Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025 Supporting Information Synthesis of Polyurethane/Vinyl Polymer Hybrids with Unexpected Mechanical Properties Using a Macro Chain Transfer Agent ## Ryota Uchida, Seima Kondo, Akinori Takasu* Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan *To whom correspondence should be addressed: e-mail: takasu.akinori@nitech.ac.jp **Figure S1.** ¹H NMR spectrum of PU-TTC from Run 3 in Table 1 prepared in DMSO-*d*₆. Figure S2. ¹³C NMR spectrum of PU-TTC from Run 3 in Table 1 prepared in CDCl₃. **Figure S3.** HMQC spectrum of PU-TTC from Run 3 in Table 1 prepared in DMSO- d_6 . **Figure S5.** SEC trace of polyurethane-poly(MMA) hybrid synthesized *via* PU-TTC (black line = PU-TTC, red line = synthesized polyurethane-poly(MMA) hybrid *via* PU-TTC) (Run 4 in Table 2) **Figure S6.** (A) Plot of monomer conversion (%) vs time (h) (Run 1 in Table S1); (B) Plot of *M*n vs monomer conversion (%) (Run 1 in Table S1). Table S1. RAFT polymerization of MMA using PU-TTC. a,b | Run | [M] ₀ /[TTC] ₀ | $[M]_0$ | Radical trigger | Time | Conv.c | $M_{ m n}{}^d$ | |-----|--------------------------------------|---------|-----------------|------|--------|----------------| | | | (mol/L) | | (h) | (%) | (kg/mol) | | 1 | 100 | 2.0 | Redox-LED | 8 | 54 | 30.4 | ^a Polymerization using PU-TTC (run 3 in Table 1) as chain transfer agent. ^b Polymerization with Ir(ppy)₃ as a redox catalyst by blue-LED irradiation. ^c Calculated from ¹H NMR in CDCl₃. ^d Determined by SEC with poly(methyl methacrylate) standards. **Figure S7.** Evolution of molecular weight of polyurethane-poly(MMA) hybrid resulting from UV irradiation. Figure S8. ¹H NMR spectrum of PU-TTC in CDCl₃. Figure S9. ¹H NMR spectrum of polyurethane-PMMA hybrid in CDCl₃. **Figure S10.** DSC chart in 2nd heating of polyurethane-poly(MMA) hybrid (Run 3 in Table 2) and PMMA homopolymer Table S2. Transmittance of polyurethane-poly(MMA) and PMMA homopolymer. | Sample | <i>M</i> n ^a
(kg/mol) | <i>M</i> _w / <i>M</i> _n ^a | Transmittance(590nm) (%) | |---------------------------------|-------------------------------------|--|--------------------------| | PMMA homopolymer ^b | 173 | 1.98 | 86.0 | | Poly(urethane-MMA) ^b | 79.8 | 2.20 | 7.3 | ^aDetermined by SEC with a standard series of poly(methyl methacrylate)s. ^bThickness of the specimen were 0.90 mm (PMMA homopolymer) and 0.96 mm (poly(urethane-MMA)) respectively. **Figure S13.** IR spectrum of poly(urethane-MMA). Figure S14. Stress-strain curves of PU-TTC.