

Support Information

Optimization of microstructure of conductive inks with high silver content by solvent volatilization modulation and application in flexible electronics

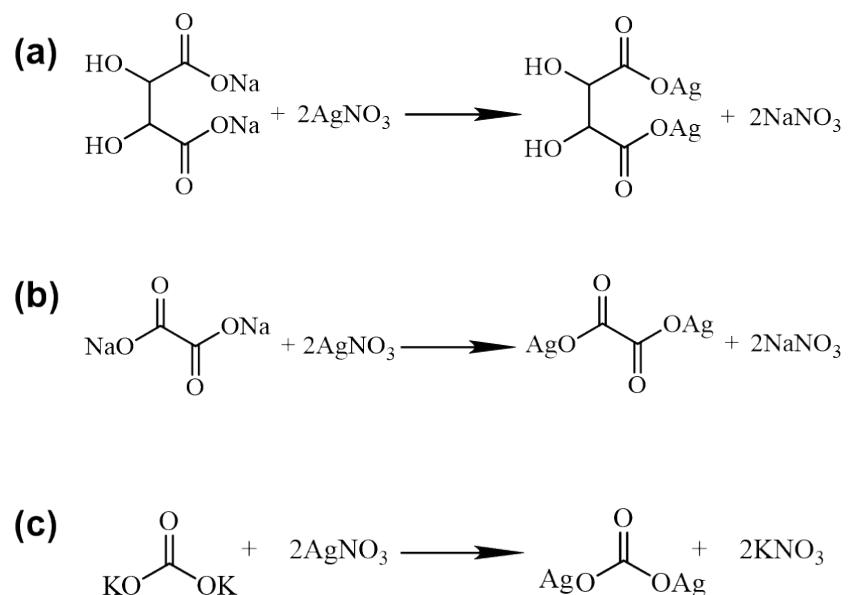
Qisong Feng^{a,b}, Junjun Ma^{a,b}, Yankun Shen^{a,b}, Zheng Zhou^{a,b}, Shilian Wu^{a,b}, Juan Wang^{a,b}, Junpeng Li^{c,d,e,*}, Yu Yang^{a,b,*}

^a Yunnan International Joint Research Center for Photoelectric Information Materials, School of Materials and Energy, Yunnan University, Kunming 650500, P. R. China

^b International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650500, P. R. China

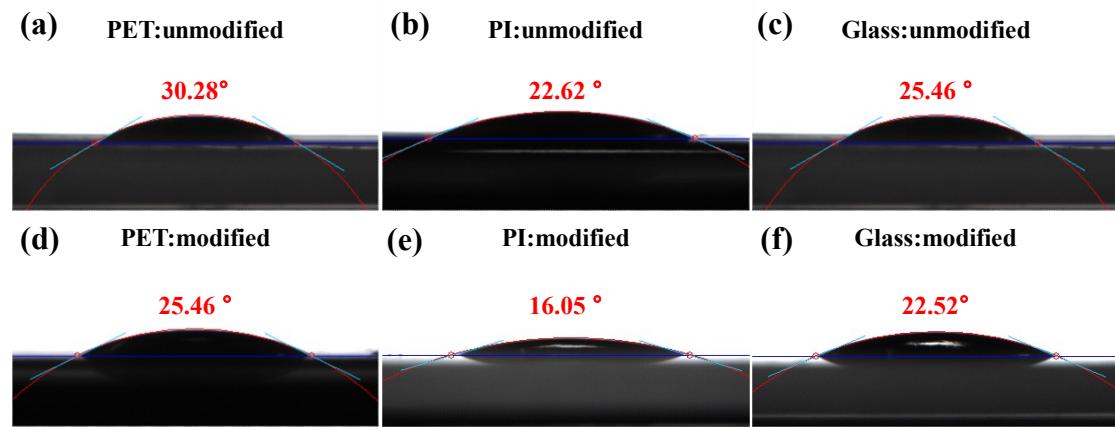
^c State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming, Yunnan 650106, China

^d Sino-Platinum Electronic Materials (Yunnan) Co., Ltd, Kunming, Yunnan 650503, China

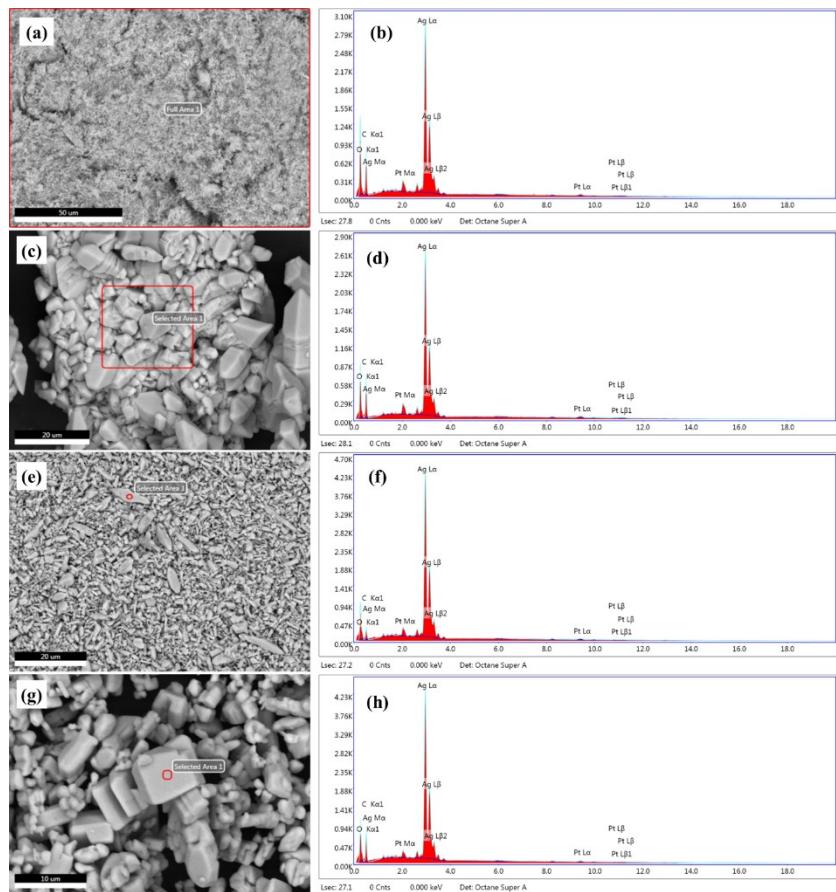

^e Sino-Platinum Metals Co., Ltd, Kunming, Yunnan 650106, China

*Corresponding author: Junpeng Li, Email: lijunpeng@ipm.com.cn

*Corresponding author: Yang Yu, Email: yuyang@ynu.edu.cn


1. Synthesis of precursors

Using the same steps and preparation process as for silver citrate, silver tartrate was prepared via an ion exchange reaction between sodium tartrate and silver nitrate. Specifically, 0.01 mol of sodium tartrate solution was reacted with 0.02 mol of silver nitrate solution. Similarly, silver oxalate was prepared via an ion exchange reaction between sodium oxalate and silver nitrate, following the same steps as for the preparation of silver citrate. Specifically, 0.01 mol of sodium oxalate solution was reacted with 0.02 mol of silver nitrate solution. Finally, using the same preparation method as described above, silver carbonate was prepared via an ion exchange reaction between anhydrous potassium carbonate and silver nitrate. Specifically, 0.01 mol of anhydrous potassium carbonate was reacted with 0.02 mol of silver nitrate solution to prepare silver carbonate. The reaction equation is as follows:


Figure S1 Synthesis reaction equation for: (a)silver tartrate, (b)silver oxalate, and (c) silver carbonate

2. Substrate hydrophobicity angle before and after ozone treatment

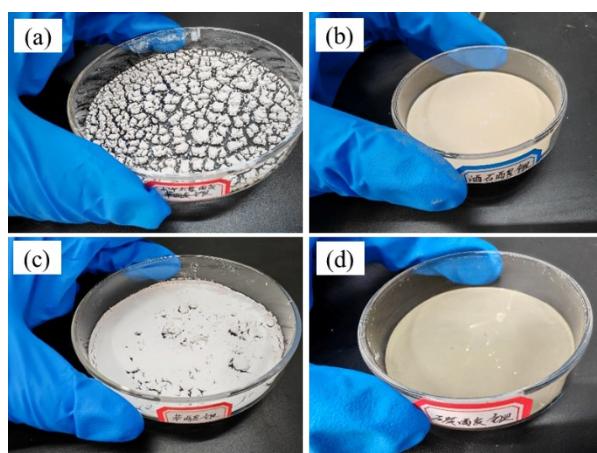


Figure S2 Contact angles of ink on the substrates under UV-ozone treatment for 20 minutes:(a) PET; (b) PI; (c) glass slides; (d) PET after treatment; (e) PI after treatment; (f) glass slides after treatment.

3. EDS energy spectra and SEM images of four precursor silvers

Figure S3 (a, c, e, g) are the SEM images of silver citrate, silver tartrate, silver oxalate, and silver carbonate, respectively; (b, d, f, h) are the EDS spectra of silver citrate, silver tartrate, silver oxalate, and silver carbonate, respectively.

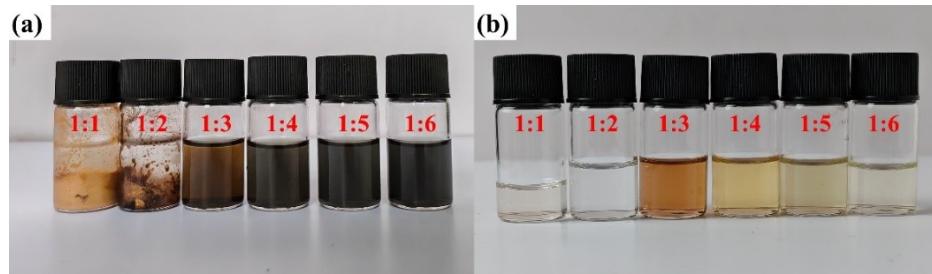
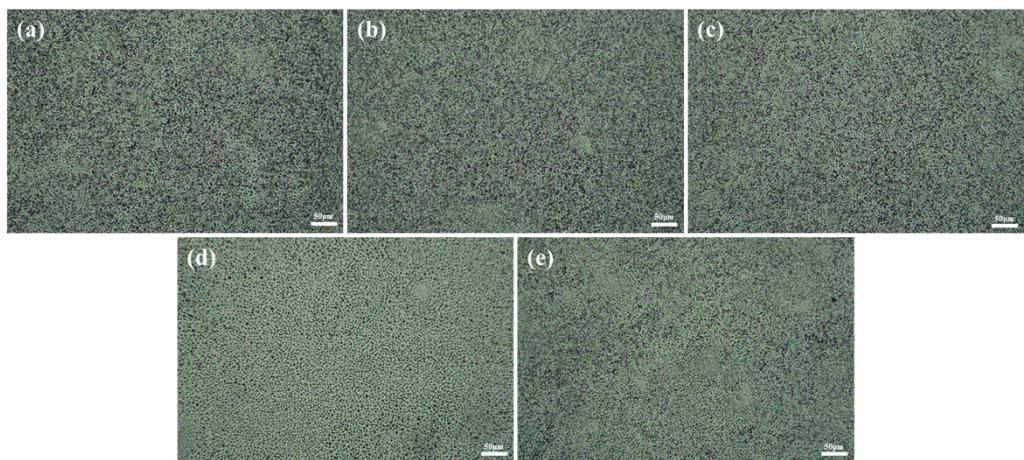


Figure S4 Optical photograph of silver citrate, silver tartrate, silver oxalate, and silver carbonate.

4. Experimental part of performance optimization of conductive inks


Figure S5 Contact angle size of different solvents on different substrates: (a₁~a₃) contact angle size of methanol on glass, PET and PI substrates; (b₁~b₃) contact angle size of ethanol on glass, PET and PI substrates; (c₁~c₃) contact angle size of isopropanol on glass, PET and PI substrates; (d₁~d₃) contact angle size of ethanolamine on glass, PET and PI substrates; (e₁~e₃) contact angle size of ethylene glycol on contact angle size on glass, PET and PI substrates; (f₁~f₃) contact angle size of glycerine on glass, PET and PI substrates;

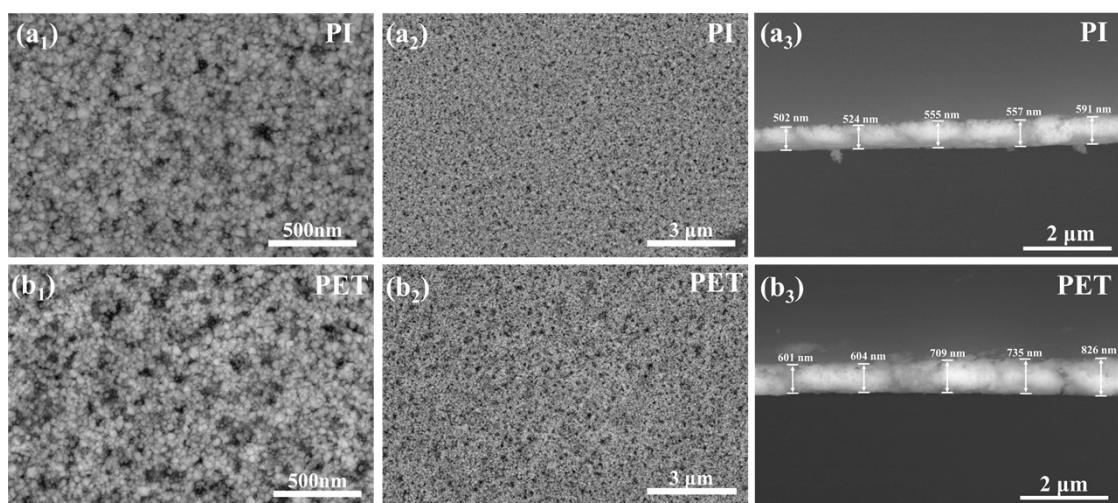

Figure S6 Synthesis of ink using silver citrate and monohydrated ethylenediamine at different silver-to-amine molar ratios

Figure S7 The sheet resistance after sintering at 140°C for 10 minutes under different heating rates

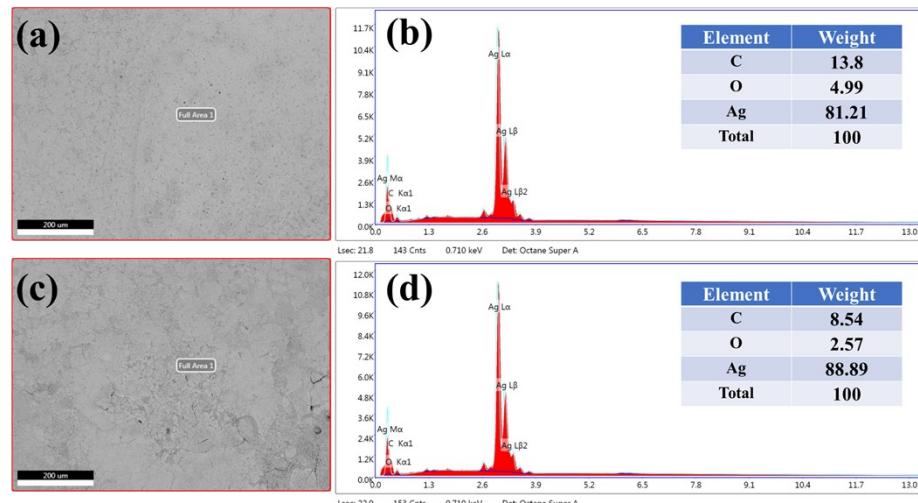


Figure S8 (a, b, c, d, e) correspond to the metallographic images of the films formed by sintering the conductive inks at 500 \times magnification in Schemes A, B, C, D, and E in Table S4, respectively.

Figure S9 (a1, a2) SEM of organically decomposed ink after sintering in air at 160 °C on PI substrate; (a3) SEM of cross-section after sintering in air at 160 °C on PI

substrate; (b1, b2) SEM of organically decomposed ink after sintering in air at 160 °C on PET substrate; (b3) SEM of cross-section after sintering in air at 160 °C on PET substrate; (b4) SEM of cross-section of cross-section after sintering in air at 160 °C on PET substrate. (b3) SEM of cross-section after sintering of organically decomposed ink on PET substrate in air at 160 °C;

Figure S10 (a) SEM after sintering of ink on PI substrate in air at 160°C for 30 min; (b) EDS after sintering of ink on PI substrate in air at 160°C for 30 min; (a) SEM after sintering of ink on PI substrate in nitrogen at 160°C for 30 min; (b) EDS after sintering of ink on PI substrate in nitrogen at 160°C for 30 min; (c) EDS after sintering of ink on PI substrate in nitrogen at 160°C for 30 min. EDS;

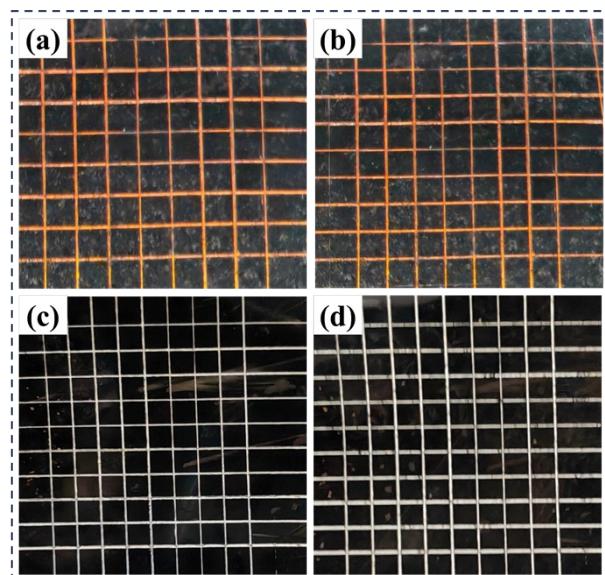


Figure S11 Adhesion test of ink on different substrates: (a) before test photo of ink on

PI film at 140°C after sintering; (b) after test photo of ink on PI film at 140°C after sintering; (c) before test photo of ink on PET film at 140°C after sintering; (d) after test photo of ink on PET film at 140°C after sintering

Table S1 Dispersion of silver citrate in different organic solvents

Scheme	Silver Precursor	Solvent	Viscosity (25°C)	Boiling Point	Solubility	Liquid State
A	Silver citrate	Methanol	0.59 mPa·s	64.7°C	Slightly soluble	Pale yellow
B	Silver citrate	Ethanol	1.20 mPa·s	78.4°C	Slightly soluble	Pale yellow
C	Silver citrate	Isopropanol	2.45 mPa·s	82.3°C	Slightly soluble	Pale yellow
D	Silver citrate	Ethanolamine	4.50 mPa·s	170.8°C	Dissolution reaction	Dark brown
E	Silver citrate	Ethylene glycol	16.1 mPa·s	197.3°C	Slightly soluble	Pale yellow
F	Silver citrate	Glycerine	945 mPa·s	290.1°C	Partial reaction	Dark yellow

Table S2 Complexation ability of different amines with silver citrate

Scheme	Silver Precursor	Complexing Agent	Solvent	Reaction Speed	Ink Color
A	Silver citrate	Ethylamine	Ethanol	Fast	Pale yellow
B	Silver citrate	Propylamine	Ethanol	Relatively fast	Brown
C	Silver citrate	Isobutylamine	Ethanol	Relatively slow	Black
D	Silver citrate	Ethylenediamine monohydrate	Ethanol	Fast	Yellow

Table S3 Investigation of different silver-to-amine molar ratios in the reaction of silver citrate with monohydrated ethylenediamine

Scheme	Silver Source	Complexing Agent	Silver/Amine Molar Ratio	Solvent	Observation
A	Silver citrate	Ethylenediamine monohydrate	1:1	Ethanol	Incomplete dissolution
B	Silver citrate	Ethylenediamine monohydrate	1:2	Ethanol	Incomplete dissolution
C	Silver citrate	Ethylenediamine monohydrate	1:3	Ethanol	Complete dissolution
D	Silver citrate	Ethylenediamine monohydrate	1:4	Ethanol	Complete dissolution
E	Silver citrate	Ethylenediamine monohydrate	1:5	Ethanol	Complete dissolution
F	Silver citrate	Ethylenediamine monohydrate	1:6	Ethanol	Complete dissolution

Table S4 Formulation Table of Conductive Ink with Composite Solvents

Scheme	Silver	Complexing Agent	mixed solvent	reagent
--------	--------	------------------	---------------	---------

Source				
A	Silver citrate	Ethylenediamine monohydrate	Ethanol	Phenolic resins and PVP
B	Silver citrate	Ethylenediamine monohydrate	Methanol, Ethanol	Phenolic resins and PVP
C	Silver citrate	Ethylenediamine monohydrate	Methanol, Ethanol, DI	Phenolic resins and PVP
D	Silver citrate	Ethylenediamine monohydrate	Methanol, Ethanol, Isopropanol	Phenolic resins and PVP
E	Silver citrate	Ethylenediamine monohydrate	Methanol, Ethanol, Isopropanol, DI	Phenolic resins and PVP

Table S5 Ink formulations with different silver content

Scheme	Silver Source	Complexing Agent	mixed solvent	reagent
A	Silver citrate	Ethylenediamine monohydrate	1.5ml	Phenolic resins and PVP
B	Silver citrate	Ethylenediamine monohydrate	1ml	Phenolic resins and PVP
C	Silver citrate	Ethylenediamine monohydrate	0.8ml	Phenolic resins and PVP
D	Silver citrate	Ethylenediamine monohydrate	0.6ml	Phenolic resins and PVP