Supporting Information

for

Multi-stimuli-responsive aggregation-induced emission of boryl

substituted phenothiazine

Guoqiang Li,^{‡a} Yan Wang,^{‡a} Yaohui Li,^a Zengheng Wen,^a Zhuang Luo,^a Weijun Song,^{*a} and Weidong Zhang^{*a} ^a School of Chemical Engineering, Qinghai University, Xining, 810016, China

E-mail: zhangwd@qhu.edu.cn; songweijun1980@163.com

Contents

1. The excitation and emission spectra	3
2. The fluorescence lifetime decay spectra	3
3. The Experimental and the Calculated UV-Vis spectra	4
4. Aggregation-induced fluorescence properties1	5
5. Electrochemical properties1	9
6. Comparison of HOMO/LUMO plots2	0
7. Determination of the detection limit2	3
8. Reversibility of the MFC performance2	3
9. ¹ H NMR and ¹³ C NMR spectra2	4
10. HRMS spectra2	8
11. Reference	0

1. The excitation and emission spectra

Figure S1. Fluorescence excitation (solid line) and emission spectra (dashed line).

Figure S2. Fluorescence lifetime decay spectra of 4a-4d.

3. The Experimental and the Calculated UV-Vis spectra

Figure S3. Computed, at the TD-DFT, B3LYP-D3/6-31g(d),¹⁻⁴ level of theory and experimental UV-vis spectra of **4a**.

experimental UV-vis spectra of 4b.

Figure S5. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and experimental UV-vis spectra of **4c**.

Figure S6. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and experimental UV-vis spectra of 4d.

Figure S7. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and experimental UV-vis spectra of 4a-F.

Figure S8. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and experimental UV-vis spectra of **4b-F**.

Figure S9. Computed, at the TD-DFT, B3LYP-D3/6-31g(d), level of theory and experimental UV-vis spectra of **4c-F**.

Table S1. Calculated (λ_{TD-DFT}) wavelengths of **4a**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP-D3/6-31g(d))

	Oscillator	MOr	
∧ _{TD-DFT}	Strength, f	NIOS	
294.06	0.2492	HOMO-1 ->LOMO	16.36%
384.90	0.3482	HOMO ->LOMO+1	67.91%
		HOMO-1 ->LOMO	65.91%
344.42	0.2178	HOMO ->LOMO+1	15.95%
		HOMO ->LOMO+2	12.71%
		HOMO-3 ->LOMO	18.44%
220.75	0.1074	HOMO-2 ->LOMO	59.67%
520.75		HOMO ->LOMO+2	27.34%
		HOMO ->LOMO+3	12.03%
		HOMO-5 ->LOMO	29.71%
	0.1548	HOMO-4 ->LOMO	49.53%
208 02		HOMO-3 ->LOMO	23.97%
298.02		HOMO-2 ->LOMO	12.51%
		HOMO ->LOMO+3	19.24%
		HOMO ->LOMO+4	12.59%
		HOMO-10 ->LOMO	11.86%
		HOMO-8 ->LOMO	27.38%
250 07	0.1467	HOMO-2 ->LOMO+1	18.00%

		HOMO ->LOMO+8	15.67%
		HOMO ->LOMO+9	14.88%
		HOMO ->LOMO+10	51.02%
		HOMO-8 ->LOMO	10.78%
241.05	0.2265	HOMO-2 ->LOMO+2	61.34%
241.93	0.2203	HOMO-2 ->LOMO+3	15.89%
		HOMO-1 ->LOMO+3	16.75%
		HOMO-8 ->LOMO+1	16.38%
		HOMO-8 ->LOMO+2	11.53%
		HOMO-7 ->LOMO+1	25.47%
232.10	0.0958	HOMO-2 ->LOMO+3	15.35%
		HOMO-2 ->LOMO+4	21.42%
		HOMO-1 ->LOMO+3	22.26%
		HOMO-1 ->LOMO+4	25.05%
		HOMO-1 ->LOMO+5	26.47%
		HOMO-1 ->LOMO+8	10.57%
		HOMO ->LOMO+11	19.75%

Table S2. Calculated (λ_{TD-DFT}) wavelengths of **4b**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP-D3/6-31g(d))

2	Oscillator	MOs	
∧TD-DFT	Strength, f	10105	
381.60	0 3731	HOMO-1 ->LOMO	18.37%
381.09	0.5751	HOMO ->LOMO+1	67.26%
		HOMO-1 ->LOMO	65.17%
348.08	0.2702	HOMO ->LOMO+1	18.15%
		HOMO ->LOMO+2	13.38%
		HOMO-2 ->LOMO	29.32%
328.39	0.1042	HOMO ->LOMO+2	59.14%
		HOMO ->LOMO+3	15.72%
204.00	0 1052	HOMO-3 ->LOMO	59.70%
504.90	0.1032	HOMO ->LOMO+3	31.43%
		HOMO-6 ->LOMO	10.37%
		HOMO-5 ->LOMO	13.23%
284.39	0.6227	HOMO-1 ->LOMO+1	60.07%
		HOMO ->LOMO+4	22.75%
		HOMO ->LOMO+8	12.08%
	267.64 0.1308	HOMO-7 ->LOMO	11.68%
267.64		HOMO-2 ->LOMO+1	63.02%
207.04		HOMO ->LOMO+3	10.68%
		HOMO ->LOMO+9	16.27%
		HOMO-10 ->LOMO	18.91%
261 55	0 1897	HOMO-1 ->LOMO+1	10.06%
201.55	0.1077	HOMO ->LOMO+8	19.42%
		HOMO ->LOMO+10	58.63%
		HOMO-10 ->LOMO	18.17%
		HOMO-2 ->LOMO+1	16.94%
261.23	0.1078	HOMO-1 ->LOMO+2	19.93%
		HOMO ->LOMO+8	15.20%
		HOMO ->LOMO+9	56.46%
		HOMO-10 ->LOMO	27.46%
		HOMO-9 ->LOMO	11.38%
251 22	0 1 9 2 2	HOMO-8 ->LOMO	27.01%
231.33	0.1033	HOMO-3 ->LOMO+1	10.15%
		HOMO-2 ->LOMO+2	49.81%
		HOMO ->LOMO+10	13.64%

Table S3. Calculated (λ_{TD-DFT}) wavelengths of **4c**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP-D3/6-31g(d))

2	Oscillator	MOs	
∧TD-DFT	Strength, f	IVIOS	
307.06	0 3303	HOMO-1 ->LOMO	13.10%
397.90	0.3393	HOMO ->LOMO+1	68.29%
		HOMO-1 ->LOMO	43.94%
241.40	0.0026	HOMO ->LOMO+1	10.83%
341.40	0.0920	HOMO ->LOMO+2	50.11%
		HOMO ->LOMO+3	12.61%
225 41	0.1710	HOMO-1 ->LOMO	51.03%
333.41	0.1/19	HOMO ->LOMO+2	45.08%
		HOMO-5 ->LOMO	50.31%
297.77	0.1729	HOMO-4 ->LOMO	42.46%
		HOMO-2 ->LOMO	15.84%
		HOMO-1 ->LOMO+1	52.83%
		HOMO ->LOMO+4	25.73%
289.25	0.4525	HOMO ->LOMO+8	26.68%
		HOMO ->LOMO+9	14.36%
		HOMO ->LOMO+10	13.22%
		HOMO-1 ->LOMO+1	25.90%
		HOMO ->LOMO+4	25.57%
		HOMO ->LOMO+5	12.02%
285.24	0.2054	HOMO ->LOMO+7	16.28%
		HOMO ->LOMO+8	45.26%
		HOMO ->LOMO+9	22.35%
		HOMO ->LOMO+10	19.91%
		HOMO-8 ->LOMO	14.15%
		HOMO-3 ->LOMO+1	14.09%
257.39	0.1254	HOMO ->LOMO+8	28.47%
		HOMO ->LOMO+9	10.56%
		HOMO ->LOMO+10	55.01%
		HOMO-11 ->LOMO	22.59%
		HOMO-9 ->LOMO	11.65%
232.23	0.1095	HOMO-7 ->LOMO+1	14.92%
		HOMO-4 ->LOMO+2	55.30%
		HOMO-1 ->LOMO+3	15.74%

Table S4. Calculated (λ_{TD-DFT}) wavelengths of **4d**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP-D3/6-31g(d))

	Oscillator	MOg	
∧ _{TD-DFT}	Strength, f	WIOS	
410.94	0.4496	HOMO ->LOMO	69.69%
		HOMO-1 ->LOMO	34.75%
		HOMO ->LOMO+5	24.70%
		HOMO ->LOMO+6	15.46%
292.71	0.3280	HOMO ->LOMO+7	28.07%
		HOMO ->LOMO+8	32.57%
		HOMO ->LOMO+9	26.59%
		HOMO ->LOMO+10	10.45%
		HOMO-1 ->LOMO	42.65%
		HOMO ->LOMO+5	23.40%
287.73	0.7070	HOMO ->LOMO+6	28.69%
		HOMO ->LOMO+8	32.99%
		HOMO ->LOMO+9	22.37%
		HOMO-1 ->LOMO	20.00%
287.68	0.1750	HOMO ->LOMO+7	62.54%
		HOMO ->LOMO+8	15.37%
		HOMO ->LOMO+9	13.54%
		HOMO-2 ->LOMO	34.22%
264.11	0.1440	HOMO ->LOMO+8	34.15%
		HOMO ->LOMO+9	46.32%
		HOMO-2 ->LOMO	50.95%
263 11	0 1457	HOMO ->LOMO+8	20.60%
203.11	0.1437	HOMO ->LOMO+9	19.30%
		HOMO ->LOMO+10	32.70%
		HOMO-6 ->LOMO	13.65%
		HOMO-2 ->LOMO	29.12%
258.84	0.1841	HOMO-1 ->LOMO+2	12.22%
		HOMO ->LOMO+9	18.19%
		HOMO ->LOMO+10	54.48%
		HOMO-3 ->LOMO	18.70%
23/1/	0.2610	HOMO-2 ->LOMO+2	60.76%
234.14	0.2010	HOMO-1 ->LOMO+5	20.89%
		HOMO ->LOMO+11	10.63%

2	Oscillator	MOg	
∧ _{TD-DFT}	Strength, f	IVIOS	
444.11	0.4133	HOMO ->LOMO	69.42%
378.56	0.1029	HOMO ->LOMO+1	69.19%
		HOMO-4 ->LOMO	35.51%
		HOMO-3 ->LOMO	44.09%
300.91	0.2392	HOMO-2 ->LOMO	24.15%
		HOMO-1 ->LOMO	15.22%
		HOMO ->LOMO+8	24.78%
		HOMO-4 ->LOMO	31.73%
282.27	0.1763	HOMO ->LOMO+7	21.57%
		HOMO ->LOMO+8	56.38%
		HOMO-6 ->LOMO	65.74%
267.13	0.1722	HOMO ->LOMO+10	11.58%
		HOMO ->LOMO+11	12.48%
		HOMO-6 ->LOMO+1	63.82%
252.20	0.2590	HOMO-4 ->LOMO+2	13.77%
233.28	0.5580	HOMO-3 ->LOMO+3	11.48%
		HOMO-1 ->LOMO+4	14.38%
		HOMO-6 ->LOMO+1	12.09%
252.64	0.0174	HOMO-4 ->LOMO+3	43.97%
232.04	0.0174	HOMO-3 ->LOMO+2	10.28%
		HOMO-3 ->LOMO+3	51.31%
		HOMO-8 ->LOMO	14.26%
251.20	0.0159	HOMO-6 ->LOMO+1	10.68%
251.30	0.0138	HOMO-6 ->LOMO+2	16.88%
		HOMO-1 ->LOMO+4	59.63%
		HOMO-11 ->LOMO	16.25%
		HOMO-11 ->LOMO+1	13.20%
		HOMO-9 ->LOMO+2	12.13%
		HOMO-6 ->LOMO+1	12.78%
249.96	0.0194	HOMO-6 ->LOMO+2	49.26%
		HOMO-6 ->LOMO+3	12.38%
		HOMO-5 ->LOMO+2	13.92%
		HOMO-4 ->LOMO+2	28.58%
		HOMO-1 ->LOMO+4	16.47%

Table S5. Calculated (λ_{TD-DFT}) wavelengths of **4a-F**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP-D3/6-31g(d))

Table S6. Calculated (λ_{TD-DFT}) wavelengths of 4b-F. Molecular orbitals (MOs) involved
in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT,
B3LYP-D3/6-31g(d))

2	Oscillator	MOs	
TD-DFT	Strength, f	10105	
430.55	0.5816	HOMO ->LOMO	69.91%
		HOMO-2 ->LOMO	10.16%
		HOMO-1 ->LOMO	50.63%
309.09	0.1320	HOMO ->LOMO+5	22.89%
		HOMO ->LOMO+6	35.31%
		HOMO ->LOMO+7	15.53%
		HOMO-2 ->LOMO	29.01%
		HOMO-1 ->LOMO	14.43%
293.97	0.2665	HOMO ->LOMO+4	55.54%
		HOMO ->LOMO+5	17.86%
		HOMO ->LOMO+6	17.02%
		HOMO-5 ->LOMO	10.84%
		HOMO-3 ->LOMO	18.44%
283.20	0.1595	HOMO-2 ->LOMO	14.69%
203.29		HOMO ->LOMO+5	51.01%
		HOMO ->LOMO+6	34.76%
		HOMO ->LOMO+7	16.30%
		HOMO-4 ->LOMO	28.89%
275 58	0 1641	HOMO-1 ->LOMO+1	23.62%
275.50	0.1041	HOMO ->LOMO+6	19.25%
		HOMO ->LOMO+7	51.10%
		HOMO-7 ->LOMO	20.66%
268.82	0.1561	HOMO-5 ->LOMO	60.65%
		HOMO-1 ->LOMO+2	19.90%
256.46	0 1445	HOMO-7 ->LOMO	21.29%
230.40	0.145	HOMO-3 ->LOMO+1	38.80%
		HOMO-5 ->LOMO+1	56.60%
		HOMO-5 ->LOMO+2	15.18%
245 21	0 2197	HOMO-3 ->LOMO+2	24.33%
	0.2177	HOMO-3 ->LOMO+3	12.48%
		HOMO-2 ->LOMO+2	10.76%
		HOMO-2 ->LOMO+3	16.35%

Table S7. Calculated (λ_{TD-DFT}) wavelengths of **4c-F**. Molecular orbitals (MOs) involved in the main electronic transition, f corresponds to the oscillator strength. (TD-DFT, B3LYP-D3/6-31g(d))

	Oscillator		
λ_{TD-DFT}	Strength,	MOs	
	f		
467.46	0.5582	HOMO ->LOMO	70.06%
217 61	0.2695	HOMO-3 ->LOMO	67.31%
517.01	0.2083	HOMO ->LOMO+3	10.65%
200.61	0.0005	HOMO-5 ->LOMO	10.54%
509.01	0.0903	HOMO-4 ->LOMO	67.41%
		HOMO-6 ->LOMO	11.81%
		HOMO-1 ->LOMO+1	27.11%
289.77	0.1200	HOMO ->LOMO+4	53.75%
		HOMO ->LOMO+5	11.92%
		HOMO ->LOMO+6	26.02%
	0.0856	HOMO-7 ->LOMO	14.20%
287.82		HOMO-6 ->LOMO	64.22%
		HOMO-3 ->LOMO+1	20.64%
		HOMO ->LOMO+4	10.28%
		HOMO-4 ->LOMO+1	13.95%
270.26	0.1029	HOMO-3 ->LOMO+1	33.61%
279.20	0.1058	HOMO ->LOMO+5	46.00%
		HOMO ->LOMO+6	33.09%
		HOMO-7 ->LOMO	53.47%
		HOMO-6 ->LOMO	12.05%
262.15	0.1038	HOMO-6 ->LOMO+1	33.30%
		HOMO-3 ->LOMO+3	13.24%
		HOMO-1 ->LOMO+2	11.88%
		HOMO-7 ->LOMO	28.63%
260.49	0.1574	HOMO-6 ->LOMO+1	56.62%
200.48	0.13/4	HOMO-1 ->LOMO+2	13.26%
		HOMO ->LOMO+8	18.70%

4. Aggregation-induced fluorescence properties

Figure S10. Photoluminescence (PL) spectra of 4b in different THF/water ratios. (a) Photographs of aggregates under UV light, $\lambda_{ex} = 365$ nm. (b) Emission intensity of 4b as the THF/water ratio is altered (Left: fluorescence intensity at 465 nm; Right: fluorescence intensity at 578 nm). (c) CIE chromaticity. (d) Emission spectra of 4b in solutions (with different polarities).

Figure S11. Photoluminescence (PL) spectra of **4c** in different THF/water ratios. (a) Photographs of aggregates under UV light, $\lambda_{ex} = 365$ nm. (b) Emission intensity of **4c** as the THF/water ratio is altered (Left: fluorescence intensity at 400 nm; Right: fluorescence intensity at 503 nm). (c) CIE chromaticity. (d) Emission spectra of **4c** in solutions (with different polarities).

Figure S12. Photoluminescence (PL) spectra of 4d in different THF/water ratios. (a) Photographs of aggregates under UV light, $\lambda_{ex} = 365$ nm. (b) Emission intensity of 4d as the THF/water ratio is altered (Left: fluorescence intensity at 465 nm; Right: fluorescence intensity at 578 nm). (c) CIE chromaticity. (d) Emission spectra of 4d in solutions (with different polarities).

Figure S13. Figure Sx. (a) absorption and (b) emission spectra of 4a in different solvents;(c) Plots of Stokes shift (SS) of 4a versus solvent polarity parameter (Δf).

Solvent	Δf^a	$\lambda_{ab} (nm)^b$	$\lambda_{em} (nm)^c$	\mathbf{SS}^d
CCl ₄	0.011	305	627	1684
Toluene	0.014	290	643	1893
dioxane	0.021	264	655	2261
chloroform	0.149	288	660	1957
EA	0.201	266	658	2240
DCM	0.218	287	661	1971
DMSO	0.263	291	478	1344
DMF	0.275	289	475	1355
acetonitrile	0.306	265	465	1623
Methanol	0.309	265	460	1600

Table S8. Photophysical Properties of 4a in Different Solvents

^{*a*} solvent polarity parameter taken from the Lippert-Mataga equation. ^{*b*} The longest λ_{max} values in the UV-Vis spectra. ^{*c*} Emission maxima in solvent. ^{*d*} Stokes shift = $1/\lambda_{abs} - 1/\lambda_{em}$.

5. Electrochemical properties

Cyclic voltammograms were recorded with a Metrohm PGSTAT204 electrochemical analyzer using DCM. The CV cell consisted of a gold electrode, a Pt wire counter electrode, and an Ag/AgCl reference electrode. All measurements were performed using DCM solutions of samples with a concentration of 1 mM and 0.1 M $Bu_4N^+BF_6^-$ as a supporting electrolyte with a scan rate of 100 mVs⁻¹. Potentials are determined against a ferrocene/ferrocenyl ion couple (Fc/Fc⁺).

Figure S14. Cyclic voltammograms of **4a**, **4b**, **4c** and **4d** in DCM with $Bu_4N^+BF_6^-$ (0.1 M) as a supporting electrolyte, Fc = ferrocene.

6. Comparison of HOMO/LUMO plots

Entry	$E_g^{a}(eV)$	$E_{OX}^{b}(\mathbf{V})$	HOMO(eV) (Exp) ^c	LUMO(eV) (Exp) ^d	HOMO(eV) (Cal) ^e	LUMO(eV) (Cal) ^e	<i>E_g</i> (eV) (Cal) ^{<i>e</i>}
4a	3.59	0.79	-5.59	-2.00	-5.40	-0.95	4.46
4b	3.55	0.86	-5.66	-2.11	-5.30	-0.85	4.45
4c	3.40	0.96	-5.76	-2.36	-5.74	-1.45	4.29
4d	3.20	0.78	-5.58	-2.38	-4.88	-0.79	4.09

Table S9. Electronic properties of 4a, 4b, 4c and 4d

 $^{a}E_{\rm g}$ estimated from the UV-Vis absorption spectra.

^b Oxidation onset potentials measured by cyclic voltammetry.

 c HOMO = -(E_{OX} + 4.8) eV.

^{*d*} LUMO = HOMO + E_{g} .

^{*e*}Theoretical calculations have been carried out by using the GAUSSIAN09 suite of programs in gas-phase at the B3LYP/6-31G(d) levele,⁵ respectively.

Figure S15. Computed molecular orbital plots for 4a.

Figure S17. Computed molecular orbital plots for 4c.

Figure S18. Computed molecular orbital plots for 4d.

7. Determination of the detection limit

Figure S19. (a-c) The calibration curves and linear equation of **4a-4c** for FL intensity ratio changes upon gradual addition of F^- . (d)The calculated detection limits of **4a**, **4b**, and **4c**.

8. Reversibility of the MFC performance

Figure S20. Emission spectra (a) and maximum emission wavelengths of 4a upon repeating treated by grinding and wetting with DCM. (c) XRD patterns of 4a: as-prepared, grinding and wetted samples.

9. ¹H NMR and ¹³C NMR spectra

¹³C NMR spectrum of **4b** in CDCl₃

¹³C NMR spectrum of **4c** in CDCl₃

10. HRMS spectra

11. Reference

(1) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.

(2) Cammi, R.; Tomasi, J. J. Comput. Chem. 1995, 16, 1449.

(3) Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.

(4) Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161.

(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. Gaussian09, Revision A.01, Gaussian, Wallingford, Con, USA, **2009**.

Author Contributions

Weidong Zhang conceived the idea for the study. Guoqiang Li prepared the samples and conducted characterizations. Guoqiang Li, Yan Wang, Zengheng Wen, and Zhuang Luo helped to prepare and characterize the samples. Weidong Zhang and Guoqiang Li wrote the manuscript and Guoqiang Li, Yan Wang, Yaohui Li, and Weijun Song revised and polished the manuscript.