Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Synthesis of Polyurethane/Vinyl Polymer Hybrids with Unexpected Mechanical Properties Using a Macro Chain Transfer Agent

Ryota Uchida, Seima Kondo, Akinori Takasu*

Division of Soft Materials, Department of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

*To whom correspondence should be addressed: e-mail: takasu.akinori@nitech.ac.jp

Figure S1. ¹H NMR spectrum of PU-TTC from Run 3 in Table 1 prepared in DMSO-*d*₆.

Figure S2. ¹³C NMR spectrum of PU-TTC from Run 3 in Table 1 prepared in CDCl₃.

Figure S3. HMQC spectrum of PU-TTC from Run 3 in Table 1 prepared in DMSO- d_6 .

Figure S5. SEC trace of polyurethane-poly(MMA) hybrid synthesized *via* PU-TTC (black line = PU-TTC, red line = synthesized polyurethane-poly(MMA) hybrid *via* PU-TTC) (Run 4 in Table 2)

Figure S6. (A) Plot of monomer conversion (%) vs time (h) (Run 1 in Table S1); (B) Plot of *M*n vs monomer conversion (%) (Run 1 in Table S1).

Table S1. RAFT polymerization of MMA using PU-TTC. a,b

Run	[M] ₀ /[TTC] ₀	$[M]_0$	Radical trigger	Time	Conv.c	$M_{ m n}{}^d$
		(mol/L)		(h)	(%)	(kg/mol)
1	100	2.0	Redox-LED	8	54	30.4

^a Polymerization using PU-TTC (run 3 in Table 1) as chain transfer agent. ^b Polymerization with Ir(ppy)₃ as a redox catalyst by blue-LED irradiation. ^c Calculated from ¹H NMR in CDCl₃. ^d Determined by SEC with poly(methyl methacrylate) standards.

Figure S7. Evolution of molecular weight of polyurethane-poly(MMA) hybrid resulting from UV irradiation.

Figure S8. ¹H NMR spectrum of PU-TTC in CDCl₃.

Figure S9. ¹H NMR spectrum of polyurethane-PMMA hybrid in CDCl₃.

Figure S10. DSC chart in 2nd heating of polyurethane-poly(MMA) hybrid (Run 3 in Table 2) and PMMA homopolymer

Table S2. Transmittance of polyurethane-poly(MMA) and PMMA homopolymer.

Sample	<i>M</i> n ^a (kg/mol)	<i>M</i> _w / <i>M</i> _n ^a	Transmittance(590nm) (%)
PMMA homopolymer ^b	173	1.98	86.0
Poly(urethane-MMA) ^b	79.8	2.20	7.3

^aDetermined by SEC with a standard series of poly(methyl methacrylate)s.

^bThickness of the specimen were 0.90 mm (PMMA homopolymer) and 0.96 mm (poly(urethane-MMA)) respectively.

Figure S13. IR spectrum of poly(urethane-MMA).

Figure S14. Stress-strain curves of PU-TTC.