Supplementary Information for "First Principles Unveiling the Metallic TaS_2/GeC Heterostructure as an Anode material in Sodium-Ion Batteries"

Thi Nhan Tran¹, Khang D. Pham², Chuong V. Nguyen³, Nguyen N. Hieu^{4,5†}, Viet Bac Thi Phung^{6†}

¹Faculty of Fundamental Sciences, Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Hanoi 100000, Vietnam.
²Department of Technology and Materials, Military Institute of Mechanical Engineering, Ha Noi, Vietnam.
³Department of Materials Science and Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam.
⁴Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam. Email: hieunn@duytan.edu.vn
⁵Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam.
⁶Center for Environmental Intelligence and College of Engineering & Computer Science, VinUniversity, Hanoi 100000, Vietnam. Email: bac.ptv@vinuni.edu.vn

* monitorisity, manor 100000, vicinami. Emain. ouc.procentin

 † To whom correspondence should be addressed.

TABLE S1: Several geometric parameters of the TaS_2/GeC structure during the Na ion adsorption and intercalation process. The symbols used in the table are explained in Figure S1.

Number of adsorbed Na layers	h (Å)	$d_{int}(\mathring{A})$	d_1 (Ta–S) (Å)	d_2 (Ta–S) (Å)	$\Delta_{\mathrm{Ge-C}}$ (Å)
0	6.02	2.87	2.46	2.46	0.10
1	6.11	2.97	2.48	2.45	0.10
2	7.17	3.99	2.47	2.47	0.49
3	7.68	4.01	2.47	2.47	0.49
4	7.69	3.94	2.47	2.47	0.60
5	7.70	3.94	2.47	2.47	0.59

FIG. 1: Projected band structures of TaS2/GeC heterostructure (a) without and (b) with presence of spin-orbit coupling. Blue and yellow lines represent the contributions of the TaS2 and GeC layer, respectively

FIG. S2: Several geometric parameters of the TaS₂/GeC structure during the Na ion adsorption and intercalation process. Here, h denotes the thickness of the TaS₂/GeC heterostructure, d_{int} is the interlayer distance, and d_1 (Ta–S) and d_2 (Ta–S) represent the Ta–S bond lengths in the outer and inner layers of the TaS₂ monolayer, respectively. Δ_{Ge-C} indicates the buckling height of the GeC layer.

TABLE S2: Average charge transfer of Na layers in different Na–TaS₂–GeC configurations.

Configuration	Na layers	Average charge transfer (e)	Notes	
$Na-TaS_2-GeC$	1	-0.50	1st Na layer on top of TaS_2	
Na-TaS ₂ -Na-GeC	2	-0.47	1st Na layer on top of TaS_2	
		-0.80	2nd Na layer between TaS_2 and GeC	
Na ₂ -TaS ₂ -Na-GeC	3	-0.01	3rd Na layer on top of TaS_2	
		-0.43	1st Na layer on top of TaS_2	
		-0.80	2nd Na layer between TaS_2 and GeC	
Na ₂ -TaS ₂ -Na-GeC-Na	4	-0.02	3rd Na layer on top of TaS_2	
		-0.44	1st Na layer on top of TaS_2	
		-0.80	2th Na layer between TaS ₂ and GeC	
		-0.46	4th Na layer on top of GeC	
Na ₂ -TaS ₂ -Na-GeC-Na ₂	5	-0.02	3rd Na layer on top of TaS_2	
		-0.45	1st Na layer on top of TaS_2	
		-0.80	2nd Na layer between TaS_2 and GeC	
		-0.48	$4\mathrm{th}$ Na layer on top of GeC	
		-0.01	5th Na layer on top of GeC	

FIG. S3: Side view of the geometric structures of the pristine TaS_2/GeC system and with Na atoms adsorbed/intercalated at various concentrations: (a) pristine structure; (b)–(f) structures with 1 to 5 Na layers adsorbed/intercalated, respectively.

FIG. S4: Partial density of states (PDOS) of the pristine TaS_2/GeC system and with Na atoms adsorbed/intercalated at different concentrations: (a) pristine structure; (b)–(f) structures with 1 to 5 layers of Na, respectively. The green and purple curves indicate the PDOS of TaS_2/GeC and the adsorbed/intercalated Na atoms, respectively.