Enrichment: 1.69

Bayesian Score: 3.92

Mahalanobis Distance: 23.4

Mahalanobis Distance p-value: 5.51e-014

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

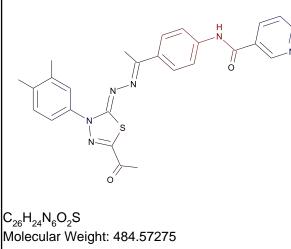
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

	Structural Similar	Compounds
--	--------------------	-----------

Name	Nicardipine	Deserpidine	Reserpine
Structure	H H H H H H H H H H H H H H H H H H H		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.746	0.837	0.839
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. Num_H_Acceptors out of range. Value: 10. Training min, max, mean, SD: 0, 9, 3.9512, 2.048.

Feature Co	ntribution			
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	1631845520	[*]C(=[*])N[c](:[*]): [*]	0.601	6 out of 9

SCFP_4	17		0.548	10 out of 17
SCFP_4	-1375926917	[*]N[c]1:[cH]:[cH]:1	0.522	6 out of 10
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	1188429584	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	-0.666	0 out of 3
SCFP_4	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.489	0 out of 2
SCFP_4	-1380909229	[*]N([*])[c]1:[cH]:[*]:[cH]:[cH]:[cH]:1	-0.413	3 out of 16

Molecular Weight: 484.57275 ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.565

Enrichment: 1.51

Bayesian Score: 2.47

Mahalanobis Distance: 17

Mahalanobis Distance p-value: 3.51e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Nicardipine	Moricizine	Deserpidine
Structure	H H H H H H H H H H H H H H H H H H H		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.669	0.693	0.719
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: 3.5196. Training min, max, SD, explained variance: -2.8991, 3.0113, 1.313, 0.0255.

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	1631845520	[*]C(=[*])N[c](:[*]): [*]	0.601	6 out of 9

SCFP_4	17		0.548	10 out of 17
SCFP_4	-1375926917	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.522	6 out of 10
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_4	1188429584	[*][c]1:[*]:[cH]:[cH] :n:[cH]:1	-0.666	0 out of 3
SCFP_4	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-0.489	0 out of 2
SCFP_4	-352263424	[*]N([*])[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	-0.489	0 out of 2

C H CIN O S

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.333

Enrichment: 0.996

Bayesian Score: -0.84

Mahalanobis Distance: 17.1

Mahalanobis Distance p-value: 1.78e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin	
Structure			H ₂ N ⁿ	
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.658	0.690	0.695	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC1 out of range. Value: -5.8913. Training min, max, SD, explained variance: -5.694, 8.348, 2.949, 0.0811.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

SCFP_6	-105808146	[*][c]1:[cH]:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	0.355	5 out of 10
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1557430596	[*]N([*])[c]1:[cH]:[*]:[cH]:[c]:1Cl	-0.825	0 out of 4
SCFP_6	1257084377	[*]NC(=0)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	-52074512	[*]:[c](:[*])Cl	-0.315	14 out of 61

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.322

Enrichment: 0.963

Bayesian Score: -1.25

Mahalanobis Distance: 16.5

Mahalanobis Distance p-value: 4.3e-010

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin	
Structure				
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen	
Distance	0.661	0.694	0.698	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC1 out of range. Value: -6.1431. Training min, max, SD, explained variance: -5.694, 8.348, 2.949, 0.0811.

	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[r]:[cH]:[cH]:1	0.615	5 out of 7		

SCFP_6	-105808146	[*][c]1:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	0.355	5 out of 10
		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	341480432	[*]N([*])[c]1:[cH]:[cH] H]:[c](CI):[cH]:[cH] :1	-0.674	0 out of 3
SCFP_6	1905487031	[*][c]1:[cH]:[cH]:[c] (Cl):[cH]:[cH]:1	-0.48	2 out of 12
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	-0.436	4 out of 21

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.423

Enrichment: 1.27

Bayesian Score: 2.15

Mahalanobis Distance: 17.3

Mahalanobis Distance p-value: 7.26e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin
Structure	WHICH IN CONTRACT OF INT		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.650	0.668	0.675
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: -4.4024. Training min, max, SD, explained variance: -3.9196, 6.4101, 1.581, 0.0233.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-352263424	[*]N([*])[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	0.712	3 out of 3	

SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[']:[cH]:[cH]:1	0.615	5 out of 7
SCFP_6	2052999617	[*][c]1:[cH]:[cH]:[cH]:1	0.415	1 out of 1
		tures for negative of		L .
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	124026986	[*]:[cH]:[c](:[cH]):[*])C(=O)N[c](:[*]):[*	-0.278	0 out of 1
SCFP_6	-537745313	[']N=C(/C)/[c]1:[cH] :[cH]:[']:[cH]:[cH]: 1	-0.278	0 out of 1

C₂₅H₂₂N₆O₂S Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.363

Enrichment: 1.09

Bayesian Score: 0.226

Mahalanobis Distance: 17.1

Mahalanobis Distance p-value: 1.71e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

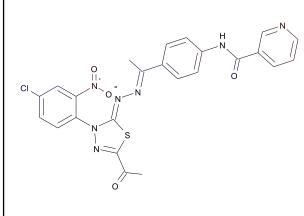
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin
Structure			N N H ₂ N ^M H ₂ N ^m N
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.653	0.671	0.678
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: -4.169. Training min, max, SD, explained variance: -3.9196, 6.4101, 1.581, 0.0233.

Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

SCFP_6	-105808146	[*][c]1:[cH]:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-758850909	(*][c]1:[*]:n:[cH]:[c H]:[cH]:1	0.355	5 out of 10
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1257084377	[*]NC(=0)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	795925860	[*][c]1:[cH]:[cH]:[c] (C):[cH]:[cH]:1	-0.38	1 out of 6
SCFP_6	-1325991669	[*]N1[*][*]C(=N1)[*]	-0.278	0 out of 1

 $C_{24}H_{18}CIN_7O_4S$ Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.319

Enrichment: 0.955

Bayesian Score: -1.36

Mahalanobis Distance: 19.8

Mahalanobis Distance p-value: 3e-018

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

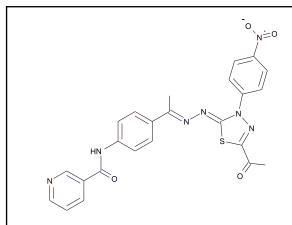
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Doxazosin	Carbenicillin	Deserpidine
Structure			Orthold And And And And And And And And And An
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.780	0.787	0.794
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC1 out of range. Value: -6.2502. Training min, max, SD, explained variance: -5.694, 8.348, 2.949, 0.0811.

Fingerprint Bit/Smiles Feature Structure Score	Carcinogen in training set
SCFP_6 -347048986 0.615	5 out of 7

SCFP_6	1907765814	[*][c]1:[cH]:[c] (CI):[cH]:[c]:1[N+](=[*])[*]	0.603	2 out of 2
SCFP_6	-105808146	[*][c]1:[cH]:[cH]:1	0.415	1 out of 1
	Top Fea	atures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	341480432	[*]N((*))[c]1:[cH]:[c H]:[c](Cl):[cH]:[cH] :1	-0.674	0 out of 3
SCFP_6	1257084377	CI C	-0.436	4 out of 21
SCFP_6	-52074512		-0.315	14 out of 61

 $C_{24}H_{19}N_7O_4S$ Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.345

Enrichment: 1.03

Bayesian Score: -0.393

Mahalanobis Distance: 20.1

Mahalanobis Distance p-value: 6.54e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

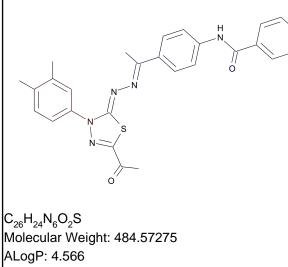
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Doxazosin	Carbenicillin	Nimodipine
Structure	H ₂ N ^N N N N N N N N N N N N N N		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.734	0.776	0.783
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: -4.384. Training min, max, SD, explained variance: -3.9196, 6.4101, 1.581, 0.0233.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7
		[cH]:[*]:[cH]:[cH]:1		

SCFP_6	-105808146	[*][c]1:[cH]:[cH]:[cH]	0.415	1 out of 1
SCFP_6	1311339974	[*][N+](=O)[*]	0.405	13 out of 26
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*]	-0.436	4 out of 21
SCFP_6	-331724199		-0.278	0 out of 1
SCFP_6	2096901122	⁻ , , , , , , , , , , , , , , , , , , ,	-0.278	0 out of 1

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Carcinogen

Probability: 0.409

Enrichment: 1.22

Bayesian Score: 1.72

Mahalanobis Distance: 17.1

Mahalanobis Distance p-value: 1.48e-011

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

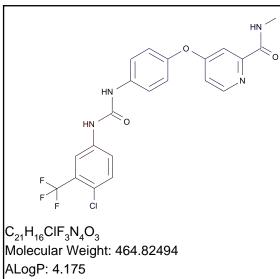
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Carbenicillin	Moricizine	Doxazosin
Structure			N N H ₂ N ^M N H ₂ N ^M N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.669	0.702	0.716
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC12 out of range. Value: -4.1817. Training min, max, SD, explained variance: -3.9196, 6.4101, 1.581, 0.0233.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-352263424	[*]N([*])[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	0.712	3 out of 3	
	•				

SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7
SCFP_6	-105808146	[*][c]1:[cH]:[cH]:1	0.415	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1257084377	[*]NC(=O)[c](:[*]):[*	-0.436	4 out of 21
SCFP_6	-537745313	[']W=C(/C)/[c]1:[cH] :[cH]:[']:[cH]:[cH]: 1	-0.278	0 out of 1
SCFP_6	2096901122	(''):[cH]:[c](NC(=O)[c](''):[cH]:[*]];[cH]:[*]]	-0.278	0 out of 1

Sorafenib

Rotatable Bonds: 6

Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.293

Enrichment: 0.878

Bayesian Score: -2.4

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Male_FDA_None_vs_Carcinogen

Structural Similar Compounds

Name	Glyburide	Glimepride	Fluvastatin
Structure	HILL CO	A Contraction of the second se	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.593	0.600	0.615
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co		aturas for positivo a	ontribution	
Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcing training				Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7
		l		

SCFP_6	-754059116	[*]O[c]1:[cH]:[*]:n:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-531283893	[*]O[c]f:[cH]:[cH]:[c](NC(=[*])[*]):[cH]: [cH]:1	0.273	2 out of 4
		tures for negative o		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-827073191	FFF CI [*]C(=[*])[c]1:[cH]:[*]:[cH]:n:1	-0.674	0 out of 3
SCFP_6	-975241316	[*][c]1.f[bH]:[cH]:[c] (O[c](:[cH]:[*]):[cH]]:[*]]:[cH]:[cH]:1	-0.496	0 out of 2
SCFP_6	-488587948	[*]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH	-0.496	0 out of 2

 $C_{25}H_{22}N_6O_2S$

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.569

Enrichment: 1.37

Bayesian Score: 1.5

Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 3.18e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

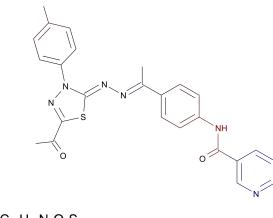
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Isradipine	Nimodipine
Structure			H H H C C C C C C C C C C C C C
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.692	0.745	0.783
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 3.6156. Training min, max, SD, explained variance: -3.4626, 3.2359, 1.286, 0.0225.

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.574	4 out of 5

SCFP_8	1631845520	[*]C(=[*])N[c](:[*]): [*]	0.495	6 out of 9
SCFP_8	1257084377	[*]NC(=O)[c](:[*]):[*	0.489	3 out of 4
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-1.04	0 out of 5
SCFP_8	-937094999	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	-0.463	1 out of 6
SCFP_8	136627117	[*]C(=[*])C	-0.41	4 out of 18

C₂₅H₂₂N₆O₂S Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.568

Enrichment: 1.37

Bayesian Score: 0.701

Mahalanobis Distance: 17.1

Mahalanobis Distance p-value: 1.28e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

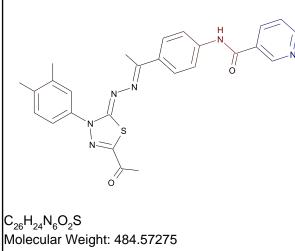
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Moricizine	Isradipine	Nimodipine
Structure			
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.694	0.749	0.790
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 3.4879. Training min, max, SD, explained variance: -3.4626, 3.2359, 1.286, 0.0225.

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.574	4 out of 5

SCFP_8	1631845520	[*]C(=[*])N[c](:[*]): [*]	0.495	6 out of 9
SCFP_8	1257084377	[*]NC(=O)[c](:[*]):[*	0.489	3 out of 4
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-1.04	0 out of 5
SCFP_8	-937094999	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	-0.463	1 out of 6
SCFP_8	136627117	[*]C(=[*])C	-0.41	4 out of 18

Molecular Weight: 484.57275 ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Multiple-Carcinogen

Probability: 0.568

Enrichment: 1.37

Bayesian Score: 0.803

Mahalanobis Distance: 17.2

Mahalanobis Distance p-value: 1.13e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

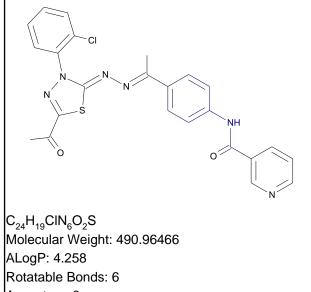
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structura	Similar	Compounds
-----------	---------	-----------

Name	Moricizine	Deserpidine	Isradipine
Structure			
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Multiple-Carcinogen	Single-Carcinogen
Distance	0.728	0.765	0.801
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC14 out of range. Value: 3.561. Training min, max, SD, explained variance: -3.4626, 3.2359, 1.286, 0.0225.

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in
SCFP_8	-347048986		0.574	training set
		[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1		4 out of 5

SCFP_8	1631845520	[*]C(=[*])N[c](:[*]): [*]	0.495	6 out of 9
SCFP_8	1257084377	[*]NC(=O)[c](:[*]):[*]	0.489	3 out of 4
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
SCFP_8	-758850909	[*][c]1:[*]:n:[cH]:[c H]:[cH]:1	-1.04	0 out of 5
SCFP_8	-937094999	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	-0.463	1 out of 6
SCFP_8	136627117		-0.41	4 out of 18

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.9

Enrichment: 0.978

Bayesian Score: -2.75

Mahalanobis Distance: 10.9

Mahalanobis Distance p-value: 0.0042

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

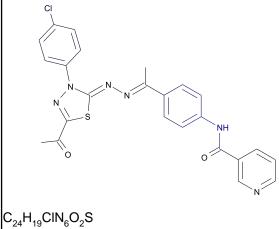
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simi	lar Compounds		
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt
Structure	of of whether whether of of of of of of of of of of of of of		H 2 Nra O U Hand C Han
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Irritant	Non-Irritant	Non-Irritant
Distance	0.757	0.802	0.834
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986

Model Applicability


Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

All properties and OPS components are within expected ranges. 1.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
		•	-		

FCFP_12	-62776068	[*]N([*])[c]1:[cH]:[*]:[cH]:[c]:1Cl	0.0821	13 out of 13
FCFP_12	-1986158408	$["]^{N} = C \setminus 1/S["] = ["]^{N} [$	0.0821	13 out of 13
FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[0.0821	13 out of 13
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804		-0.444	46 out of 79
		لمرباً [*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1		

Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.864

Enrichment: 0.938

Bayesian Score: -3.1

Mahalanobis Distance: 10.9

Mahalanobis Distance p-value: 0.0042

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

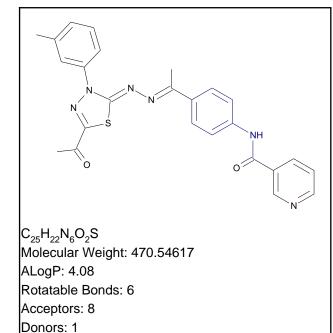
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt		
Structure	of of whether whether of of of of of of of of of of of of of		H 2 Nrac (NH) - O O O O O O O O O O O O O O O O O O O		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Non-Irritant		
Distance	0.758	0.806	0.837		
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
	•			·	

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1986158408	CI N N N N N N N N N N N N N N N N N N N	0.0821	13 out of 13
FCFP_12	-1695756380	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	0.0772	7 out of 7
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	CI NSS O [*]C(=[*])N[c]1:[cH]: [cH]:[r]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	$\begin{bmatrix} c_{i} \\ c_$	-0.486	12 out of 22

FCFP_12	-773983804	CI	-0.444	46 out of 79
		Q		
		→ ○ ○ *		
		[*]N[c]1:[cH]:[*]:[c] [™] ([*]):[cH]:[cH]:1		

Model Prediction

Prediction: Non-Irritant

Probability: 0.928

Enrichment: 1.01

Bayesian Score: -2.37

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.0209

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

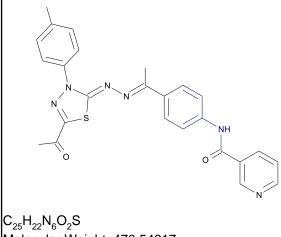
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt		
Structure	O = O = O = When the model to a set of the model the model of the model of	H 2 N 4 H			
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Non-Irritant		
Distance	0.729	0.807	0.819		
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
	ŀ				

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1986158408	$["]^{N} = C^{1/S}["]^{N}$	0.0821	13 out of 13
FCFP_12	-1695756380	[*]1:[cH]:[cH]:n :[cH]:1	0.0772	7 out of 7
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-0.486	12 out of 22

FCFP_12	-773983804		-0.444	46 out of 79
		لا _م ا [*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1		

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.932

Enrichment: 1.01

Bayesian Score: -2.29

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 0.0209

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

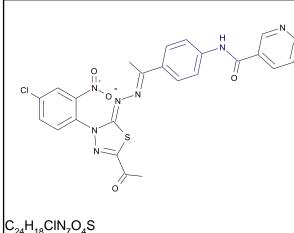
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds	
Oliuoluiui	Omman	Compounds	

Structural Similar Compounds					
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt		
Structure	of of the	H 2 Non- H 2 No			
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Non-Irritant		
Distance	0.729	0.811	0.823		
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
			•	·		

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1986158408	[']\N=C\1/S[']=[']N1[']	0.0821	13 out of 13
FCFP_12	633795852	[*]N([*])[c]1:[cH]:[c H]:[c](C):[cH]:[cH]: 1	0.0785	8 out of 8
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-0.486	12 out of 22

FCFP_12	-773983804	ι.	-0.444	46 out of 79
		Q		
		⁻ ⁰ ° *∖)		
		[*]N[c]1:[cH]:[*]:[c]		
		([*]):[cH]:[cH]:1		

 $C_{24}\Pi_{18}CIN_7O_4S$ Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.922

Enrichment: 1

Bayesian Score: -2.46

Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 5.59e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

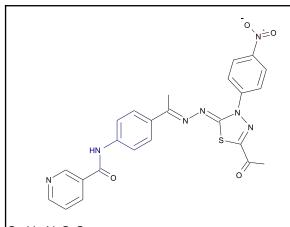
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds					
Name	Benzenesulfonic acid, 2,2'-(1,4- anthraquinonylenediimino)bis(5-meth yl-, disodium salt	2,2'-Stilbenedisulfonic acid, 4,4'-dinitro-	3-Picoline		
Structure	H H H H H H H H H H H H H H H H H H H	HO OH OF			
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Irritant	Irritant		
Distance	0.847	0.949	0.954		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1330,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1062,1986	NTIS** National Technical Information Service. (Springfield, VA 22161) Forme rly U.S. Clearinghouse for Scientific & Technical Information. Volume(issue)/pag e/year: OTS0534823		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Feature Contri	ibution			
		Top featur	es for positive co	ontribution	
	Fingerprint	Bit/Smiles	Feature Structure		Irritant in training set
		•	-	-	

5		0.0854	27 out of 27
	[*][O-]		
8		0.0843	20 out of 20
	[*][N+](=[*])[*]		
-1986158408		0.0821	13 out of 13
	[*]\N=C\1/S[*]=[*]N1[*]		
Top Fea	tures for negative (contribution	
Bit/Smiles	Feature Structure	Score	Irritant in training set
-1838187238	CI CI NH	-0.692	5 out of 12
1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22
	8 -1986158408 -1986158408 Top Fea Bit/Smiles -1838187238	$\frac{1}{1294255210}$	$\left \begin{array}{c} \left \left \left \left \left \left \left \left \left \right \\ \left $

FCFP_12	-773983804		46 out of 79
		NªL_	
		[*]N[c]1:[cH]:[*]:[c]	
		([*]):[cH]:[cH]:1	

 $C_{24}H_{19}N_7O_4S$ Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.954

Enrichment: 1.04

Bayesian Score: -1.76

Mahalanobis Distance: 11.4

Mahalanobis Distance p-value: 0.000572

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

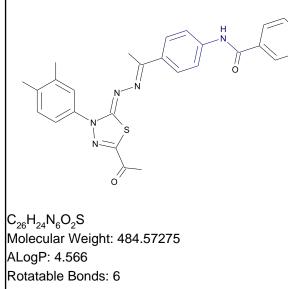
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Benzenesulfonic acid, 2,2'-(1,4- anthraquinonylenediimino)bis(5-meth yl-, disodium salt	2,2'-Stilbenedisulfonic acid, 4,4'-dinitro-	3-Picoline
Structure		HO HO STO	
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Non-Irritant	Irritant	Irritant
Distance	0.825	0.886	0.903
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1330,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1062,1986	NTIS** National Technical Information Service. (Springfield, VA 22161) Forme rly U.S. Clearinghouse for Scientific & Technical Information. Volume(issue)/pag e/year: OTS0534823

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

- -	Feature Contribution								
	Top features for positive contribution								
	Fingerprint	Bit/Smiles	Feature Structure		Irritant in training set				

FCFP_12	5		0.0854	27 out of 27
FCFP_12	8	[*][O-]	0.0843	20 out of 20
FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]N1[]	0.0821	13 out of 13
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804	- • •	-0.444	46 out of 79
		(*)N[c]1:[cH]:[*]:[c]		
		([*]):[cH]:[cH]:1		

Acceptors: 8

Donors: 1

Model Prediction

Prediction: Non-Irritant

Probability: 0.917

Enrichment: 0.996

Bayesian Score: -2.54

Mahalanobis Distance: 10.5

Mahalanobis Distance p-value: 0.015

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

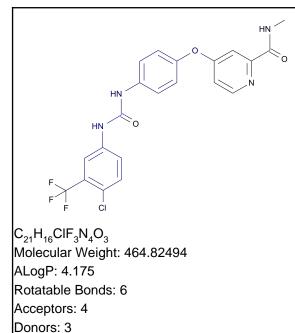
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt		
Structure	Of O the		H 2 Nrac (NH) - O O O O O O O O O O O O O O O O O O O		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Non-Irritant		
Distance	0.774	0.796	0.850		
Reference	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2- 5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1- 1972- Volume(issue) /page/year: 19,3103,1991	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986		

Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

All properties and OPS components are within expected ranges. 1.


Top features for positive contribution							
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set			

FCFP_12	-1986158408	[*]\N=C\1/S[*]=[*]N1[]	0.0821	13 out of 13
FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1695756380	[*]1:[cH]:[cH]:[cH]:n :[cH]:1	0.0772	7 out of 7
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	-0.692	5 out of 12
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-0.486	12 out of 22

FCFP_12	-773983804		-0.444	46 out of 79
		<u>`</u>		
		[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1		

Sorafenib

TOPKAT_Skin_Irritancy_None_vs_Irritant

Model Prediction

Prediction: Non-Irritant

Probability: 0.264

Enrichment: 0.287

Bayesian Score: -5.23

Mahalanobis Distance: 8.27

Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

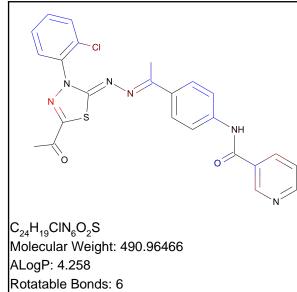
Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds					
Name			Sulfide, bis(4-t-butyl-m- cresyl)-		
Structure	O HCI CI O HCI CI O HCI CI O HCI CI		HANN OF HANN OF		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Non-Irritant	Irritant		
Distance	0.844	0.871	0.884		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges. 1.

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
		•	•	L.		

FCFP_12	-124655670	[*][c](:[*]):[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1539132615	[*]C(=[*])[c](:[cH]):[*]	0.0795	9 out of 9
FCFP_12	-1695756380	FF CI [*]1:[cH]:[cH]:1 :[cH]:1	0.0772	7 out of 7
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-789307649	[*)O[c]f:[cH]:[cH]:[c]](NC(=[*])(*)):[cH]: [cH]:1	-1.54	0 out of 4
FCFP_12	-1838187238	P _F CI [*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	1294255210	Ņ	-0.486	12 out of 22
		N ⁱⁿ o		
		5- Q		
		F [*] _F ^C l [*]C(=[*])N[c](:[*]):		
		[*]		

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 11

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13.9

Mahalanobis Distance p-value: 5.16e-010

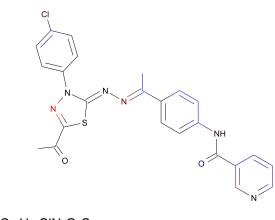
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Similar Compounds					
Name	470	Ochratoxin A	542		
Structure			AND Enantioner		
Actual Endpoint (-log C)	4.62839	4.79932	4.79932		
Predicted Endpoint (-log C)	3.93264	3.6353	3.6353		
Distance	0.805	0.825	0.825		
Reference	CPDB	CPDB	CPDB		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 8. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]

Top features for positive contribution						
Fingerprint	ingerprint Bit/Smiles Feature Structure					
		•				

ECFP_6	655739385		0.229
ECFP_6	-817402818		0.129
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091		-0.247

ECFP_6	-182236392		-0.232
		™ [*]:[cH]:[*]	

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 8.97

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 14

Mahalanobis Distance p-value: 3.32e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	470	223	Ochratoxin A
Structure		Ald Elawithme	
Actual Endpoint (-log C)	4.62839	5.08368	4.79932
Predicted Endpoint (-log C)	3.93264	5.08273	3.6353
Distance	0.804	0.829	0.832
Reference	CPDB	CPDB	CPDB

Model Applicability

- 1. OPS PC20 out of range. Value: 3.6093. Training min, max, SD, explained variance: -4.3384, 3.4394, 1.14, 0.0162.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
ingerprint	Bit/Smiles	Feature Structure	Score		

ECFP_6	655739385		0.229
ECFP_6	-817402818		0.129
ECFP_6	-175146122	C N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,	0.107
	Top Features	for negative contribution	on
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	$\begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_$	-0.247

ECFP_6	-182236392	CI	-0.232
		[*]:[cH]:[*]	

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 27.6

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13.6

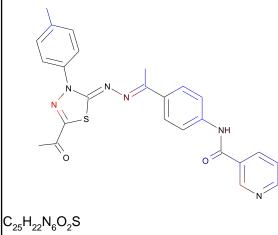
Mahalanobis Distance p-value: 4.29e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	470	646	Ochratoxin A
Structure			OH O
Actual Endpoint (-log C)	4.62839	0.937339	4.79932
Predicted Endpoint (-log C)	3.93264	3.26294	3.6353
Distance	0.788	0.817	0.828
Reference	CPDB	CPDB	CPDB


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution					
ingerprint	Bit/Smiles	Feature Structure	Score		

ECFP_6	655739385		0.229
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
ECFP_6	-1087070950		0.104
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392		-0.232
		[*]:[cH]:[*]	

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 16.8

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13.1

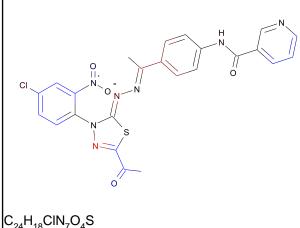
Mahalanobis Distance p-value: 6.91e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	470	646	Ochratoxin A
Structure			
Actual Endpoint (-log C)	4.62839	0.937339	4.79932
Predicted Endpoint (-log C)	3.93264	3.26294	3.6353
Distance	0.787	0.820	0.831
Reference	CPDB	CPDB	CPDB


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

Top features for positive contribution				
ngerprint	Bit/Smiles	Feature Structure	Score	

ECFP_6	655739385		0.229
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
ECFP_6	-1087070950		0.104
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392		-0.232
		[•] ° ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	

ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 15.8

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 15.4

Mahalanobis Distance p-value: 2.64e-014

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	420	223	Salicylazosulfapyridine
Structure	HO NA NA	AND Envertomer	$H_{HO} = 0$
Actual Endpoint (-log C)	2.78302	5.08368	2.5034
Predicted Endpoint (-log C)	3.31546	5.08273	3.54214
Distance	0.856	0.857	0.870
Reference	CPDB	CPDB	CPDB

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 3. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 4. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 5. Unknown ECFP_2 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 6. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

Feature	Contribution
---------	--------------

	Top features	for positive contribution	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	

ECFP_6	655739385		0.229
ECFP_6	-817402818		0.129
ECFP_6	-175146122	CI C	0.107
		for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	CI C	-0.251
ECFP_6	642810091		-0.247

-182236392		232
	° C	
	[*]:[cH]:[*]	
	-182236392	

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 13.9

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13.8

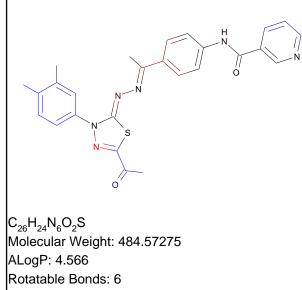
Mahalanobis Distance p-value: 1.3e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	420	Salicylazosulfapyridine	470
Structure	HO MA NA NA	HO HO HO HO HO HO HO HO HO HO HO HO HO H	
Actual Endpoint (-log C)	2.78302	2.5034	4.62839
Predicted Endpoint (-log C)	3.31546	3.54214	3.93264
Distance	0.813	0.838	0.848
Reference	CPDB	CPDB	CPDB


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1

	i op leatures	for positive contributio	n
gerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	655739385		0.229
		[*]N=[*]	
ECFP_6	-175146122	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	0.107
ECFP_6	-1087070950	[*]N=[*]	0.104
	Top Features f	for negative contributior	1
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247

ECFP_6	-182236392		-0.232
		[*]:[cH]:[*]	

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 20.6

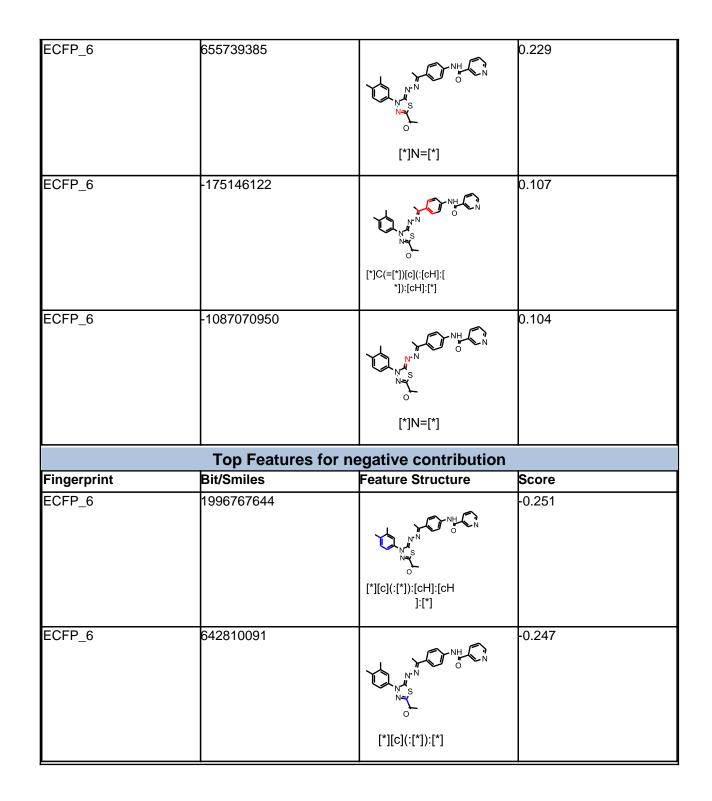
Unit: mg/kg_body_weight/day

Mahalanobis Distance: 13.6

Mahalanobis Distance p-value: 3.88e-009

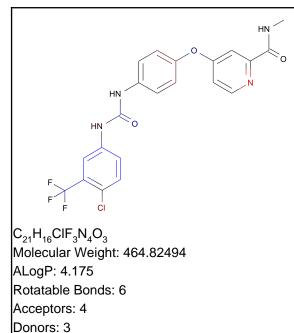
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds

Name	470	646	223
Structure			ADD Exatilities $d_{n+1} \rightarrow d_{n+1} \rightarrow d_{n+1}$
Actual Endpoint (-log C)	4.62839	0.937339	5.08368
Predicted Endpoint (-log C)	3.93264	3.26294	5.08273
Distance	0.810	0.828	0.830
Reference	CPDB	CPDB	CPDB

Model Applicability


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 3. Unknown ECFP_2 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 4. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 5. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]

	Top features	for positive contributio	n
jerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	-182236392		-0.232
		[*]:[cH]:[*]	

Sorafenib

Model Prediction

Prediction: 19.2

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.94e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

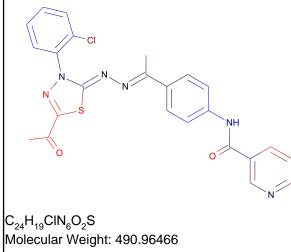
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Carcinogenic_Potency_TD50_Mouse

Structural Similar Compounds

Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide
Structure	() + () + () + () + () + () + () + () +	AND Exantomer $ \begin{array}{c} $	CI NH HO
Actual Endpoint (-log C)	4.79932	4.79932	3.91517
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186
Distance	0.718	0.718	0.738
Reference	CPDB	СРДВ	CPDB

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC
- 3. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]

Bit/Smiles	Feature Structure	Score
655739385		0.229
		655739385

ECFP_6	-817402818	$F_{F} \subset C$ $[*]CI$	0.129
ECFP_6	-176455838	N ^N O FF CI [*]O[C](:[CH]:[*]):[C H]:[*]	0.0818
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392		-0.232

TOPKAT_Carcinogenic_Potency_TD50_Rat

Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 3.64

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 16.9

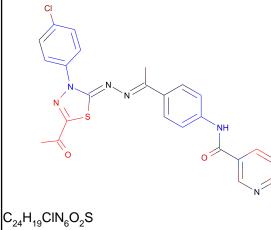
Mahalanobis Distance p-value: 2.28e-017

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	C.I. direct brown 95	Omeprazole	5,6- Dimethoxysterigmatocysti n
Structure			
Actual Endpoint (-log C)	5.31387	3.4628	6.02361
Predicted Endpoint (-log C)	4.30266	4.7324	4.98771
Distance	0.609	0.764	0.764
Reference	CPDB	CPDB	CPDB

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	565998553	[']C(=['])C1=N['][']S 1	0.357	
		I	I	

FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
FCFP_6	-2090462286	[*]N([*])[c]1:[cH]:[c H]:[cH]:[c]:1[*]	0.245
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.422
FCFP_6	16		-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323

TOPKAT_Carcinogenic_Potency_TD50_Rat

Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 2.42

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 15.5

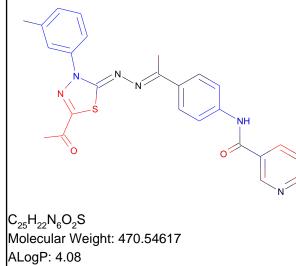
Mahalanobis Distance p-value: 9.02e-013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	C.I. direct brown 95	Omeprazole	5,6- Dimethoxysterigmatocysti n
Structure			
Actual Endpoint (-log C)	5.31387	3.4628	6.02361
Predicted Endpoint (-log C)	4.30266	4.7324	4.98771
Distance	0.608	0.763	0.764
Reference	CPDB	CPDB	СРДВ


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC24 out of range. Value: -3.1965. Training min, max, SD, explained variance: -3.0088, 7.4204, 1.076, 0.0111.

Fingerprint	Bit/Smiles	Feature Structure	Score	
CFP_6	565998553	$\begin{bmatrix} C_{1} \\ \vdots \\ N_{n} \\ 0 \\ C_{n} \\ 0 \\ C_{n} \\ 0 \\ C_{n} \\ 0 \\ C_{n} $	0.357	
	·	•		

FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
FCFP_6	1	$\begin{bmatrix} c_{i} \\ \vdots \\ c_{i} \\ \vdots \\ c_{i} \\ \vdots \\ c_{i} $	0.234
		for negative contributio	
Fingerprint FCFP_6	Bit/Smiles 16	Feature Structure	Score -0.354
		$\begin{bmatrix} c_{1} \\ \vdots \\ \vdots \\ \vdots \\ c_{n} \\ \vdots \\ c_{n} \\ \vdots \\ c_{n} \\ \vdots \\ c_{n} \\ c_$	
FCFP_6	590925877	[*]N[c](:[cH]:[*])):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*])[c]1:[cH]:[c H]:[cH]:[*]:[c]:1[*]	-0.233

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 11.5

Unit: mg/kg_body_weight/day

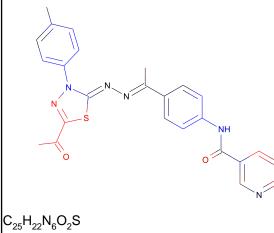
Mahalanobis Distance: 16.3

Mahalanobis Distance p-value: 2.97e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	C.I. direct brown 95	Omeprazole	5,6- Dimethoxysterigmatocysti n
Structure			
Actual Endpoint (-log C)	5.31387	3.4628	6.02361
Predicted Endpoint (-log C)	4.30266	4.7324	4.98771
Distance	0.595	0.746	0.752
Reference	CPDB	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC24 out of range. Value: -3.7507. Training min, max, SD, explained variance: -3.0088, 7.4204, 1.076, 0.0111.

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	565998553		0.357
			I

FCFP_6 FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266 0.234
Fingerprint	Top Features Bit/Smiles	for negative contributio	on Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH]: [cH]:[cH]:1	-0.422
FCFP_6	16	[*][c](:[*]):[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323

Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 3.12

Unit: mg/kg_body_weight/day

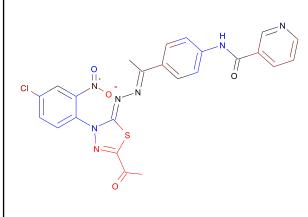
Mahalanobis Distance: 15.6

Mahalanobis Distance p-value: 4.93e-013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sinnial Compounds				
Name	C.I. direct brown 95	Omeprazole	5,6- Dimethoxysterigmatocysti n	
Structure				
Actual Endpoint (-log C)	5.31387	3.4628	6.02361	
Predicted Endpoint (-log C)	4.30266	4.7324	4.98771	
Distance	0.598	0.744	0.751	
Reference	CPDB	CPDB	CPDB	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC24 out of range. Value: -3.0664. Training min, max, SD, explained variance: -3.0088, 7.4204, 1.076, 0.0111.

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	565998553		0.357
	•		

FCFP_6	565968762	[*]C(=[*])C(=O)C	0.266
FCFP_6	1		0.234
		for negative contributio	
Fingerprint FCFP_6	Bit/Smiles 16	Feature Structure	Score -0.354
		[*][c](:[*]):[*]	
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]N([*])[c]1:[cH]:[c H]:[cH]:[*]	-0.233

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 1.2

Unit: mg/kg_body_weight/day

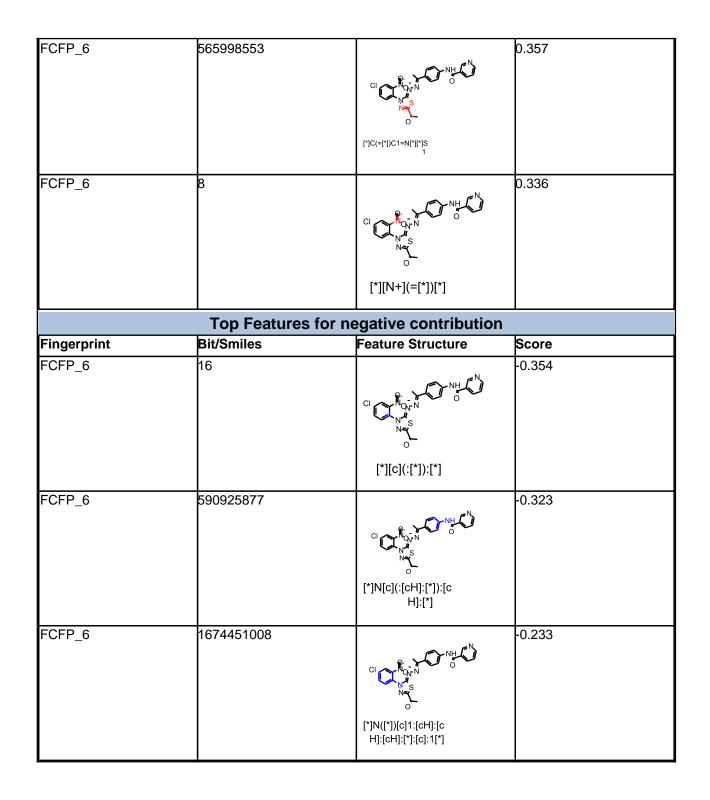
Mahalanobis Distance: 17.7

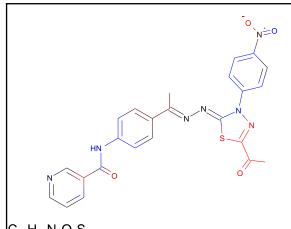
Mahalanobis Distance p-value: 4.87e-020

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	C.I. direct brown 95	623	223
Structure		NH OLO HN AN OLO NA NA	AND Examinant $ \begin{array}{c} $
Actual Endpoint (-log C)	5.31387	2.39985	6.29867
Predicted Endpoint (-log C)	4.30266	3.4177	7.5657
Distance	0.718	0.729	0.811
Reference	CPDB	CPDB	CPDB


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC17 out of range. Value: -4.2325. Training min, max, SD, explained variance: -4.122, 4.7538, 1.355, 0.0176.
- 2. OPS PC24 out of range. Value: -4.0628. Training min, max, SD, explained variance: -3.0088, 7.4204, 1.076, 0.0111.

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	5		0.431
	·	·	

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 1.91

Unit: mg/kg_body_weight/day

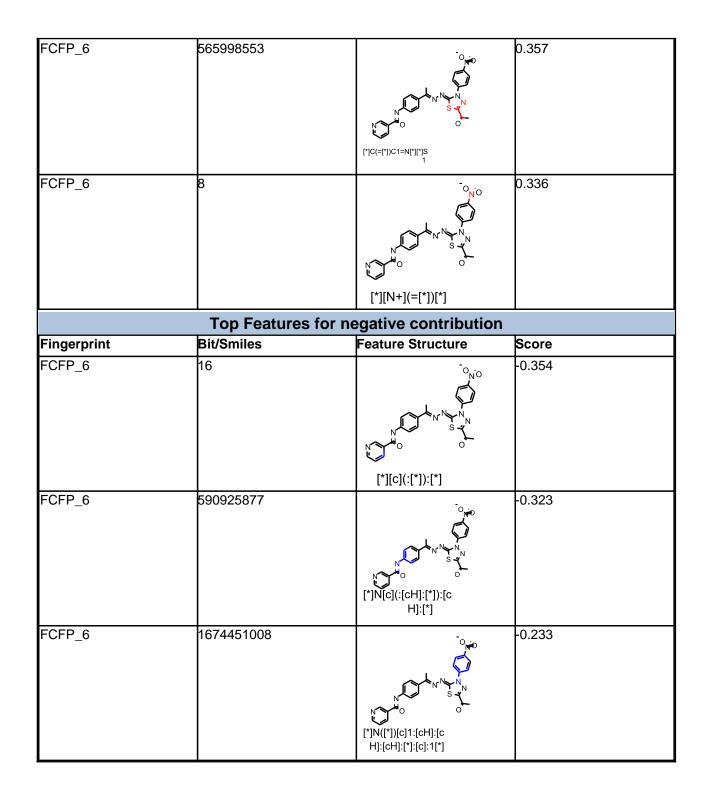
Mahalanobis Distance: 16.7

Mahalanobis Distance p-value: 1.49e-016

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	623	C.I. direct brown 95	418
Structure	NH HN HN HN HN HN HN HN HN HN		HO HO HO HO HO HO HO HO HO HO HO HO HO H
Actual Endpoint (-log C)	2.39985	5.31387	2.9349
Predicted Endpoint (-log C)	3.4177	4.30266	3.45907
Distance	0.676	0.698	0.768
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC24 out of range. Value: -3.64. Training min, max, SD, explained variance: -3.0088, 7.4204, 1.076, 0.0111.

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	5		0.431
		[*][O-]	

$C_{26}H_{24}N_6O_2S$

Molecular Weight: 484.57275 ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 4.03

Unit: mg/kg_body_weight/day

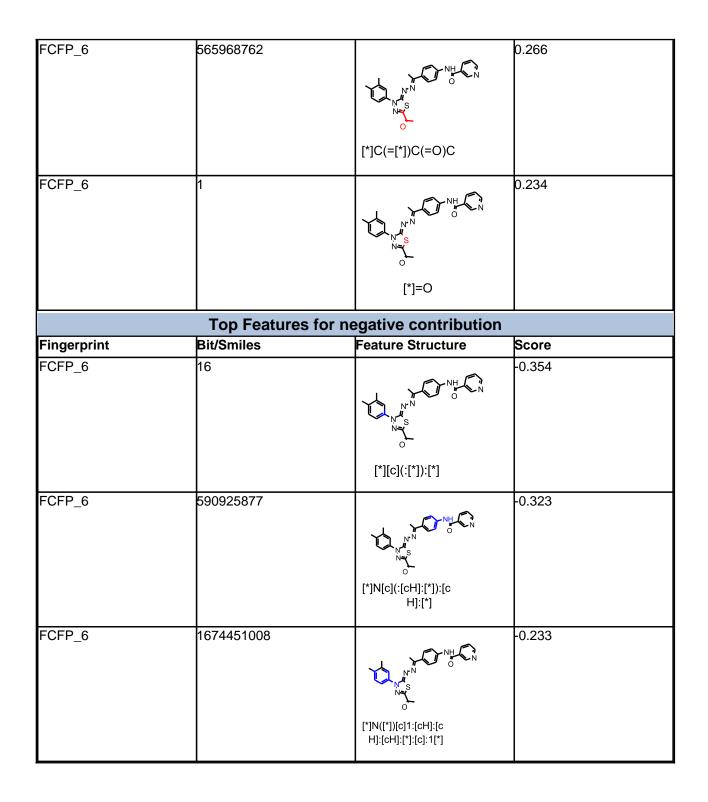
Mahalanobis Distance: 16.3

Mahalanobis Distance p-value: 3.36e-015

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	C.I. direct brown 95	Omeprazole	5,6- Dimethoxysterigmatocysti n
Structure			
Actual Endpoint (-log C)	5.31387	3.4628	6.02361
Predicted Endpoint (-log C)	4.30266	4.7324	4.98771
Distance	0.609	0.769	0.775
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC24 out of range. Value: -3.787. Training min, max, SD, explained variance: -3.0088, 7.4204, 1.076, 0.0111.

FCFP_6 565998553 0.357	Fingerprint	Bit/Smiles	Feature Structure	Score
	CFP_6	565998553	N S O	0.357

Sorafenib

Donors: 3

Model Prediction

Prediction: 14.2

Unit: mg/kg_body_weight/day

Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 9.56e-031

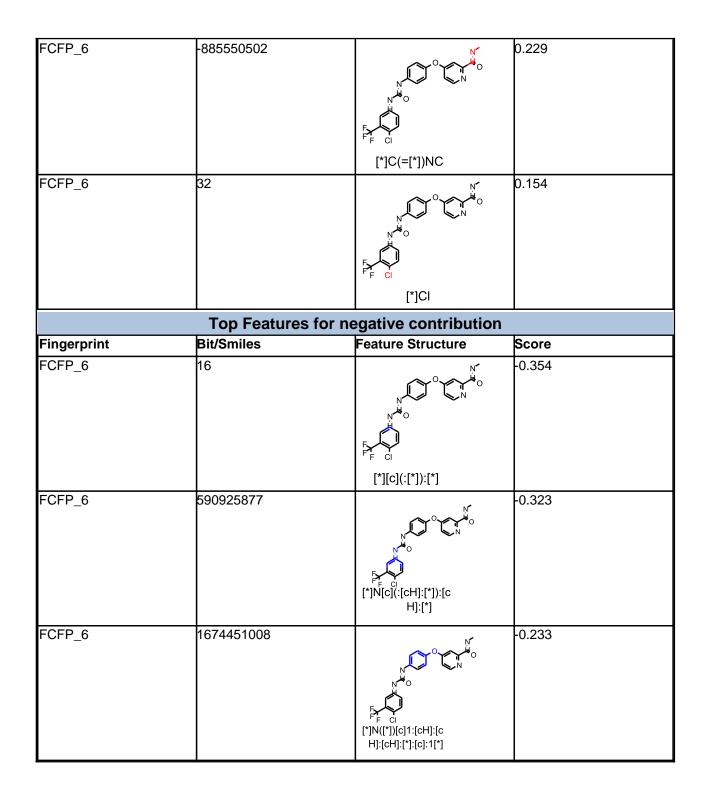
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	Fluvastatin	913	Ochratoxin A
Structure			OH OH OH OCI
Actual Endpoint (-log C)	3.51742	3.51742	6.47264
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501
Distance	0.597	0.597	0.666
Reference	CPDB	CPDB	CPDB

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

Feature Contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1		0.234
		[*]=O	

TOPKAT_Carcinogenic_Potency_TD50_Rat

C₂₄H₁₉ClN₆O₂S Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.0619

Unit: g/kg_body_weight

Mahalanobis Distance: 34.2

Mahalanobis Distance p-value: 3.23e-032

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	DILTIAZEM	D & C RED 9	RESERPINE
Structure	N C C C C C C C C C C C C C C C C C C C	N N N N C	
Actual Endpoint (-log C)	4.21961	3.87715	6.38645
Predicted Endpoint (-log C)	4.005	3.6546	5.548
Distance	0.738	0.752	0.768
Reference	NDA-18602	NTP REPORT # 225	NTP 193 22

Model Applicability

- 1. OPS PC32 out of range. Value: 4.2981. Training min, max, SD, explained variance: -4.2021, 4.2975, 1.228, 0.0066.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 4. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 14. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 15. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 18. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]
- 19. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]

20. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

	Top features	for positive contribution	า
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940		0.13
FCFP_6	32	[*]C1=[*][*]C(=[*])S1	0.101
		[*]Cl	
FCFP_6	3		0.0924
		[*]N[*]	
		for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.134

ECFP_6	1564392544	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.133
FCFP_6	1	[*]=O	-0.102

5.00328

4.27671

0.762

EPA COVER SHEET

0335;891001;(1)

 $C_{24}H_{19}CIN_6O_2S$ Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.0276

Unit: g/kg_body_weight

Mahalanobis Distance: 31.9

Mahalanobis Distance p-value: 4.44e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	DILTIAZEM	D & C RED 9	ASSURE	
Structure	N S C S S S S S S S S S S S S S S S S S			

Model Applicability

Actual Endpoint (-log C)

Predicted Endpoint (-log

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

3.87715

3.6546

0.758

NTP REPORT # 225

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]

4.21961

4.005

0.748

NDA-18602

- 3. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 4. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 16. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 17. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 18. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 19. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]

- Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*] Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*] 20.
- 21.

	Top features	for positive contributior	1
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940		0.13
		[*]C1=[*][*]C(=[*])S1	
FCFP_6	32		0.101
		[*]CI	
FCFP_6	3		0.0924
		for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1		-0.102

ECFP_6	-1087070950	$\begin{bmatrix} C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	-0.102
FCFP_6	-453677277	CI N S O (*]C(=[*])[c]1:[cH]:[*]:[c]([*]):[cH]:[cH]:1	-0.0906

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8

Model Prediction

Prediction: 0.0494

Donors: 1

Unit: g/kg_body_weight

Mahalanobis Distance: 32.6

Mahalanobis Distance p-value: 2.34e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	ar Compounds		
Name	DILTIAZEM	D & C RED 9	C.I.PIGMENT RED 23
Structure	Not of the second secon		HN FOH HN FOH HN FOH HN FOH THN FNH
Actual Endpoint (-log C)	4.21961	3.87715	2.28997
Predicted Endpoint (-log C)	4.005	3.6546	3.52921
Distance	0.732	0.760	0.771
Reference	NDA-18602	NTP REPORT # 225	NTP 411 146

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 4. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 16. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]
- 17. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 18. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 19. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]
- 20. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]

	Top features	for positive contributior	า
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940		0.13
FCFP_6	3	[*]C1=[*][*]C(=[*])S1	0.0924
		[*]N[*]	
ECFP_6	2099970318		0.0766
		[*]C(=O)[*]	
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.134

FCFP_6	1	[*]=O	-0.102
ECFP_6	-1087070950	[*]N=[*]	-0.102

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.0383

Unit: g/kg_body_weight

Mahalanobis Distance: 31.4

Mahalanobis Distance p-value: 3.26e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	DILTIAZEM	D & C RED 9	ASSURE
Structure	N N N N N N N N N N N N N N N N N N N	N N N N C	
Actual Endpoint (-log C)	4.21961	3.87715	5.00328
Predicted Endpoint (-log C)	4.005	3.6546	4.27671
Distance	0.733	0.764	0.776
Reference	NDA-18602	NTP REPORT # 225	EPA COVER SHEET 0335;891001;(1)

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 4. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 5. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 6. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 10. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 11. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 14. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: -179515162: [*]:[cH]:[c](C):[cH]:[*]
- 16. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 17. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 18. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]
- 19. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]

20. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]

	Top features f	for positive contribution	า
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940	[*]C1=[*][*]C(=[*])S1	0.13
FCFP_6	3		0.0924
ECFP_6	2099970318		0.0766
		[*]C(=O)[*]	
	Top Features f Bit/Smiles	or negative contributio Feature Structure	
Fingerprint FCFP_6	1	$\begin{bmatrix} & & \\ & $	Score -0.102

ECFP_6	-1087070950	[*]N=[*]	-0.102
FCFP_6	-453677277	[*]C(=[*])[c]1:[cH]:[cH]:[c]([*]):[cH]:[cH	-0.0906

 $C_{2d}H_{48}CIN_{2}O_{4}S$

Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 0.0304

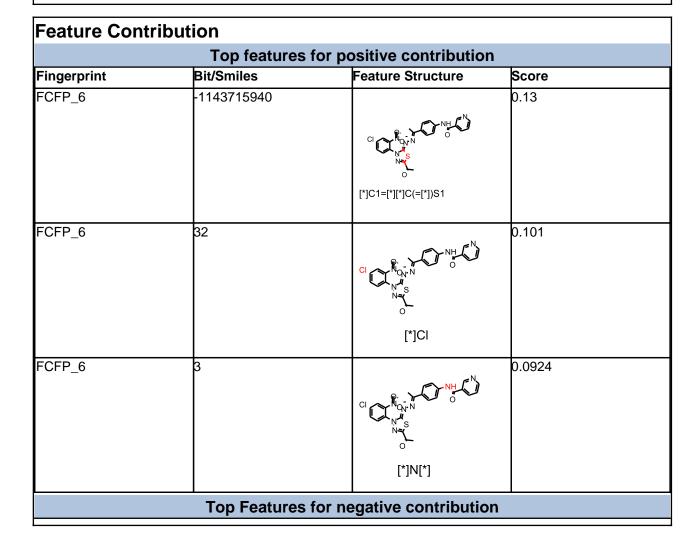
Unit: g/kg_body_weight

Mahalanobis Distance: 36.6

Mahalanobis Distance p-value: 2.15e-036

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds

Name	C.I.PIGMENT RED 23	C.I. ACID ORANGE 3	RESERPINE
Structure	HIN CO HIN CO HI	O NH O NH O NH	
Actual Endpoint (-log C)	2.28997	3.20573	6.38645
Predicted Endpoint (-log C)	3.52921	3.55956	5.548
Distance	0.641	0.765	0.775
Reference	NTP 411 146	NTP REPORT # 335	NTP 193 22

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]
- 7. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 8. Unknown ECFP_6 feature: 1043790491: [*][N+](=[*])[*]
- 9. Unknown ECFP_6 feature: 781519895: [*][O-]
- 10. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 11. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 12. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 13. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 14. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 15. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 16. Unknown ECFP_6 feature: -1236953626: [*]N([*])[c](:[cH]:[*]):[c]([*]):[*]
- 17. Unknown ECFP_6 feature: -1956535100: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 18. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 19. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])CI
- 20. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]

- 21. Unknown ECFP 6 feature: 562081661: [*]C(=NN=[*])[*] 22. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*] 23. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*] Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*] 24. 25. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*] 26. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*] Unknown ECFP 6 feature: 1996163143: [*]:[cH]:[cH]:n:[*] 27. Unknown ECFP 6 feature: -677055651: [*]:[cH]:n:[cH]:[*] 28. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*] 29. Unknown ECFP 6 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-] 30. 31. Unknown ECFP_6 feature: 2104376220: [*][N+](=O)[*]
- 32. Unknown ECFP_6 feature: -659271057: [*][N+](=[*])[O-]

Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1		-0.102
ECFP_6	-1087070950		-0.102
FCFP_6	-453677277	CI C	-0.0906

 $C_{24}H_{40}N_7O_4S$

C₂₄H₁₉N₇O₄S Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 0.0345

Unit: g/kg_body_weight

Mahalanobis Distance: 34.4

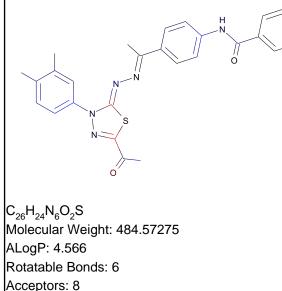
Mahalanobis Distance p-value: 1.36e-032

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Struc	ctural	Similar	Compounds
-------	--------	---------	-----------

Name	C.I.PIGMENT RED 23	C.I. ACID ORANGE 3	3-HYDROXY-4-(2;4- XYLYLAZO)-2;7
Structure	HN CO HN CO	O NAME OF THE OFFICE OF	HO I O HO I O HO I O HO I O H
Actual Endpoint (-log C)	2.28997	3.20573	3.63994
Predicted Endpoint (-log C)	3.52921	3.55956	3.60721
Distance	0.656	0.743	0.784
Reference	NTP 411 146	NTP REPORT # 335	RQTOX ECAO CIN R638;9807;(4)


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 5: [*][O-]
- 3. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 4. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 5. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 6. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]
- 7. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 8. Unknown ECFP_6 feature: 1043790491: [*][N+](=[*])[*]
- 9. Unknown ECFP_6 feature: 781519895: [*][O-]
- 10. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 11. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 12. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]
- 13. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 14. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 16. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 17. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 18. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 19. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]

- 20. Unknown ECFP_6 feature: -179073144: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]
 21. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
 22. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
 23. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 24. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 25. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 26. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 27. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 28. Unknown ECFP_6 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 29. Unknown ECFP_6 feature: 2104376220: [*][N+](=O)[*]
- 30. Unknown ECFP_6 feature: -659271057: [*][N+](=[*])[O-]

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	-1143715940	[*]C1=[*][*]C(=[*])S1	0.13		
FCFP_6	3		0.0924		
ECFP_6	2099970318	[*]C(=O)[*]	0.0766		
	Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		

FCFP_6	1	°	-0.102
ECFP_6	-1087070950	[*]N=[*]	-0.102
FCFP_6	-453677277	[*][c]([*]):[cH]:[cH]]:[c]([*]):[cH]:[cH]]:[c]([*]):[cH]:[cH]	-0.0906

Donors: 1

Model Prediction

Prediction: 0.0368

Unit: g/kg_body_weight

Mahalanobis Distance: 32.2

Mahalanobis Distance p-value: 1.26e-028

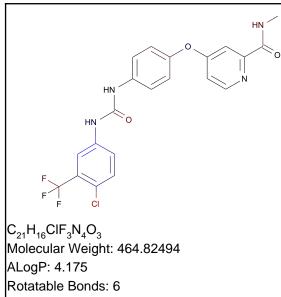
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	DILTIAZEM	RESERPINE	C.I.PIGMENT RED 23
Structure			
Actual Endpoint (-log C)	4.21961	6.38645	2.28997
Predicted Endpoint (-log C)	4.005	5.548	3.52921
Distance	0.753	0.756	0.760
Reference	NDA-18602	NTP 193 22	NTP 411 146

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 3. Unknown ECFP_6 feature: 2122741631: [*]C1=[*][*]C(=[*])S1
- 4. Unknown ECFP_6 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 5. Unknown ECFP_6 feature: 2092245922: [*]N1[*][*]C(=N1)[*]
- 6. Unknown ECFP_6 feature: -1110911409: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 8. Unknown ECFP_6 feature: 129482634: [*]C(=[*])C(=O)C
- 9. Unknown ECFP_6 feature: -175021654: [*]N([*])[c](:[cH]:[*]):[cH]:[*]
- 10. Unknown ECFP_6 feature: -819426257: [*]C(=NN=[*])[*]
- 11. Unknown ECFP_6 feature: 562081661: [*]C(=NN=[*])[*]
- 12. Unknown ECFP_6 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 13. Unknown ECFP_6 feature: -175146122: [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]
- 14. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 15. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 16. Unknown ECFP_6 feature: -709633021: [*][c](:[*]):[cH]:n:[*]
- 17. Unknown ECFP_6 feature: -677055651: [*]:[cH]:n:[cH]:[*]
- 18. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 19. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]

Ton features	for positive contribution	1
		Score
-1143715940		0.13
2147419938	[*]C1=[*][*]C(=[*])S1	0.098
3	[*][c](:[*]):[c](C):[cH]:[*]	0.0924
Top Features	[*]N[*] for negative contributio	n
Bit/Smiles	Feature Structure	Score
1		-0.102
	Top features Bit/Smiles -1143715940 2147419938 3 3 Top Features	$\begin{array}{c c} -1143715940 \\ & \downarrow \downarrow$

ECFP_6	-1087070950		-0.102
FCFP_6	-453677277	[*]C([*]):[cH]:[cH]:[]:1	-0.0906

Sorafenib

Acceptors: 4

Donors: 3

Model Prediction

Prediction: 0.00483

Unit: g/kg_body_weight

Mahalanobis Distance: 30

Mahalanobis Distance p-value: 1.21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Simila	r Compounds		
Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN
Structure			F F F Hunder H O H O H O H
Actual Endpoint (-log C)	4.21661	3.87715	4.16036
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915
Distance	0.636	0.722	0.736
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 4. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- 5. Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]
- 6. Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 1336678434: [*][c](:[*]):[c](:[cH]:[*])C([*])([*])[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 12. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 13. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 864287155: [*]NC

Feature Contribution

Top features for positive contribution

TOPKAT_Chronic_LOAEL

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[cH]:[*]	0.106
FCFP_6	32	$F_{F} = C_{I}^{N}$	0.101
FCFP_6	3	F_{F-CI}^{N}	0.0924
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	[*]=O	-0.102
	I		I

ECFP_6	-1236483485	$[^{*}]C(=[^{*}])N[c](:[^{*}]):$	-0.0747
FCFP_6	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0713

TOPKAT_Rat_Maximum_Tolerated_Dose_Feed

 $C_{24}H_{19}CIN_6O_2S$

Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 0.0508

Unit: g/kg_body_weight

Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 3.02e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	SALICYLAZOSULFAPYRI DINE	RESERPINE	C.I.PIGMENT RED 23
Structure	HN BO HOH		
Actual Endpoint (-log C)	3.375	6.13118	2.30052
Predicted Endpoint (-log C)	2.80292	4.38304	3.55333
Distance	0.730	0.734	0.811
Reference	NCI/NTP TR-457	NCI/NTP TR-193	NCI/NTP TR-411

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

	Top features for positive contribution			
ingerprint	Bit/Smiles	Feature Structure	Score	
CFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095	

FCFP_2 FCFP_2	3 332760439		0.0737 0.0611
	Top Features	[*]N([*])[c](:[cH]:[*]):[c]([*]):[*]	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	[*]:[c](:[*])Cl	-0.134
FCFP_2	1872154524	$\begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{3$	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829

 $C_{24}H_{19}CIN_6O_2S$

Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 0.0508

Unit: g/kg_body_weight

Mahalanobis Distance: 10.7

Mahalanobis Distance p-value: 3.02e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	SALICYLAZOSULFAPYRI DINE	RESERPINE	C.I.PIGMENT RED 23
Structure	HN ICON NON THE CONTROL		or the second se
Actual Endpoint (-log C)	3.375	6.13118	2.30052
Predicted Endpoint (-log C)	2.80292	4.38304	3.55333
Distance	0.730	0.734	0.811
Reference	NCI/NTP TR-457	NCI/NTP TR-193	NCI/NTP TR-411

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score				
FCFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095	

FCFP_2 FCFP_2	3 332760439		0.0737 0.0611
FUFF_2		[*]N([*])[c](:[cH]:[*]):[c]([*])	
Fingerprint	Top Features	for negative contributio Feature Structure	n Score
FCFP_2	71476542	CI N N N N S O (*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	$\begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_$	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]	-0.0829

TOPKAT_Rat_Maximum_Tolerated_Dose_Feed

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.0344

Unit: g/kg_body_weight

Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 9.12e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Structural Simila	ir Compounds		
Name	SALICYLAZOSULFAPYRI DINE	RESERPINE	C.I.PIGMENT RED 3
Structure	HN HN HO HOH		OH ONEO TRANSPORT
Actual Endpoint (-log C)	3.375	6.13118	2.65635
Predicted Endpoint (-log C)	2.80292	4.38304	2.97957
Distance	0.704	0.749	0.802
Reference	NCI/NTP TR-457	NCI/NTP TR-193	NCI/NTP TR-407

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

	Top features for positive contribution				
ngerprint	Bit/Smiles	Feature Structure	Score		
FP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095		

FCFP_2	3	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	0.0737
FCFP_2	136120670	[*]:[c](:[*])C	0.064
F ¹		for negative contribution	
	Bit/Smiles 1872154524	Feature Structure	Score -0.105
FCFP_2	1072134324	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829
FCFP_2	1		-0.0796

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617

ALogP: 4.08 Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.0344

Unit: g/kg_body_weight

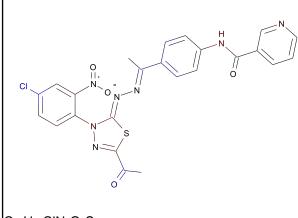
Mahalanobis Distance: 10.4

Mahalanobis Distance p-value: 9.12e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Simila	ir Compounds		
Name	SALICYLAZOSULFAPYRI DINE	RESERPINE	C.I.PIGMENT RED 3
Structure	HN HN HO HOH		OH ONEO TRANSPORT
Actual Endpoint (-log C)	3.375	6.13118	2.65635
Predicted Endpoint (-log C)	2.80292	4.38304	2.97957
Distance	0.704	0.749	0.802
Reference	NCI/NTP TR-457	NCI/NTP TR-193	NCI/NTP TR-407

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

	rop icului co	for positive contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
-CFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095

FCFP_2	3		0.0737
FCFP_2	136120670	[*]:[c](:[*])C	0.064
—		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829
FCFP_2	1	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	-0.0796

C₂₄H₁₈CIN₇O₄S Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 0.0369

Unit: g/kg_body_weight

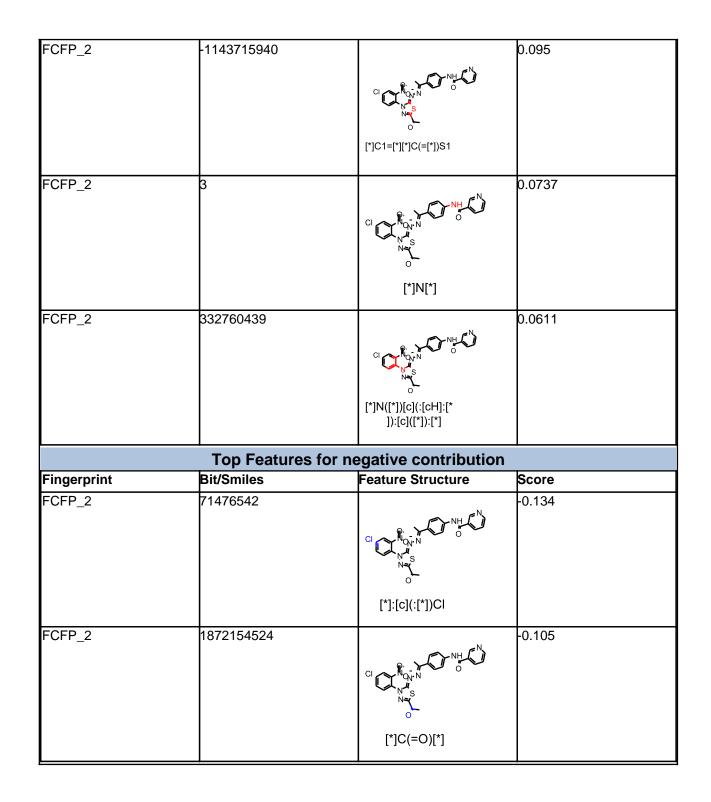
Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 7.44e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

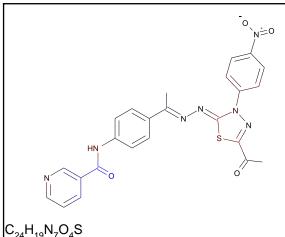
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Simila	ar Compounds		
Name	C.I.PIGMENT RED 23	SALICYLAZOSULFAPYRI DINE	RESERPINE
Structure	or the second se	HN HO HN HO OCOH	
Actual Endpoint (-log C)	2.30052	3.375	6.13118
Predicted Endpoint (-log C)	3.55333	2.80292	4.38304
Distance	0.681	0.769	0.805
Reference	NCI/NTP TR-411	NCI/NTP TR-457	NCI/NTP TR-193

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. OPS PC5 out of range. Value: 5.5211. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.
- 2. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 3. Unknown FCFP_2 feature: 5: [*][O-]
- 4. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 5. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 7. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

	Top features for po	ositive contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
			•

FCFP_2	203677720		-0.0829
		[*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	

TOPKAT Rat Maximum Tolerated Dose Feed

Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 0.0307

Unit: g/kg_body_weight

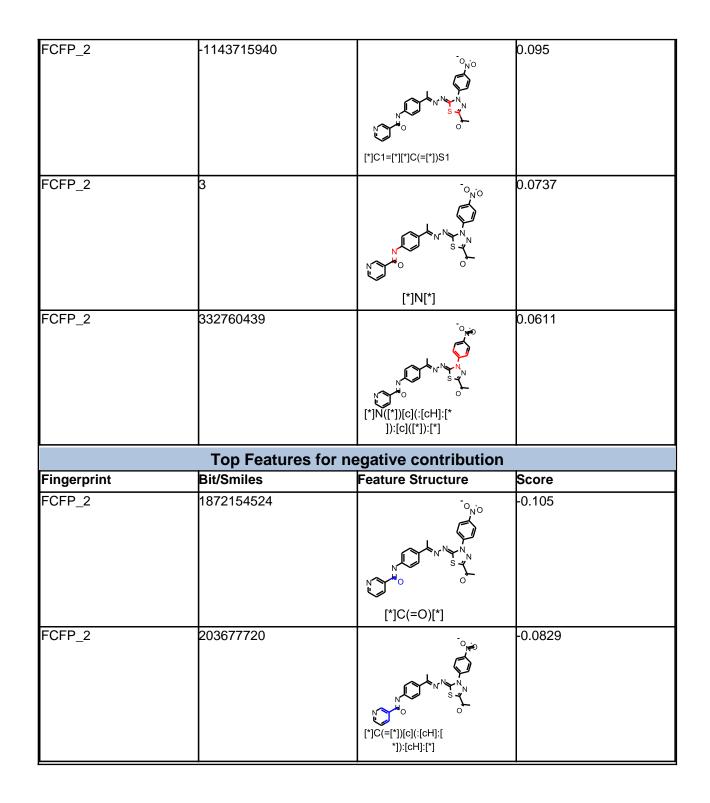
Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 5.08e-007

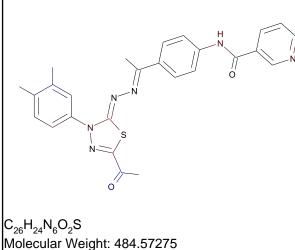
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Structural Simila	ar Compounds		
Name	C.I.PIGMENT RED 23	SALICYLAZOSULFAPYRI DINE	RESERPINE
Structure	or the second se	HN HO HN HO HO HO HO HO HO HO HO HO HO HO HO HO H	
Actual Endpoint (-log C)	2.30052	3.375	6.13118
Predicted Endpoint (-log C)	3.55333	2.80292	4.38304
Distance	0.686	0.723	0.825
Reference	NCI/NTP TR-411	NCI/NTP TR-457	NCI/NTP TR-193

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- All properties and OPS components are within expected ranges. 1.
- Unknown FCFP_2 feature: 8: [*][N+](=[*])[*] 2.
- 3. Unknown FCFP 2 feature: 5: [*][O-]
- Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*] 4.
- 5. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 6. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-] 7.

Fingerprint Bit/Smiles Feature Structure Score				
ngerprint	Bidonnies		00010	
	•	•	•	

FCFP_2	1	- _{0,10} -0.0796	
		[*]=O	

ALogP: 4.566 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 0.0326

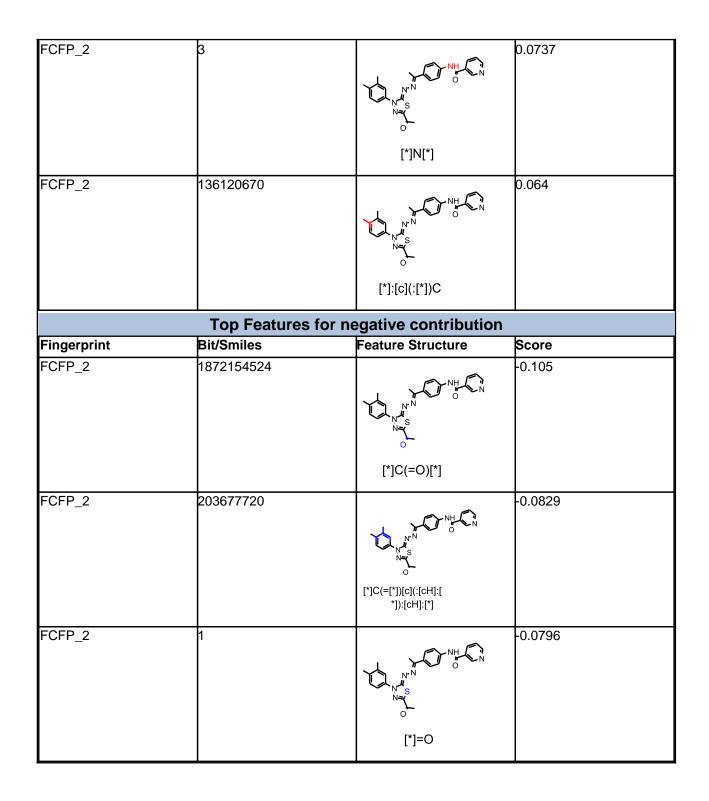
Unit: g/kg_body_weight

Mahalanobis Distance: 10.3

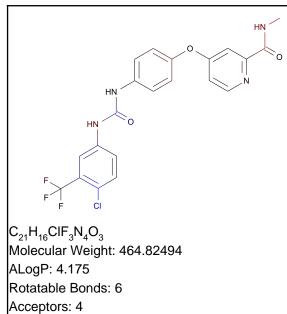
Mahalanobis Distance p-value: 1.22e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds

Name	SALICYLAZOSULFAPYRI DINE	RESERPINE	C.I.PIGMENT RED 23
Structure			Contraction of the second seco
Actual Endpoint (-log C)	3.375	6.13118	2.30052
Predicted Endpoint (-log C)	2.80292	4.38304	3.55333
Distance	0.720	0.735	0.795
Reference	NCI/NTP TR-457	NCI/NTP TR-193	NCI/NTP TR-411


Model Applicability

Unknown features are fingerprint features in the guery molecule, but not found or appearing too infreguently in the training set.

ngerprint	Bit/Smiles	Feature Structure	Score
CFP_2	-1143715940	[*]C1=[*][*]C(=[*])S1	0.095

Sorafenib

Donors: 3

Model Prediction

Prediction: 0.0885

Unit: g/kg_body_weight

Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3
Structure	HO O HU NH2 CI OFSO	O OH O OH HO	OH NH
Actual Endpoint (-log C)	4.04236	2.20184	2.77703
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195
Distance	0.741	0.780	0.799
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222

TOPKAT Rat Maximum Tolerated Dose Feed

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

FCFP_2	3		0.0737
FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[c]([*]):[*]	0.0611
Fingerprint	Top Features	for negative contributior Feature Structure	n Score
FCFP_2	71476542	[*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	$F_{F} = CI$ $[*]C(=O)[*]$	-0.105
FCFP_2	203677720	N P F F C [*]C(=[*])[c](:[cH]:[*]):[cH]:[*]	-0.0829

 $C_{24}H_{19}CIN_6O_2S$ Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8Donors: 1

Model Prediction

Prediction: 5.39e-005

Unit: g/kg_body_weight

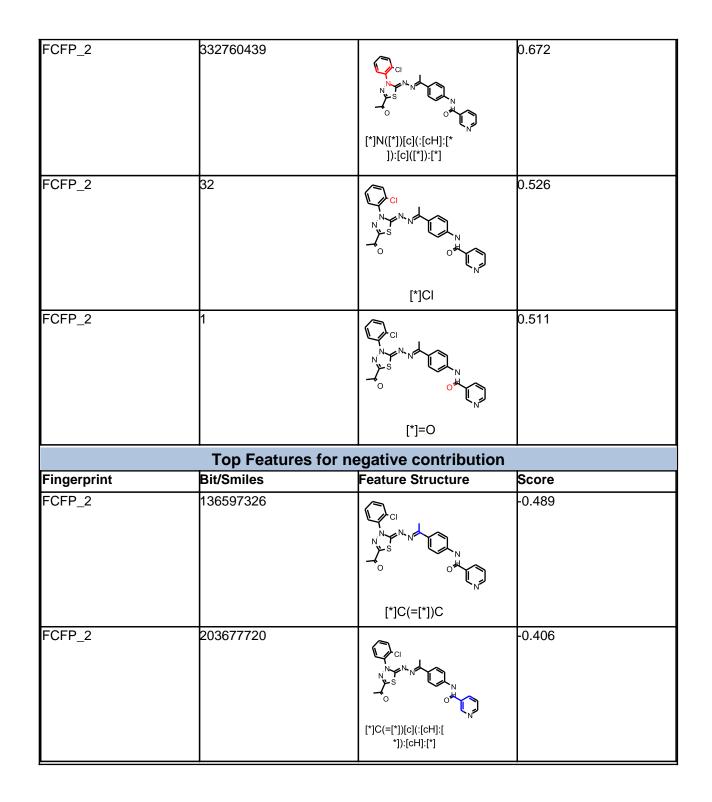
Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 2.67e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	HO NH CI	O O O NH O O O H	
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.917	1.129	1.178
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 490.96. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -3.7095. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. OPS PC10 out of range. Value: 2.9353. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 6. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 8. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_2	565998553		-0.348
		[*]C(=[*])C1=N[*][*]S 1	

 $C_{24}H_{19}CIN_6O_2S$

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 5.39e-005

Unit: g/kg_body_weight

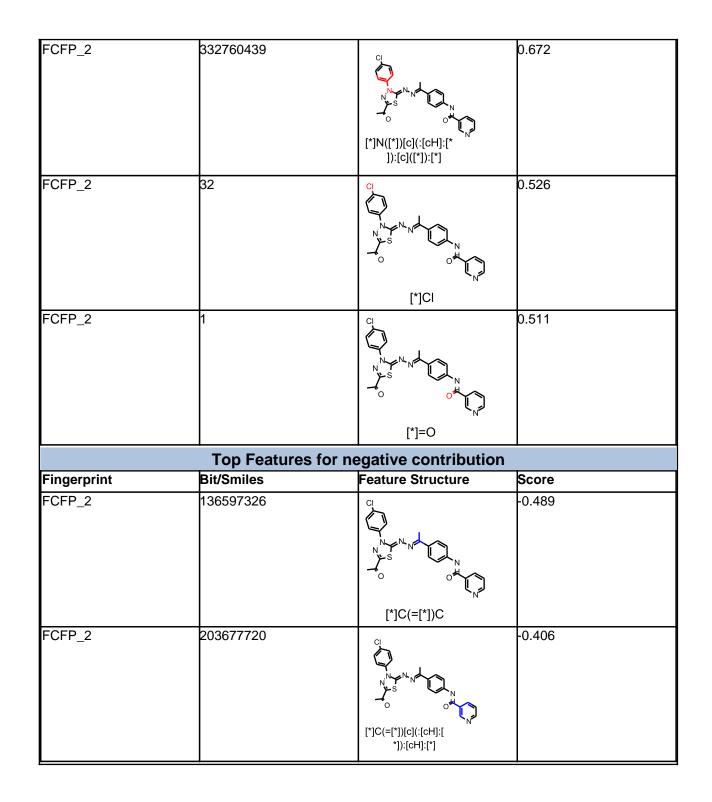
Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 2.67e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH O	OT NH OT NH OT OH	H ₂ N OF B H
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.917	1.129	1.178
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 490.96. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC5 out of range. Value: -3.7095. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 5. OPS PC10 out of range. Value: 2.9353. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 6. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 8. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_2	565998553	-0.348	
		`N [*]C(=[*])C1=N[*][*]S	
		1	

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 0.000513

Unit: g/kg_body_weight

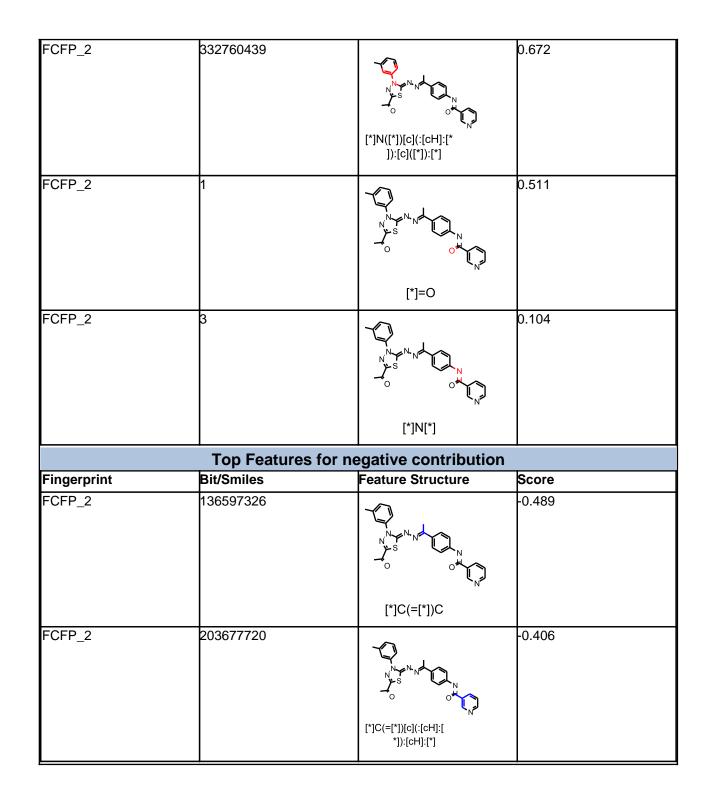
Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 3.18e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	HO WALL		H ₂ N OF S H
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.949	1.097	1.112
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 470.55. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC6 out of range. Value: -3.1418. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 5. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 7. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			

FCFP_2	565998553		-0.348
		[*]C(=[*])C1=N[*][*]S 1	

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.000513

Unit: g/kg_body_weight

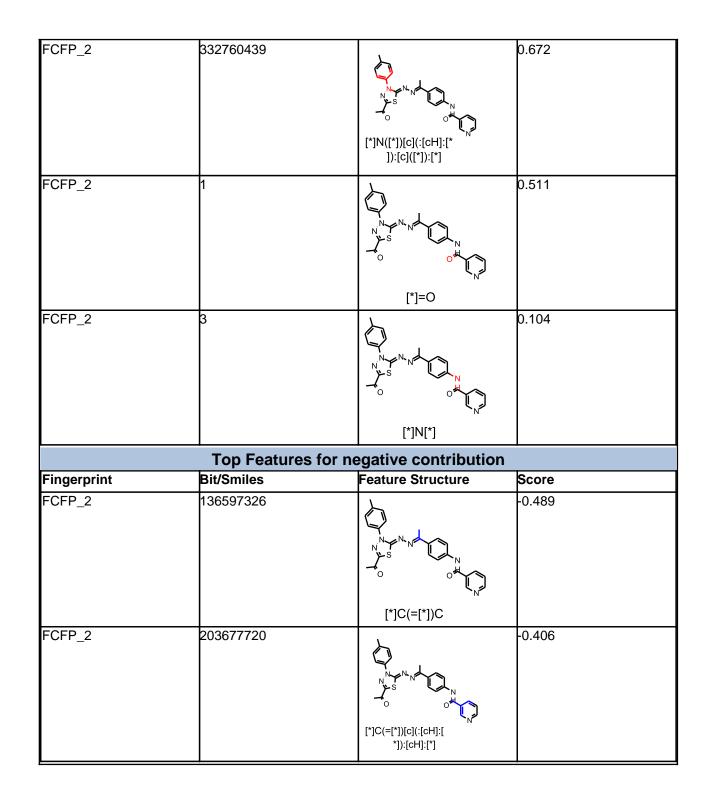
Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 3.18e-008

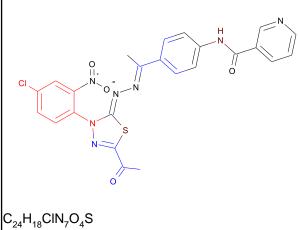
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH O		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.949	1.097	1.112
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 470.55. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC6 out of range. Value: -3.1418. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 5. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 6. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 7. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
	•	-	•		

FCFP_2	565998553	-0.348	
		N [*]C(=[*])C1=N[*][*]S	
		1	

Molecular Weight: 535.96222 ALogP: 4.153 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 1.61e-005

Unit: g/kg_body_weight

Mahalanobis Distance: 12.9

Mahalanobis Distance p-value: 5.2e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH O		H ₂ N 0 0 N H
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	1.148	1.323	1.451
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

- 1. Molecular_Weight out of range. Value: 535.96. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 10. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. Molecular_PolarSurfaceArea out of range. Value: 170.49. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 5. OPS PC1 out of range. Value: 8.2287. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 6. OPS PC5 out of range. Value: -4.3335. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 7. OPS PC10 out of range. Value: 2.7221. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 8. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 9. Unknown FCFP_2 feature: 5: [*][O-]
- 10. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 11. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]
- 12. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 13. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 14. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 15. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 16. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

	Top features	for positive contribution	า
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[c]([*])	0.672
FCFP_2	32		0.526
FCFP_2	1		0.511
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	136597326		-0.489

FCFP_2	203677720	CI C	-0.406
FCFP_2	565998553		-0.348

 $C_{24}H_{19}N_7O_4S$

Molecular Weight: 501.51715 ALogP: 3.488 Rotatable Bonds: 7 Acceptors: 10 Donors: 1

Model Prediction

Prediction: 0.000203

Unit: g/kg_body_weight

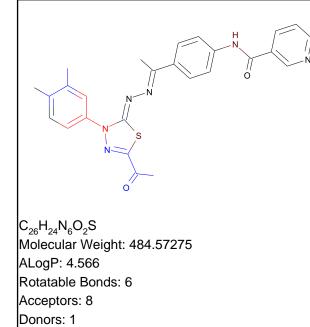
Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.65e-010

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds


Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH O		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	1.158	1.261	1.381
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability

- 1. Molecular_Weight out of range. Value: 501.52. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 10. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. Molecular_PolarSurfaceArea out of range. Value: 170.49. Training min, max, mean, SD: 0, 138.03, 28.978, 32.1.
- 5. OPS PC1 out of range. Value: 8.2949. Training min, max, SD, explained variance: -4.0008, 7.9165, 2.861, 0.2531.
- 6. OPS PC6 out of range. Value: -3.1571. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 7. Unknown FCFP_2 feature: 8: [*][N+](=[*])[*]
- 8. Unknown FCFP_2 feature: 5: [*][O-]
- 9. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]
- 10. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 11. Unknown FCFP_2 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 12. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]
- 13. Unknown FCFP_2 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 14. Unknown FCFP_2 feature: 1872392852: [*][N+](=O)[*]
- 15. Unknown FCFP_2 feature: 260476081: [*][N+](=[*])[O-]

	ribution	for positive contribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	332760439	[*]N([*])[c](:[cH]:[*]):[c]([*])	0.672	
FCFP_2	1		0.511	
FCFP_2	3		0.104	
	Top Features	for negative contributio	n	
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	136597326	[*]C(=[*])C	-0.489	

FCFP_2	203677720	[*]C(=[*])[C](:[CH]:[*]):[CH]:[*]	-0.406
FCFP_2	565998553	[']C(=['])C1=N['][']S 1	-0.348

Model Prediction

Prediction: 0.000391

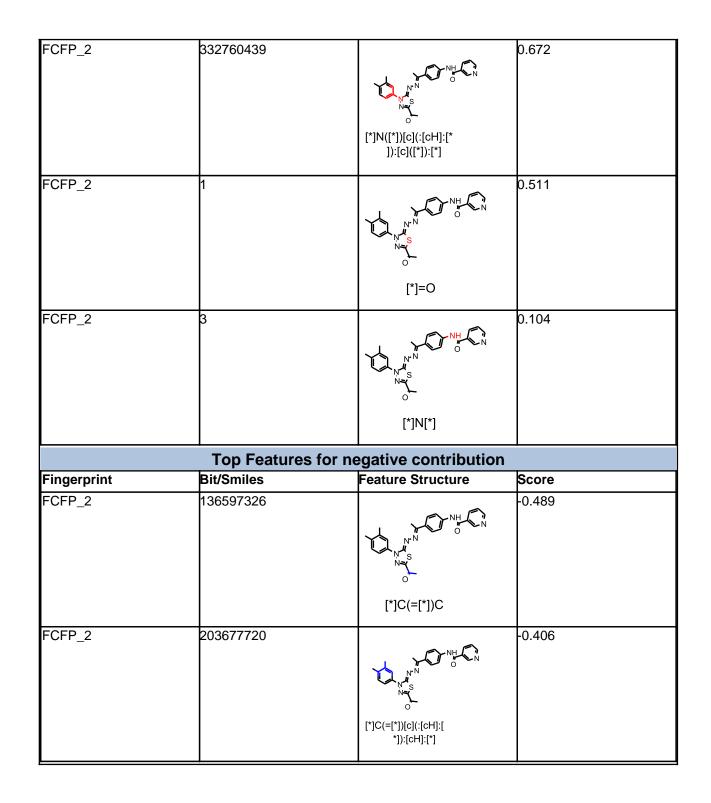
Unit: g/kg_body_weight

Mahalanobis Distance: 11.8

Mahalanobis Distance p-value: 1.53e-008

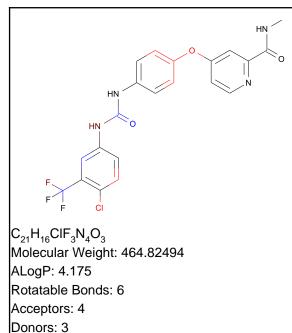
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds

Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE
Structure	OH O		H ₂ N O O N H
Actual Endpoint (-log C)	6.28396	2.54455	2.82494
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705
Distance	0.967	1.133	1.151
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138

Model Applicability


- 1. Molecular_Weight out of range. Value: 484.57. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_H_Acceptors out of range. Value: 8. Training min, max, mean, SD: 0, 6, 1.6146, 1.644.
- 3. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 4. OPS PC6 out of range. Value: -3.2057. Training min, max, SD, explained variance: -2.4321, 2.9885, 1.256, 0.0488.
- 5. Unknown FCFP_2 feature: 580960234: [*]C(=NN=[*])[*]
- 6. Unknown FCFP_2 feature: -1986158408: [*]\N=C\1/S[*]=[*]N1[*]
- 7. Unknown FCFP_2 feature: -1549192822: [*]\N=C(/C)\[c](:[*]):[*]

	Top features	for positive contributio	n
ingerprint	Bit/Smiles	Feature Structure	Score

FCFP_2	565998553		-0.348
		0	
		[*]C(=[*])C1=N[*][*]S 1	

Sorafenib

Model Prediction

Prediction: 0.000918

Unit: g/kg_body_weight

Mahalanobis Distance: 12.2

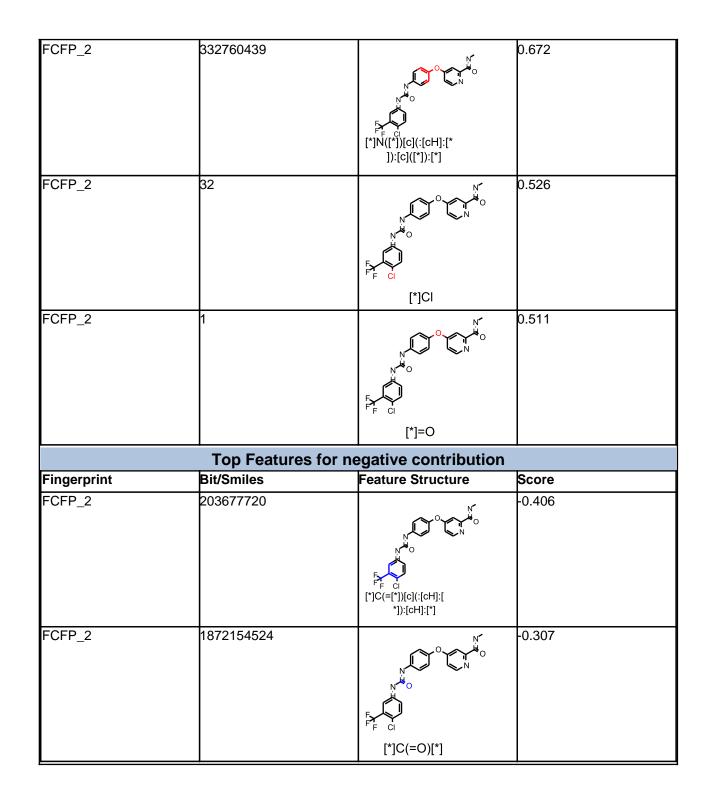
Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

Structural Similar Compounds


Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK
Structure	OH O	H ₂ N O S N ^N H	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702
Distance	0.758	0.997	1.159
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Top features for positive contribution				
ingerprint	Bit/Smiles	Feature Structure	Score	
	L		1	

FCFP_2	0	N	-0.29
		NHO	
		5 Q	
		FF CI	
		[*]C(=[*])[*]	

 $C_{24}H_{19}CIN_6O_2S$ Molecular Weight: 490.96466 ALogP: 4.258 Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.531

Unit: g/kg_body_weight

Mahalanobis Distance: 24.4

Mahalanobis Distance p-value: 5.41e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	ACEMETACIN	bis-OXATIN ACETATE	PRASOZIN .HCI (HCI STRIPPED)
Structure			N N H ₂ N ⁴ N
Actual Endpoint (-log C)	4.235	1.717	2.294
Predicted Endpoint (-log C)	3.39415	2.40947	3.00765
Distance	0.662	0.681	0.710
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	NIIRDN 6;688;82

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]
- 12. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

ECFP_6	642810091		0.281
ECFP_6	-1897341097		0.216
ECFP_6	99947387		0.181
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-817402818		-0.263
ECFP_6	655739385		-0.239

ECFP_6	734603939		-0.201
		<pre>~</pre>	

H CINOS

C₂₄H₁₉CIN₆O₂S Molecular Weight: 490.96465 ALogP: 4.258 Rotatable Bonds: 6 Acceptors: 8 Donors: 1

Model Prediction

Prediction: 0.247

Unit: g/kg_body_weight

Mahalanobis Distance: 24.3

Mahalanobis Distance p-value: 3.27e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ACEMETACIN	bis-OXATIN ACETATE	PRASOZIN .HCI (HCI STRIPPED)
Structure			H ₂ N ⁴ , H ₂ N
Actual Endpoint (-log C)	4.235	1.717	2.294
Predicted Endpoint (-log C)	3.39415	2.40947	3.00765
Distance	0.655	0.687	0.712
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	NIIRDN 6;688;82

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 12. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]

Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					

ECFP_6	642810091		0.281
ECFP_6	-1897341097		0.216
ECFP_6	99947387		0.181
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-817402818	$\begin{bmatrix} c \\ c \\ r \\$	-0.263
ECFP_6	655739385	$\begin{bmatrix} c_{1} \\ c_{2} \\ N_{2} \\ N_{2} \\ 0 \end{bmatrix} = \begin{bmatrix} * \end{bmatrix} N = \begin{bmatrix} * \end{bmatrix}$	-0.239

ECFP_6	734603939	CĮ	-0.201
		\bigcirc	
		[*]C	

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.418

Unit: g/kg_body_weight

Mahalanobis Distance: 24.2

Mahalanobis Distance p-value: 6.26e-027

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	ACEMETACIN	bis-OXATIN ACETATE	PRASOZIN .HCI (HCI STRIPPED)
Structure			N N H ₂ N ⁿ N N N N N N N N N N N N N N N N N N N
Actual Endpoint (-log C)	4.235	1.717	2.294
Predicted Endpoint (-log C)	3.39415	2.40947	3.00765
Distance	0.659	0.662	0.674
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	NIIRDN 6;688;82

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]

Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
	·	•			

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097		0.216
FCFP_6	-1549192822	[']\N=C(/C)\[c](:[']) :[']	0.168
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1676877079	[*]N([*])[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	-0.254
ECFP_6	655739385		-0.239

ECFP_6	734603939		-0.201
		[*]C	

 $C_{25}H_{22}N_6O_2S$ Molecular Weight: 470.54617 ALogP: 4.08 Rotatable Bonds: 6

Acceptors: 8 Donors: 1

Model Prediction

Prediction: 0.33

Unit: g/kg_body_weight

Mahalanobis Distance: 24.2

Mahalanobis Distance p-value: 6.26e-027

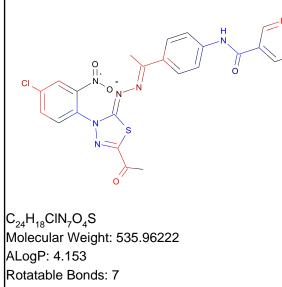
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	ACEMETACIN	bis-OXATIN ACETATE	PRASOZIN .HCI (HCI STRIPPED)
Structure	of of the office		H ₂ N ^M H ₂ N ^M
Actual Endpoint (-log C)	4.235	1.717	2.294
Predicted Endpoint (-log C)	3.39415	2.40947	3.00765
Distance	0.660	0.663	0.675
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	NIIRDN 6;688;82

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 3. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 7. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 8. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 9. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 10. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 11. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]

Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
	•	•			

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097		0.216
FCFP_6	-1549192822	[*]/N=C(/C))[c](:[*]) :[t]	0.168
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	655739385		-0.239
ECFP_6	734603939	$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	-0.201

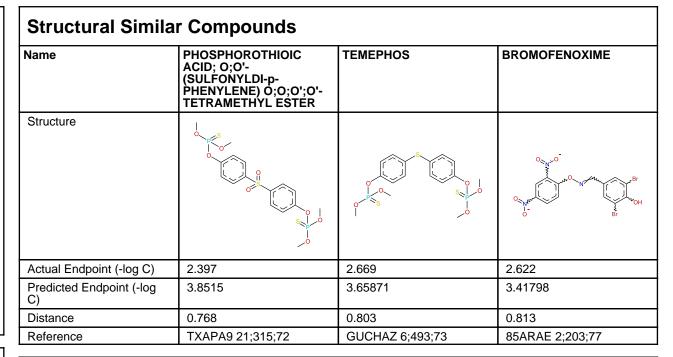
ECFP_6	-210573707	7	-0.122
		[*][c]1:[*]:[cH]:[c](C):[cH]:[cH]:1	

Acceptors: 10

Donors: 1

Model Prediction

Prediction: 0.353


Unit: g/kg_body_weight

Mahalanobis Distance: 28.6

Mahalanobis Distance p-value: 1.02e-053

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 5. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 6. Unknown ECFP_2 feature: -1956535100: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 7. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 8. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 9. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 10. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 11. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 12. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]
- 13. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 14. Unknown FCFP_6 feature: 8: [*][N+](=[*])[*]
- 15. Unknown FCFP_6 feature: 5: [*][O-]
- 16. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 17. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]

- 18. Unknown FCFP_6 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 19. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 20. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 21. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]
- 22. Unknown FCFP_6 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 23. Unknown FCFP_6 feature: 1872392852: [*][N+](=O)[*]
- 24. Unknown FCFP_6 feature: 260476081: [*][N+](=[*])[O-]

Feature Contribution Top features for positive contribution					
ECFP_6	642810091		0.281		
ECFP_6	-1897341097		0.216		
ECFP_6	577592657	[*][c]1:[*]:[cH]:[cH] :[c](CI):[cH]:1	0.194		
		for negative contributio	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		

ECFP_6	-817402818	-0.263
ECFP_6	655739385	-0.239
ECFP_6	734603939	-0.201

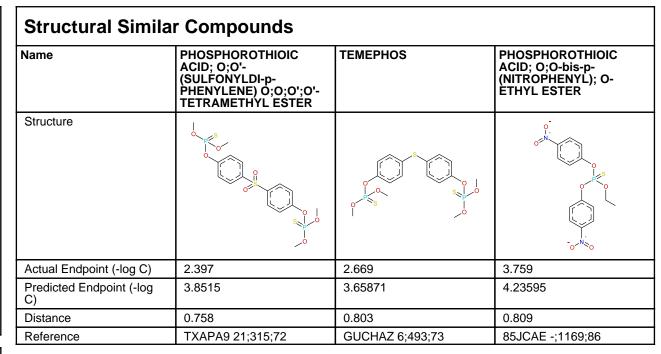
 $C_{24}H_{19}N_7O_4S$ Molecular Weight: 501.51715
ALogP: 3.488
Rotatable Bonds: 7

Acceptors: 10

Donors: 1

Model Prediction

Prediction: 0.272

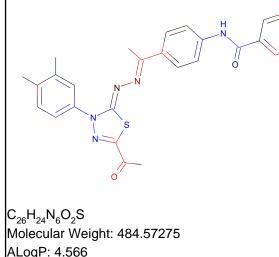

Unit: g/kg_body_weight

Mahalanobis Distance: 28

Mahalanobis Distance p-value: 1.32e-049

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1043790491: [*][N+](=[*])[*]
- 3. Unknown ECFP_2 feature: 781519895: [*][O-]
- 4. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 5. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 7. Unknown ECFP_2 feature: -179073144: [*][N+](=[*])[c](:[cH]:[*]):[cH]:[*]
- 8. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 9. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 10. Unknown ECFP_2 feature: -215026467: [*]:[c](:[*])[N+](=O)[O-]
- 11. Unknown ECFP_2 feature: 2104376220: [*][N+](=O)[*]
- 12. Unknown ECFP_2 feature: -659271057: [*][N+](=[*])[O-]
- 13. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 14. Unknown FCFP_6 feature: 8: [*][N+](=[*])[*]
- 15. Unknown FCFP_6 feature: 5: [*][O-]
- 16. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 17. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]

- 18. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 19. Unknown FCFP_6 feature: -828984032: [*][c](:[*]):[c](:[cH]:[*])[N+](=[*])[*]
- 20. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 21. Unknown FCFP_6 feature: -1338588315: [*]:[c](:[*])[N+](=O)[O-]
- 22. Unknown FCFP_6 feature: 1872392852: [*][N+](=O)[*]
- 23. Unknown FCFP_6 feature: 260476081: [*][N+](=[*])[O-]

	Top features f	for positive contribution	۱
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097		0.216
FCFP_6	-1549192822		0.168
		for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	655739385	[*]N=[*]	-0.239
ECFP_6	734603939		-0.201
FCFP_6	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.117

Rotatable Bonds: 6

Acceptors: 8

Donors: 1

Model Prediction

Prediction: 0.331

Unit: g/kg_body_weight

Mahalanobis Distance: 24.5

Mahalanobis Distance p-value: 2.36e-028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

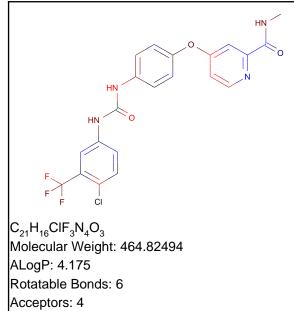
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	ACEMETACIN	bis-OXATIN ACETATE	PRASOZIN .HCI (HCI STRIPPED)
Structure			
Actual Endpoint (-log C)	4.235	1.717	2.294
Predicted Endpoint (-log C)	3.39415	2.40947	3.00765
Distance	0.675	0.686	0.718
Reference	ARZNAD 30;1398;80	NIIRDN 6;609;82	NIIRDN 6;688;82

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -934225701: [*]C(=[*])C1=N[*][*]S1
- 3. Unknown ECFP_2 feature: 189949281: [*]\N=C\1/S[*]=[*]N1[*]
- 4. Unknown ECFP_2 feature: -819426257: [*]C(=NN=[*])[*]
- 5. Unknown ECFP_2 feature: 562081661: [*]C(=NN=[*])[*]
- 6. Unknown ECFP_2 feature: 128986386: [*]\N=C(/C)\[c](:[*]):[*]
- 7. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 8. Unknown FCFP_6 feature: 580960234: [*]C(=NN=[*])[*]
- 9. Unknown FCFP_6 feature: 675799546: [*]=C1[*][*]=NN1[c](:[*]):[*]
- 10. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 11. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]

Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				

ECFP_6	642810091		0.281
ECFP_6	2147419938	[*][c](:[*]):[c](C):[cH]:[*]	0.263
ECFP_6	-1897341097		0.216
	Top Features	for negative contributior	า
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1676877079	[*]N([*])[c]1:[cH]:[*]:[cH]:[c](C):[cH]:1	-0.254
ECFP_6	655739385		-0.239

ECFP_6	734603939	-0.201	
		[*]C	

Sorafenib

Donors: 3

Model Prediction

Prediction: 0.823

Unit: g/kg_body_weight

Mahalanobis Distance: 21

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE
Structure			
Actual Endpoint (-log C)	2.088	5.006	1.946
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395
Distance	0.697	0.703	0.721
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*][c](:[*]):[*]
- 3. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 4. Unknown FCFP_6 feature: 1747237384: [*]:[cH]:n:[cH]:[*]
- 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 136686699: [*]NC

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
	•			

FCFP_6	71953198	PF CI [*]C([*])([*])F	0.392
ECFP_6	-1046436026	[*]F	0.349
ECFP_6	642810091	[*][c](:[*]):[*]	0.281
	Top Features	for negative contributior	n
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	226796801	N ^N O FFFCI [*]C([*])([*])F	-0.32
ECFP_6	-817402818	[*]CI	-0.263

ECFP_6	-176455838	Ņ	-0.257
		N ^N O L	
		l s ↓	
		'	
		H]:[*]	