Supplemental Information

Effect of Perfluoropyridine Incorporation into Poly(hydroxyethyl methacrylate)

Jason Pulfer¹, Alban Duhamel², Maxime Colpaer³, Tim Storr¹, and Chadron M. Friesen^{4*}

¹Department of Chemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, British

Columbia, Canada.

²Université de Montpellier, Institut Universitaire de Technologie de Montpellier-Sète, 99 Avenue

d'Occitanie, 34090, Montpellier, France.

³Université de Montpellier, École Nationale Supérieure de Chimie de Monpellier, Montpellier

Cedex 5, 34293 Montpellier, France.

⁴Department of Chemistry, Trinity Western University, 22500 University Drive, V2Y 1Y1,

British Columbia, Canada. E-mail: chad.friesen@twu.ca

Table of Contents	
S1: ATR-FTIR of 1	2
S2: ¹⁹ F NMR of 1 in CDCl ₃ referenced to CCl ₃ F	3
S3: ¹ H NMR of 1 in CDCl ₃	4
S4: ¹³ C NMR of 1 in CDCl ₃	5
S5: ATR-FTIR of 4	6
S6: ¹⁹ F NMR of 4 in CDCl ₃ referenced to CCl ₃ F	7
S7: ¹ H NMR of 4 in CDCl ₃	8
S8: ¹³ C NMR of 4 in CDCl ₃	9
S9: ATR-FTIR of PHEMA	10
S10: TGA of PHEMA in air	11
S11: TGA of PHEMA in N ₂	11
S12: DSC of HEMA	12

S13: ATR-FTIR of 2	13
S14: TGA of 2 in air	14
S15: TGA of 2 in N ₂	14
S16: DSC of 2	15
S17: ATR-FTIR of 4-a	16
S18: TGA of 4-a in air	17
S19: TGA of 4-a in N ₂	17
S20: DSC of 4-a	18

S1: ATR-FTIR of 1

IR (ATR): *v* = 2962.32 (w), 2870.36 (w), 1720.73 (m), 1641.73 (m), 1508.74 (m), 1472.49 (m), 1406.77 (w), 1319.43 (m), 1296.67 (m), 1160.85 (m), 1109.02 (m), 1092.13 (m), 970.45 (m), 813.10 (w), 733.72 (w), (695.46 (w), 649.54 (w).

S2: ¹⁹F NMR of **1** in CDCl₃ referenced to CCl_3F ¹⁹F NMR (376 MHz, CDCl₃, δ): -90.63 (m, 2F, PFP 2,6-position C-F), -158.87 (m, 2F, PFP 3,5-

position C-F)

S3: ¹H NMR of 1 in $CDCl_3$

¹H NMR (400 MHz, CDCl₃, δ): 6.05 (s, 1H, R-O(CO)C(CH₃)CH₂), 5.58 (m, *J* = 1.6 Hz, 1 H, R-O(CO)C(CH₃)CH₂), 4.72 (m, 2H, PFP-OCH₂CH₂O-R), 4.50 (m, 2H, PFP-OCH₂CH₂O-R), 1.90 (s, 3H, R-O(CO)C(CH₃)CH₂).

S4: ¹³C NMR of **1** in CDCl₃ ¹³C NMR (101 MHz, CDCl₃, δ): 166.99 (s, R-O(**CO**)C(CH₃)CH₂), 147.07 (m, *J* = 10.0 Hz, 5.5 Hz PFP 2,6-position C-F), 144.25 (m, *J* = 242.2 Hz, 17.2 Hz, 14.4 Hz, 2.8 Hz, PFP 3,5-position C-F), 135.75 (s, R-O(CO)C(CH₃)CH₂), 135.26 (m, PFP 4-position *ipso* C-O), 126.45 (s, R-O(CO)C(CH₃)CH₂) 72.32 (s, PFP-OCH₂CH₂O-R), 62.92 (s, PFP-OCH₂CH₂O-R), 18.16 (s, R-O(CO)C(CH₃)CH₂).

S5: ATR-FTIR of **4**

IR (ATR): v = 2983.71 (w), 2959.61 (w), 2921.17 (w), 1716.62 (m), 1638.03 (m), 1505.36 (w), 1479.03 (m), 1448.21 (m), 1355.46 (w), 1318/26 (w), 1294.30 (w), 1148.43 (m), 1045.73 (w), 942.55 (w), 886.05 (w), 813.37 (w). 736.04 (w), 651.09 (w)

S6: ¹⁹F NMR of 4 in CDCl₃ referenced to CCl₃F ¹⁹F NMR (376 MHz, CDCl3, δ): -93.63 (m, 1F, PFP 6-position C-F), -159.22 (m, 1F, PFP 3-

position C-F), -166.12 (m, 1F, PFP 5-position C-F).

S7: ¹H NMR of **4** in CDCl₃ ¹H NMR (400 MHz, CDCl3, δ): 6.11 (s, 1H, R-O(CO)C(CH₃)**CH₂**), 5.57 (s, 1 H, R-

O(CO)C(CH₃)CH₂), 4.38 (s, 3H, R-O-CH₂CH₂-O-R), 1.93 (s, 3H, R-O(CO)C(CH₃)CH₂).

S8: ¹³C NMR of **4** in CDCl₃ ¹³C NMR (101 MHz, CDCl3, δ): 167.22 (s, R-O(**CO**)C(CH₃)CH₂), 136.07 (s, R-O(**CO**)C(CH₃)CH₂), 126.10 (s, R-O(CO)C(CH₃)**CH₂**), 62.43 (s, R-O-**CH₂CH₂-O-R**), 18.22 (s, R-O(**CO**)C(**CH₃**)CH₂).

S9: ATR-FTIR of PHEMA

IR (ATR): *v* = 3396.04 (b, O-H stretch), 2995.44 (w), 2945.36 (w), 2874.27 (w), 1715.54 (s),

1450.44 (w), 1387.81 (w), 1245.51 (m), 1150.66 (s), 1070.57 (s), 1021.32 (m), 896.81 (w),

847.50 (w), 748.22 (w).

S10: TGA of PHEMA in air

S11: TGA of PHEMA in N_2

S12: DSC of HEMA

S13: ATR-FTIR of **2** IR (ATR): *v* = 2995.44 (w), 2957.09 (w), 2889.90 (w), 1717.58 (s), 1639.73 (m), 1505.71 (w), 1478.46 (s), 1446.99 (s), 1354.00 (w), 1319.89 (w), 1295.96 (w), 1245.51 (w), 1150.49 (s), 1101.23 (s), 1047.37 (w), 980.70 (m), 883.79 (w), 814.28 (w), 749.78 (w), 735.08 (w), 654.45

(w)

S14: TGA of **2** in air

S15: TGA of $\mathbf{2}$ in N_2

S16: DSC of 2

S17: ATR-FTIR of **4-a** IR (ATR): *v* = 2995.44 (w), 2957.09 (w), 2889.90 (w), 1717.58 (s), 1639.73 (m), 1505.71 (w),

1478.46 (s), 1446.99 (s), 1354.00 (w), 1319.89 (w), 1295.96 (w), 1245.51 (w), 1150.49 (s),

1101.23 (s), 1047.37 (w), 980.70 (m), 883.79 (w), 814.28 (w), 749.78 (w), 735.08 (w), 654.45

(w)

S18: TGA of 4-a in air

S19: TGA of 4-a in N₂

S20: DSC of 4-a