Supporting Information

Macroporous C@MoS₂ composite as anode for high-performance

sodium-ion batteries

Yan Yang^{+, a, *}, Lei Wang^{+, a, b}, Cong Suo^a, and Yining Liu^{a, b}

^a SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd

^b Institute of Environmental Remediation, Dalian Maritime University, Dalian 116026, P. R. China.

⁺ *These authors contributed equally to this work.*

*Corresponding authors. *E-mail address:* yangyan.fshy@sinopec.com

Fig. S1. SEM images of PS nanospheres with ordered 3D structure (a-b).

Fig. S2. Structure characterization of Porous C@MoS $_2$, HRTEM image.

Fig. S3. The nanostructure characterizations of $C@MoS_2$, TEM images (a-c) and HRTEM image (d).

Fig. S4. Composition characterization of Porous C@MoS₂. XPS survey spectrum of C@MoS₂ (a) and high-resolution XPS spectra of Mo 3*d* (b), S 2*p* (c), C 1*s* (d).

Fig. S5. TGA curves of Porous C@MoS₂ (a) and C@MoS₂ (b) in air at a heating rate of 10 $\,$ C min⁻¹.

Fig. S6 (A) The nitrogen adsorption-desorption isotherms and (B) pore size distribution plots of Porous C@MoS₂ (a) and C@MoS₂ (b).

Fig. S7. (A) The CO₂ adsorption-desorption isotherms and (B) pore size distribution plots of Porous C@MoS₂ (a, blue line) and C@MoS₂ (b, red line).

Fig. S8. CV curves of control sample C@MoS₂ for the first five cycles at a scan rate of 0.5 mV s^{-1} .

Fig. S9. The galvanostatic discharge-charge curves of C@MoS₂ at 500 mA g^{-1} .

Fig. S10. EIS Nyquist plots of Porous C@MoS₂ (a) and C@MoS₂ (b) after 5 cycles at 0.1 C (A), 0.5C (B) and 2C (C) respectively.

Fig. S11. Long-term cycling property and Coulombic efficiency of $C@MoS_2$ the at a current density of 1000 mA g⁻¹.

Fig. S12. (A) CV curves of Porous $C@MoS_2$ with different scan rates. (B) The contributions of the diffusion and capacitive-controlled storage at different scan rates of $C@MoS_2$.

MoS ₂ -base electrodes	Current (mA.g ⁻¹)	Cycles	Capacity (mA.h.g ⁻¹)	References
1T MoS ₂ -graphene	50	200	313	[1]
MoS ₂ -1-nm-TiO ₂	500	200	182	[2]
MoS ₂ @C	80	100	184	[3]
1T-MoS ₂ /CC	200	200	576	[4]
HC@MoS2@NC	100	100	321	[5]
WS ₂ -MoS ₂ -BioC	100	100	362.5	[6]
V-MoS ₂ @CC	1000	100	311.2	[7]
Porous C@MoS ₂	1000	400	410	This work

Table S1. The electrochemical performance comparasion of Porous Porous $C@MoS_2$ composites with other C/MoS₂-based materials reported in the literature.

- X. Geng, Y. Jiao, Y. Han, A. Mukhopadhyay, L. Yang and H. Zhu, *Adv. Funct. Mater.* 27 (2017) 1702998.
- W. Ren, W. Zhou, H. Zhang and C. Cheng, ACS Appl. Mater. Interfaces, 9 (2017) 487-495.
- 3. X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi and G. Wang, *Adv. Energy Mater.*, 6 (2016) 1502161.
- 4. W. J. Tang, X. I. Wang, D. Xie, X. h. Xia, C. d. Gu and J. p. Tu, *J. Mater. Chem.* A, 6 (2018) 18318.
- Guoquan Suo, Baoguo Zhao, Rongrong Mu, Chuanjin Lin, Shazam Javed, Xiaojiang Hou, Xiaohui Ye, Yanling Yang, Li Zhang, J. Energy Storage, 77 (2024) 109801.
- Jiantao Wang, Chongxia Zhong, Qixin Yang, Jinsong Li, Appl. Surf. Sci. 683 (2025) 161843.
- L. N. Wang, X. Wu, F. T. Wang, X. Chen, J. Xu and K. J. Huang, J. Colloid Interface Sci., 583 (2021) 579.