## SUPPORTING INFORMATION

## One-Pot Green Synthesis of Ag/Ni/Fe<sub>3</sub>O<sub>4</sub>-Activated Carbon Beads for Recyclable Photo-Fenton Antibiotic Removal and Antibacterial Action: Mechanistic Study and Optimization

Viet Hung Hoang<sup>a,</sup> Thi Ngoc Bich Phan<sup>b</sup>, Van Thanh Nguyen<sup>a</sup>, Thi Thao Le<sup>a</sup>, Minh Hieu Do<sup>a</sup>,

Van Tuynh Luu<sup>a</sup>, Vy Anh Tran<sup>c</sup>, Van-Dat Doan<sup>b,\*</sup>, Van Thuan Le<sup>d,e,\*</sup>

<sup>a</sup>Institute of Tropical Durability, Vietnam-Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen, Ha Noi City, 100000, Vietnam

<sup>b</sup>Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam

<sup>c</sup>Deparment of Material Science, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam

<sup>d</sup>Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, 03 Quang Trung, Da Nang City, 550000, Vietnam

<sup>e</sup>Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang City, 550000, Vietnam

\*Corresponding authors: Van-Dat Doan: doanvandat@iuh.edu.vn

Van Thuan Le: levanthuan3@duytan.edu.vn

| Peak Position (cm <sup>-1</sup> ) |                        |                     |                      |                                           |                                                                                  |
|-----------------------------------|------------------------|---------------------|----------------------|-------------------------------------------|----------------------------------------------------------------------------------|
| ACB                               | МАСВ                   | Ni/MACB             | Ag/Ni/MACB           | Functional Group                          | Vibrational Mode                                                                 |
| 3729                              | 3733                   | 3734                | 3733                 | O–H (hydroxyl group)                      | Free O–H stretching                                                              |
| 3627                              | 3624                   | 3618                | 3420                 | O–H (hydroxyl group)                      | Hydrogen-bonded O–<br>H stretching                                               |
| 3198                              | 3198                   | 3196                | 3198                 | N–H (amines) or O–H<br>(carboxylic acids) | Stretching vibration                                                             |
| 2959,<br>2884,<br>2838            | 2958,<br>2884,<br>2838 | 2958, 2885,<br>2838 | 2958, 2884,<br>2838, | C–H (alkyl groups)                        | Asymmetric and<br>symmetric stretching<br>of CH <sub>3</sub> and CH <sub>2</sub> |
| 2723,<br>2617,<br>2583            | 2723,<br>2616,<br>2579 | 2722, 2616,<br>2577 | 2723, 2616,<br>2581  | S-H (thiol)                               | Stretching vibration                                                             |
| 1745                              | 1745                   | 1745                | 1744, 1590           | C=O (carbonyl group)                      | Stretching vibration (ketones, esters)                                           |
| 1456                              | 1456                   | 1456                | 1456                 | C–H (methylene,<br>aromatic ring)         | Bending vibration                                                                |
| 1375                              | 1375                   | 1374                | 1374                 | CH₃ (methyl groups)                       | Symmetrical bending                                                              |
| 1300                              | 1300                   | 1300                | 1300                 | C–O (phenols, esters)                     | Stretching vibration                                                             |
| 1255                              | 1255                   | 1255                | 1253                 | C–O–C (ethers)                            | Asymmetric<br>stretching vibration                                               |
| 1165,<br>1100                     | 1165,<br>1100          | 1165, 1100          | 1165, 1100           | C-O (aliphatic ether and alcohols)        | Stretching vibration                                                             |
| 1046                              | 1046                   | 1046                | 1040                 | C–O–C<br>(polysaccharides)                | Stretching vibration                                                             |
| 998,<br>973                       | 998, 973               | 998, 973            | 998, 973             | C=C (aromatic ring)                       | Bending vibration                                                                |
| 840,<br>808                       | 840, 808               | 840, 809            | 840, 808             | Aromatic C–H                              | Out-of-plane bending                                                             |
| 452                               | 452                    | 452                 | 452                  | Ca-O                                      |                                                                                  |
|                                   | 570                    | 570                 | 570                  | Fe-O                                      |                                                                                  |

**Table S1**. FTIR peak positions and corresponding functional groups for the synthesized samples



**Fig. S1.** Nitrogen adsorption-desorption isotherms (a–d) and BJH pore diameter distributions (a'–d') of the samples ACB (a, a'), MACB (b, b'), Ni/MACB (c, c'), and Ag/Ni/MACB (d, d').



**Fig. S2.** Effect of coexisting inorganic ions (1 mM each) on the photo-Fenton degradation efficiency of ENR using Ag/Ni/MACB. *Experimental conditions*: m = 8 g/L,  $C_{ENR} = 10 \text{ mg/L}$ ,  $C_{H_20_2} = 0.05 \text{ mol/L}$ , pH = 7, T = 25 °C.



**Fig. S3.** Mass spectra (MS) of degradation products extracted from TIC at different retention times (RT) after 60 min of photocatalytic treatment



Fig. S4. MS of degradation products extracted from TIC at different RT after 150 min of photocatalytic treatment