Supplementary information

Catalytic system-controlled divergent reactions of pyrazolidinones with 3-alkynyl-3-hydroxyisoindolinones to construct diversified nitrogen-containing heterocyclic scaffolds

Zhenwei Zhang,*^{‡abc} Xiaoxue Zhang,^{‡bcd} Hao Wang,^{bc} Geyao Xie^{abc} and Yu Zhou*^{abcd}

^aSchool of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
^bDrug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.
^dSchool of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
[‡]These authors contributed equally: Zhenwei Zhang, Xiaoxue Zhang

*E-mail: zhangzhenwei@ucas.ac.cn (Zhenwei Zhang); zhouyu@simm.ac.cn (Yu Zhou).

Contents

I. General experimental information	3
II. Synthesis of substrates	3
III. Optimization of Reaction Conditions	6
IV. General procedure for the products	7
V. Gram-scale preparations and conversions	10
VI. Mechanistic studies	14
VII. Characterization of the products	21
VIII. X-ray Crystallographic Data	45
IX. NMR Spectra of Products	47
X. HPLC Data of Products	96

I. General experimental information

Unless otherwise specified, the reagents were purchased from commercial sources, and used without further purification. All products were characterized by their NMR and MS spectra. ¹H and ¹³C{¹H} NMR spectra were recorded on a 400, 500 or 600 MHz instrument. The chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane (TMS). Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), doublet of triplets (dt), triplet of doublets (td), doublet of doublet of doublets (ddd), doublet of doublet of triplets (ddt) and broad (br). High resolution mass spectra (HRMS) were measured on a Micromass Ultra Q-TOF spectrometer. Analytical thin-layer chromatography (TLC) was performed on HSGF 254 (0.2-0.3 mm thickness). Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE) or dichloromethane (DCM)/methanol (MeOH). HPLC analysis of target compounds was performed on an Agilent 1260 HPLC instrument with a binary pump and a photodiode array detector (DAD), using an Agilent Extend-C18 column (4.6 mm \times 150 mm, 5 µm) at 1.0 mL/min flow monitored by UV absorption at 254 nm. Mobile phase A: H₂O, mobile phase B: MeOH.

Time/min	%A	%B
0	20	80
10	20	80

II. Synthesis of substrates

The pyrazolidinones **1a-1k**, 3-alkynyl-3-hydroxyisoindolinones **2a-2m**, and deuterated pyrazolidinone **[D₅]-1a** were prepared based on literature procedures,^[1-4] if needed, which were recrystallized before use. The detailed synthesis procedures of **1a**, **2a**, **[D₅]-1a** are as follows:

(1) Synthesis of pyrazolidinone (1a)

The 3-chloro-2,2-dimethylpropionyl chloride (1.06 g, 8.87 mmol, 1.0 eq.) was added dropwise to a solution of phenylhydrazine hydrochloride (1g, 6.87 mmol, 1.0 eq.) in pyridine (40 mL). The resulting mixture was stirred at room temperature for 4 h and then stirred at 100 °C for 8 h. The reaction mixture was poured into 200 mL aqueous HCl (2 M) and extracted with ethyl acetate (50 mL \times 3). After then, the organic layer was washed with saturated sodium carbonate solution (100 mL \times 3), dried over anhydrous Na₂SO₄, filtrated and concentrated in vacuo. The residue was purified by flash chromatography (PE/EA=3/1, v/v) to afford the corresponding pyrazolidinone **1a**.

(2) Synthesis of 3-hydroxy-3-(phenylethynyl) isoindolin-1-one (2a)

A solution of *N*-butyl lithium (2.61g, 40.78 mmol, 4.0 eq., 2.5 M in petroleum ether solution) was added dropwise to a solution of phenylacetylene (4.17g, 40.78 mmol, 4.0 eq.) in THF (30 mL) at -78 °C and then the reaction mixture was stirred for 30 min. After then, a solution of phthalimide (1.5 g, 10.19 mmol,1.0 eq.) in THF (15 mL) was added to the reaction mixture. The resulting mixture was stirred at -78 °C for 30 min and stirred at room temperature for 4 h. Upon completion as indicated by TLC, the reaction mixture was quenched with saturated ammonium chloride and added 1N HCl to adjust pH=5.0. The aqueous solution was extracted with ethyl acetate (50 mL×3), washed with saturated sodium chloride solution (100 mL × 3), dried over anhydrous

Na₂SO₄, filtrated and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using PE/EA (1:1) to afford the corresponding pyrazolidinone 2a.

(3) Synthesis of [D₅]-1a

Synthesis of phenylhydrazine hydrochloride D_5 (B): A solution of NaNO₂ (718 mg, 10.4 mmol) in water (3 mL) was added dropwise to a solution of A (1.0 g, 10 mmol) in 37% HCl (5 mL). The resulting mixture was stirred at 0 °C for 20 min and added a saturated solution of tin(II) chloride dihydrate (2.67 g, 14 mmol) in 37% HCl. Then the mixture was stirred at 0 °C for 20 min and filtered to obtain **B** (1.5 g).

Synthesis of $[D_5]$ -1a: The pyrazolidinone $[D_5]$ -1a was prepared from deuterated phenylhydrazine hydrochloride according to the synthesis procedure of 1a. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 3.68 (s, 2H), 1.01 (s, 6H).

III. Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions for 4aa^[a]

Entry	Catalyst	Additive 1	Additive 2	Solvent	$Yield(\%)^{b}$
					4aa (3aa/5aa)
1	[Cp*RhCl ₂] ₂	AgOAc	AcOH	DCE	8(nd/nd)
2	[Cp*RhCl ₂] ₂	NaOAc	AcOH	DCE	24(nd/10)
3	[Cp*RhCl ₂] ₂	LiOAc	AcOH	DCE	5(48/nd)
4	[Cp*RhCl ₂] ₂	CsOPiv	AcOH	DCE	28(nd/10)
5	[Cp*RhCl ₂] ₂	CsOPiv	AcOH	Dioxane	nd(nd/50)
6	[Cp*RhCl ₂] ₂	LiOAc	AcOH	CH ₃ CN	25(36/trace)
7	$[Cp*Rh(CH_3CN)_3](SbF_6)_2$	LiOAc	AcOH	CH ₃ CN	46(0/trace)
8	$[Cp*Rh(CH_3CN)_3](SbF_6)_2$	LiOAc	AcOH	Acetone	40(nd/12)
9	$[Cp*Rh(CH_3CN)_3](SbF_6)_2$	LiOAc	AcOH	MeOH	nd(nd/10)
10	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	LiOAc	AcOH	CHCl ₃	37(nd/nd)
11	$[Cp*Rh(CH_3CN)_3](SbF_6)_2$	LiOAc	PivOH	CH ₃ CN	26(5/5)
12	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	LiOAc	Benzoic acid	CH ₃ CN	52(nd/trace)
13 ^c	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	LiOAc	Benzoic acid	CH ₃ CN	nd(nd/nd)
14^d	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	LiOAc	Benzoic acid	CH ₃ CN	55(nd/trace)
15 ^e	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	LiOAc	Benzoic acid	CH ₃ CN	22(nd/nd)
16 ^f	[Cp*Rh(CH ₃ CN) ₃](SbF ₆) ₂	LiOAc	Benzoic acid	CH ₃ CN	57(nd/trace)
17 ^g	$[Cp*Rh(CH_3CN)_3](SbF_6)_2$	LiOAc	Benzoic acid	CH ₃ CN	60(nd/trace)
^a Reaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), catalyst (5 mol%), additive 1 (0.4 mmol), additive 2 (0.2					

"Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), catalyst (5 mol%), additive 1 (0.4 mmol), additive 2 (0.2 mmol) in solvent (4 mL), at 80 °C for 8 h. ^{*b*}Isolated yield. ^crt. ^{*d*}100 °C. ^{*e*}120 °C. ^{*f*} **1a**:**2a**=1.2:1 ^{*g*}**1a**:**2a**=1.2:1, additive 1 (0.2 mmol), additive 2 (0.1 mmol), 100 °C. nd = not detected

		O + OH Ph 2a	alyst (5 mol %), Ad Solvent, Temp	ditives NH ₂ N Ph O NH ₂ O Saa	
Entry	Catalyst	Additive 1	Additive 2	Solvent	Yield(%) ^b 5aa
1	[Cp*RhCl ₂] ₂	CsOPiv	AcOH	Dioxane	50
2	[Cp*RhCl ₂] ₂	Cs ₂ CO ₃	AcOH	Dioxane	45
3	[Cp*RhCl ₂] ₂	CsF	АсОН	Dioxane	48
4	[Cp*RhCl2]2	CsOAc	AcOH	Dioxane	40
5	[Cp*RhCl ₂] ₂	Na ₂ CO ₃	AcOH	Dioxane	31
6	[Cp*RhCl ₂] ₂	NaOPiv	AcOH	Dioxane	25
7	[Cp*RhCl ₂] ₂	CsOPiv	AcOH	THF	41
8	[Cp*RhCl ₂] ₂	CsOPiv	AcOH	Diglyme	75
9 ^c	[Cp*RhCl ₂] ₂	CsOPiv	AcOH	Diglyme	80
"Reaction conditions: 19 (0.2 mmol) 29 (0.24 mmol) [Cn*RhClol2(5 mol%) additive 1 (0.4 mmol) additive 2					

Table S2. Optimization of reaction conditions for 5aa^[a]

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), [Cp*RhCl₂]₂ (5 mol%), additive 1 (0.4 mmol), additive 2 (0.2 mmol) in solvent (4 mL), at 80 °C for 8 h. ^{*b*}Isolated yield. ^{*c*}additive 1 (0.2 mmol), additive 2 (0.2 mmol), 2 h.

IV. General procedure for the products

(1) General procedure for the synthesis of 3 (Condition A)

The AuCl(IPr) (0.01 mmol, 0.05 eq.) was added to a solution of **1a** (0.24 mmol, 1.2 eq.) and **2a** (0.2 mmol, 1.0 eq.) in DCE (4.0 mL) and the reaction mixture was stirred at 70 °C for 4 h. Upon completion as indicated by TLC, the mixture was poured into water (30 mL) and extracted with ethyl acetate (10 mL \times 3). The combined organic layer was washed with brine (10 mL \times 3), dried over anhydrous Na₂SO₄, filtrated and

concentrated under vacuum. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **3aa**.

(2) General procedure for the synthesis of 4 (Condition B)

A suspension of **1a** (0.24 mmol, 1.2 eq.), **2a** (0.2 mmol, 1.0 eq.), $[Cp*Rh(CH_3CN)_3](SbF_6)_2$ (0.01 mmol, 0.05 eq.), LiOAc (0.2 mmol, 1.0 eq.), benzoic acid (0.1 mmol, 0.5 eq.) in MeCN (4.0 mL) was stirred at 100 °C for 8 h. Upon completion as indicated by TLC, the reaction mixture was poured into water (30 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was washed with brine (10 mL × 3), dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **4aa**.

(3) General procedure for the synthesis of 5 (Condition C)

A suspension of **1a** (0.2 mmol, 1.0 eq.), **2a** (0.24 mmol, 1.2 eq.), [Cp*RhCl₂]₂ (0.01 mmol, 0.05 eq.), CsOPiv (0.2 mmol, 1.0 eq.), AcOH (0.2 mmol, 1.0 eq.) in diethylene glycol dimethyl ether (4.0 mL) was stirred at 80 °C for 2 h. Upon completion as indicated by TLC, the reaction mixture was poured into water (30 mL) and extracted

with ethyl acetate (10 mL \times 3). The combined organic layer was washed with brine (10 mL \times 3), dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **5aa**.

V. Gram-scale preparations and conversions

(1) Gram-scale preparation

(a) Gram-scale preparation for 3aa

A suspension of **1a** (910 mg, 4.8 mmol), **2a** (1 g, 4.0 mmol), AuCl(IPr) (124.2 mg, 5 mol %) was combined in DCE (10 mL) was stirred at 70 °C for 4 h. Upon completion as indicated by TLC, the reaction mixture was poured into water (30 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layer was washed with brine (10 mL × 3), dried over anhydrous Na₂SO₄,filtrated and concentrated under vacuum. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **3aa**.as white solid (1.03 g, 61% yield).

(b) Gram-scale preparation for 4aa

1a (0.96 g, 5.05 mmol) 2a (1.05 g, 4.21 mmol)

4aa (0.84 g, 47%)

A suspension of **1a** (960 mg, 5.05 mmol), **2a** (1.05 g, 4.21 mmol), Cp*Rh(CH₃CN)₃(SbF₆)₂ (176.2 mg, 5 mol %), LiOAc (277.2 mg, 4.21 mmol), benzoic acid (256.2 mg, 2.1 mmol) in MeCN (10 mL) was stirred at 100 °C for 8 h. Upon completion as indicated by TLC, the reaction mixture was poured into water (50 mL) and extracted with ethyl acetate (30 mL × 3). The combined organic layer was washed with brine (20 mL × 3), dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **4aa** as yellow oil (0.84 g, 47% yield).

(c) Gram-scale preparation for 5aa

A suspension of **1a** (800 mg, 4.21 mmol), **2a** (1.26 g, 5.05 mmol), $[Cp*RhCl_2]_2$ (131.6 mg, 5 mol %), CsOPiv (982.8 mg, 4.21 mmol), HOAc (152 mg, 4.21 mmol) in diethylene glycol dimethyl ether (10 mL) was stirred at 80 °C for 2 h. Upon completion as indicated by TLC, the reaction was poured into water (50 mL) and extracted with ethyl acetate (30 mL × 3). The combined organic layer was washed with brine (20 mL × 3), dried over anhydrous Na₂SO₄, filtrated and concentrated under vacuum. The residue was purified by column chromatography (PE/EA = 1:1, v/v) to afford **5aa** as yellowish solid (1.23 g, 67% yield).

- (2) Conversions of 4aa and 5aa
- (a) Procedure and Characterization of Compound 6:

The 10 mol % Pd/C (10 mg) was added to a solution of **4aa** (100 mg, 0.24 mmol) in MeOH/EtOAc (v/v=2/1, 20 mL) under the hydrogen environment. The resulting

mixture was stirred at 50°C for 20 h. Upon completion as indicated by TLC, the mixture was filtered by suction and the filtrate was extracted with ethyl acetate (30 mL×3) and concentrated in vacuo. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **6** as white solid (80 mg, 80% yield).

(6) 2,2-dimethyl-9-((3-oxoisoindolin-1-yl)methyl)-9-phenyl-2,3-dihydro-1*H*,9*H*pyrazolo[1,2-*a*]indazol-1-one

¹**H NMR (400 MHz, Chloroform-***d***) δ 7.83 (dd, J = 7.2, 1.8 Hz, 1H), 7.60 – 7.51 (m, 1H), 7.49 – 7.42 (m, 4H), 7.42 – 7.30 (m, 5H), 7.29 (d, J = 7.5 Hz, 1H), 7.20 – 7.14 (m, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.72 (s, 1H), 4.71 – 4.63 (m, 1H), 3.69 (d, J = 8.5 Hz, 1H), 3.54 (d, J = 8.5 Hz, 1H), 3.12 – 2.98 (m, 2H), 1.42 (d, J = 7.6 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-***d*) δ

170.80, 170.05, 147.59, 147.16, 140.55, 133.40, 131.87, 129.57, 128.79, 128.34, 128.27, 126.47, 123.82, 123.61, 123.31, 122.42, 110.50, 70.40, 63.91, 54.25, 45.89, 43.69, 22.94, 22.90. **HRMS (ESI) m/z**: calculated for $C_{27}H_{26}N_3O_2 [M + H]^+$:424.2022, found: 424.2020.

(b) Procedure and Characterization of Compound 7:

The solution of **5aa** (88 mg, 0.2 mmol) and cyanuric chloride (74 mg, 0.4 mmol) in DMF (3 mL) was stirred at room temperature for 1 h. Upon completion as indicated by TLC, the reaction mixture was quenched with water (30 mL), extracted with ethyl

acetate (15 mL \times 3), washed with brine (15 mL \times 3), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by column chromatography (PE/EA=2/1, v/v) to afford 7 as yellow oil (68 mg, 84% yield).

(7) 2-(1-(2-cyano-2-methylpropyl)-2-phenyl-1*H*-indole-3-carbonyl)benzonitrile

¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 – 8.19 (m, 1H), 7.71 – 7.64 (m, 1H), 7.47 – 7.21 (m, 11H), 4.49 (s, 2H), 1.12 (s, 6H).¹³C NMR (126 MHz, Chloroform-*d*) δ 188.86, 146.07, 143.19, 136.06, 131.94, 130.74, 128.85, 128.54, 128.37, 128.30, 127.28, 123.14, 122.64, 122.41, 121.09, 116.31, 115.27, 110.52, 109.95, 49.42, 33.23, 24.68. HRMS

(ESI) m/z: calculated for $C_{27}H_{22}N_3O [M + H]^+:404.1759$, found: 404.1757.

(c) Procedure and Characterization of Compound 8:

The mixture of **5aa** (88 mg, 0.2 mmol), trifluoroacetic acid (2 mL) and triethylsilane (3 mL) was stirred at room temperature for 6 h. Upon completion as indicated by TLC, the mixture was quenched with 10 mL of saturated sodium carbonate solution, extracted with ethyl acetate (15 mL×3), washed with brine (15 mL×3), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography (PE/EA=1/1, v/v) to afford **8** as yellow oil (59 mg, 70% yield).

(8) 2,2-dimethyl-3-(3-(3-oxoisoindolin-1-yl)-2-phenyl-1*H*-indol-1yl)propanamide

¹H NMR (400 MHz, Methanol-d4) δ 7.91 – 7.82 (m, 1H), 7.64 – 7.49 (m, 8H), 7.29 – 7.20 (m, 1H), 7.12 – 7.03 (m, 1H), 6.78 (t, J = 7.5 Hz, 1H), 6.61 (s, 1H), 5.72 (s, 1H), 4.50 (d, J = 2.9 Hz, 2H), 0.90 (d, J = 2.1 Hz, 6H). ¹³C NMR (126 MHz, Methanol-d4) δ 180.15, 148.12, 140.59, 137.43, 131.57, 131.29, 130.92, 130.61, 128.08, 128.00, 127.46, 122.76, 122.28, 121.19, 118.95,

117.80, 110.86, 108.42, 54.18, 50.20, 43.77, 22.94, 22.81. **HRMS (EI) m/z**: calculated for C₂₇H₂₅N₂O₃: 423.1941, found: 423.1939.

VI. Mechanistic studies

- (1) H/D exchange experiment
- (a) H/D exchange experiment of 4aa

A pressure tube was charged with 4,4-Dimethyl-1-phenylpyrazolidine-3-one (**1a**, 57 mg, 0.3 mmol) and D₂O (0.3 ml), Cp*Rh(CH₃CN)₃(SbF₆)₂ (12.4 mg, 5 mol %), LiOAc (19.8 mg, 0.3mmol), benzoic acid (18.3mg, 0.15 mmol) and MeCN (3 mL). The reaction mixture was stirred at 100 °C for 1 h. After that, the solvent was removed under vacuum and the resulting residue was purified by column chromatography (PE/EA=3/1, v/v) to afford the deuterium product [**Dn**]-**1a.** The H/D exchange as follows figure.

(b) H/D exchange experiment of 5aa

A pressure tube was charged with 4,4-dimethyl-1-phenylpyrazolidine-3-one (**1a**, 57 mg, 0.3 mmol) and D₂O (0.3 ml), $[Cp*RhCl_2]_2$ (9.3 mg, 5 mol %), CsOPiv (70.2 mg, 0.3 mmol), HOAc (7.5 mg, 0.15 mmol) and diethylene glycol dimethyl ether (3 mL). The reaction mixture was stirred at 80 °C for 1h. After that, the solvent was removed under vacuum and the residue was purified by column chromatography (PE/EA=3/1, v/v) to afford the deuterium product [**Dn**]-**1a.** The H/D exchange as follows figure.

- (2) Kinetic isotope effect
- (a) KIE Experiments of 4aa

To a reaction tube were added **1a** (38 mg, 0.2 mmol), **[D₅]-1a** (37 mg, 0.2 mmol), **2a** (24.9 mg, 0.2 mmol), Cp*Rh(CH₃CN)₃(SbF₆)₂ (8.4 mg, 5 mol %), LiOAc (23.2 mg, 0.2 mmol), benzoic acid (12.2 mg, 0.1 mmol) and MeCN (4 mL). The resulting mixture was stirred at 100 °C for 2 h. Upon completion as indicated by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography (PE/EA=1/1, v/v) to obtain a mixture of **4aa** and **[D₄]-4aa**. According to the integral

value of characteristic peak in ¹H NMR and the ratio of products **4aa** and **[D4]-4aa** was calculated. The ratio of **4aa**/**[D4]-4aa** was 1.70.

- 6.92 - 6.89

(b) KIE Experiments of 5aa

To a reaction tube were added **1a** (38 mg, 0.2 mmol), **[D5]-1a** (37 mg, 0.2 mmol), **2a** (24.9 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (6.28 mg, 5 mol %), CsOPiv (46.8 mg, 0.2 mmol), AcOH (12.0 mg, 0.2 mmol) and diglyme (4 mL). The resulting mixture was stirred at 80 °C for 1 h. Upon completion as indicated by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography (PE/EA = 1/1, v/v) to obtain a mixture of **5aa** and **[D4]-5aa**. According to the integral value of characteristic

peak in ¹H NMR and the ratio of products **5aa** and **[D4]-5aa** was calculated. The ratio of **5aa**/ **[D4]-5aa** was 1.17.

8.03

(3) Competition experiment

To a reaction tube were added **1b** (42 mg, 0.2 mmol), **1f** (44 mg, 0.2 mmol), **2a** (49.8 mg, 0.2 mmol), AuCl(IPr) (6.2 mg, 5 mol%) and DCE (4 mL). The mixture was stirred at 70 °C for 4 h. Upon completion as indicated by TLC,, the solvent was removed under vacuum and the resulting residue was purified by column chromatography (PE/EA=1/1, v/v) to obtain a mixture of **3ba** and **3fa**. The ratio of **3ba/3fa** was 0.90 based on ¹H NMR.

To a reaction tube equipped were added **1g** (52 mg, 0.2 mmol), **1f** (44 mg, 0.2 mmol), **2a** (49.8 mg, 0.2 mmol), Cp*Rh(CH₃CN)₃(SbF₆)₂ (8.39 mg, 5 mol %), LiOAc(13.2 mg, 0.2 mmol), benzoic acid (12.2 mg, 0.1 mmol) and MeCN (4 mL). The reaction mixture was stirred at 100 °C for 8 h. Upon completion as indicated by TLC,, the solvent was removed under vacuum and the residue was purified by column chromatography (PE/EA=1/1, v/v) to obtain a mixture of **4ga** and **4fa**. The ratio of **4ga/4fa** was 8.0 based on ¹H NMR.

To a reaction tube were added **1b** (42 mg, 0.2 mmol), **1f** (44 mg, 0.2 mmol), **2a** (49.8 mg, 0.2 mmol), Cy-[Cp*RhCl₂]₂ (6.28 mg, 5 mol %), CsOPiv (46.8 mg, 0.2 mmol), HOAc (12 mg, 0.2 mmol) and diglyme (4 mL). The reaction mixture was stirred at 80 °C (oil bath) for 2 h. Upon completion as indicated by TLC, the solvent was removed under vacuum and the residue was purified by column chromatography (PE/EA=1/1, v/v) to obtain a mixture of **5ba** and **5fa**. The ratio of **5ba/5fa** was 1.5 based on ¹H NMR.

-3.77

VII. Characterization of the products

(3aa) (*Z/E*)-3-((5,5-dimethyl-4-oxo-1,2-diphenylhexahydropyrimidin-2yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 61 mg, yield: 65%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.85 (s, 1H), 8.56 (s, 1H), 8.02 – 7.92 (m, 1H), 7.78 – 7.67 (m, 2H), 7.58 (td, *J* = 7.4, 0.7 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.32 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.05 (dd, *J* = 8.5, 7.2 Hz, 2H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.82 – 6.71 (m, 2H), 6.35 (s, 1H), 3.71 (d, *J* = 13.0 Hz, 1H), 3.19 (d, *J* = 13.0 Hz,

1H), 1.38 (s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 174.9, 168.2, 147.5, 142.0, 136.1, 132.5, 129.7, 128.6, 128.2, 128.2, 128.0, 128.0, 124.8, 123.0, 122.7, 120.6, 106.2, 77.6, 58.9, 25.9, 23.4. HRMS (ESI) m/z: calculated for C₂₇H₂₄N₃O₂ [M-H]⁻: 422.1874, found:422.1879.

phenylhexahydropyrimidin-2-yl) methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 56 mg, yield: 64%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 8.60 (s, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.40 – 7.30 (m, 5H), 6.94 – 6.85 (m, 2H), 6.85 – 6.77 (m, 2H), 6.36 (s, 1H), 3.70 (d, *J* = 12.8 Hz, 1H), 3.08 (d, *J* = 12.9 Hz, 1H), 1.36 (s, 3H), 1.06 (s, 3H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ

175.0, 175.0, 168.2, 168.0, 158.5 (d, J = 240.9 Hz), 143.8, 141.8, 141.8, 137.7, 137.6, 136.0, 135.9, 132.5, 129.7, 128.8, 128.3, 128.2, 128.0, 127.4 (d, J = 8.1 Hz), 122.7, 120.7, 114.6 (d, J = 22.1 Hz), 105.9, 105.8, 77.6, 77.5, 59.0, 26.0, 23.4, 23.4. **HRMS** (ESI) m/z: calculated for C₂₇H₂₃FN₃O₂ [M- H]⁻:440.1780, found: 440.1783.

(3ca) (*Z/E*)-3-((1-(4-chlorophenyl)-5,5-dimethyl-4-oxo-2phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 42 mg, yield: 46%.¹**H NMR (400 MHz, DMSO-***d***6)** δ 9.88 (s, 1H), 8.60 (s, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.38 – 7.31 (m, 3H), 7.14 – 7.07 (m, 2H), 6.86 – 6.75 (m, 2H), 6.32 (s, 1H), 3.71 (d, J = 13.1 Hz, 1H), 3.20 (d, J = 13.1 Hz, 1H), 1.37 (s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (151 MHz, 1H), 1.37 (s, 3H), 1.05 (s, 3H).

DMSO-*d*₆) δ 175.3, 168.7, 146.8, 142.2, 138.1, 136.6, 133.0, 130.2, 129.2, 128.8, 128.5, 128.4, 128.3, 127.4, 126.8, 123.1, 121.2, 106.4, 78.0, 59.3, 26.3, 23.8.**HRMS (ESI) m**/**z**: calculated for C₂₇H₂₃ClN₃O₂ [M- H]⁻:456.1484, found: 456.1487.

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 36 mg, yield: 36%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.89 (s, 1H), 8.60 (s, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.78 – 7.67 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.46 – 7.29 (m, 5H), 7.25 – 7.17 (m, 2H), 6.79 – 6.71 (m, 2H), 6.32 (s, 1H), 3.71 (d, J = 13.1 Hz, 1H), 3.21 (d, J = 13.1 Hz, 1H), 1.37 (s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ

175.2, 168.7, 147.3, 142.2, 138.1, 136.7, 133.0, 131.2, 130.2, 129.2, 128.8, 128.5, 128.4, 127.0, 123.1, 121.3, 115.4, 106.4, 77.9, 59.3, 26.3, 23.8. **HRMS (ESI) m/z**: calculated for C₂₇H₂₃BrN₃O₂ [M- H]⁻:500.0979, found:500.0981.

(3ea) (*Z/E*)-3-((5,5-dimethyl-4-oxo-2-phenyl-1-(*p*-tolyl)hexahydropyrimidin-2yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 52 mg, yield: 60%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.83 (s, 1H), 8.56 (s, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.42 – 7.29 (m, 5H), 6.86 (d, J = 8.1 Hz, 2H), 6.66 (d, J = 8.1 Hz, 2H), 6.34 (s, 1H), 3.68 (d, J = 12.9 Hz, 1H), 3.09 (d, J = 12.8 Hz, 1H), 2.14 (s, 3H), 1.37

(s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 175.0, 168.2, 144.9, 142.11, 137.7, 136.0, 136.0, 132.5, 132.3, 129.7, 128.6, 128.5, 128.3, 128.1, 128.0, 125.2, 122.7, 120.6, 106.1, 77.6, 77.5, 59.0, 25.9, 23.4, 23.4, 20.2. HRMS (ESI) m/z: calculated for C₂₈H₂₆N₃O₂ [M- H]⁻:436.2031, found:436.2035.

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 36 mg, yield: 41%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.71 (s, 1H), 8.54 (s, 1H), 8.00 (d, *J* = 7.7 Hz, 1H), 7.73 (t, *J* = 7.8 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.34 (d, *J* = 2.1 Hz, 5H), 6.71 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 6.36 (s, 1H), 3.66 (s, 1H), 3.64 (s, 3H), 2.98 (d, *J* = 12.6 Hz, 1H), 1.36 (s, 3H), 1.06 (s, 3H). ¹³C NMR (151 MHz,

DMSO-*d*₆) δ 175.0, 168.1, 155.7, 142.0, 140.3, 137.7, 135.8, 132.5, 129.6, 128.6, 128.3, 128.0, 127.2, 122.7, 120.6, 113.1, 106.0, 77.7, 59.0, 55.0, 26.0, 23.5. **HRMS (ESI) m/z**: calculated for C₂₈H₂₆N₃O₃ [M-H]⁻:452.1980, found:452.1979. HPLC purity: 92.4%; *t*_R = 2.728 min, MeOH-H₂O (80:20).

(**3ia**)

(3fa)

(Z/E)-3-((1-(3-fluorophenyl)-5,5-dimethyl-4-oxo-2-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 22 mg, yield: 25%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.95 (s, 1H), 8.60 (s, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.40 – 7.31 (m, 3H), 7.09 (q, J = 7.9 Hz, 1H), 6.74 – 6.62 (m, 2H), 6.51 (dt, J = 12.1, 2.4 Hz, 1H), 6.33 (s, 1H), 3.74 (d, J = 13.3 Hz, 1H), 3.31 (d, J = 16.2 Hz, 3H), 1.38 (s, 3H), 1.06

(s, 3H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 174.7, 174.7, 168.3, 161.7 (d, *J* = 241.9 Hz), 149.4 (d, *J* = 9.6 Hz), 141.7, 137.7, 136.3, 132.5, 129.8, 129.3 (d, *J* = 9.8 Hz), 128.8, 128.4, 128.0, 122.7, 120.8, 119.9, 111.0 (d, *J* = 23.6 Hz), 109.1 (d, *J* = 20.9 Hz),

106.0, 77.5, 77.5, 58.7, 25.7, 23.2, 23.2. **HRMS (ESI) m/z**: calculated for C₂₇H₂₃FN₃O₂ [M- H]⁻:440.1780, found:440.1783.

(3ab)

(Z/E)-3-((2-(4-fluorophenyl)-5,5-dimethyl-4-oxo-1-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 51 mg, yield: 58%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.89 (s, 1H), 8.58 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.80 – 7.68 (m, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 6.9 Hz, 2H), 7.12 (dt, J = 22.8, 8.1 Hz, 4H), 6.92 (t, J = 7.1 Hz, 1H), 6.80 (d, J = 7.9 Hz, 2H), 6.39 (s, 1H), 3.74 (d, J = 13.0 Hz, 1H), 3.18 (d, J = 13.3 Hz, 1H), 1.40 (s, 3H), 1.06 (s, 3H). ¹³C{¹H}

NMR (126 MHz, DMSO-*d*₆) δ 175.3, 175.3, 168.7, f168.6, 162.4 (d, J = 245.3 Hz), 147.8, 138.6, 138.1, 136.8, 133.0, 131.0 (d, J = 8.6 Hz), 130.2, 128.6, 128.5, 125.5, 123.6, 123.2, 121.2, 115.4 (d, J = 21.5 Hz), 106.3, 77.5, 77.5, 59.4, 26.3, 23.7. **HRMS (ESI) m/z**: calculated for C₂₇H₂₃FN₃O₂ [M-H]⁻:440.1780, found:440.1782.

(**3ac**)

(Z/E)-3-((2-(4-chlorophenyl)-5,5-dimethyl-4-oxo-1-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 63 mg, yield: 70%. ¹H NMR (400 MHz, DMSO- d_6) δ 9.88 (s, 1H), 8.58 (s, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.80 – 7.69 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.40 (s, 4H), 7.17 – 7.05 (m, 2H), 6.92 (t, J = 7.3 Hz, 1H), 6.87 – 6.78 (m, 2H), 6.38 (s, 1H), 3.73 (d, J = 13.1 Hz, 1H), 3.20 (d, J = 13.1 Hz, 1H), 1.39 (s, 3H), 1.06 (s, 3H). ¹³C{¹H} NMR (126 MHz,

DMSO-*d*₆) δ 175.3, 168.7, 147.7, 141.4, 141.3, 138.0, 136.8, 133.6, 133.0, 130.6, 130.2,

128.7, 128.6, 128.4, 125.4, 123.6, 123.2, 121.2, 106.2, 77.5, 77.4, 59.4, 26.3, 23.7, 23.7. **HRMS (ESI) m/z**: calculated for C₂₇H₂₃ClN₃O₂ [M-H]⁻:456.1484, found:456.1489.

(3ad)

(*Z/E*)-3-((2-(4-bromophenyl)-5,5-dimethyl-4-oxo-1-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 72 mg, yield: 72%. ¹H NMR (400 MHz, DMSO-d₆) δ 9.88 (s, 1H), 8.57 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.64 – 7.49 (m, 3H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.10 (t, *J* = 7.7 Hz, 2H), 6.96 – 6.76 (m, 3H), 6.38 (s, 1H), 3.73 (d, *J* = 13.1 Hz, 1H), 3.20 (d, *J* = 13.0 Hz, 1H), 1.39 (s, 3H), 1.06 (s, 3H). ¹³C{¹H} NMR (151 MHz, DMSO-d₆)

δ 175.3, 175.2, 168.7, 147.7, 141.8, 141.8, 138.1, 133.0, 131.6, 131.0, 130.3, 128.7, 128.4, 125.3, 123.6, 123.2, 122.3, 121.2, 106.1, 77.6, 77.5, 59.5, 26.3, 26.3, 23.7, 23.7.**HRMS** (ESI) m/z: calculated for C₂₇H₂₃BrN₃O₂ [M- H]⁻:500.0979, found:500.0984.

(3ae) (*Z/E*)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(p-tolyl)hexahydropyrimidin-2yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 46 mg, yield: 53%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.85 (s, 1H), 8.53 (s, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.77 – 7.67 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.7 Hz, 2H), 6.89 (t, J = 7.3 Hz, 1H), 6.81 (d, J = 8.0 Hz, 2H), 6.35 (s, 1H), 3.70 (d, J = 13.0 Hz, 1H), 3.19 (d, J = 13.0 Hz, 1H), 2.29 (s, 3H), 1.37

(s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 175.3, 148.0, 138.3, 133.0,

130.1, 129.2, 128.5, 128.4, 125.2, 123.3, 123.2, 121.1, 107.0, 77.8, 77.8, 59.4, 26.3, 26.3, 23.8, 23.8, 21.2. **HRMS (ESI) m/z**: calculated for C₂₈H₂₆N₃O₂ [M-H]⁻:436.2031, found:436.2034.

(3af)

(Z/E)-3-((2-(4-methoxyphenyl)-5,5-dimethyl-4-oxo-1-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 51 mg, yield: 56%. ¹H NMR (600 MHz, Acetic acid -d₄) δ 7.89 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.73 - 7.68 (m, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.48 - 7.43 (m, 2H), 7.20 (dd, J = 8.7, 7.1 Hz, 2H), 7.07 (d, J = 7.8 Hz, 3H), 6.99 - 6.95 (m, 2H), 6.28 (s, 1H), 3.85 (s, 3H), 3.57 (d, J = 13.3 Hz, 1H), 3.36 (d, J = 13.2 Hz, 1H), 1.39 (s, 3H), 1.28 (s,

3H).¹³C{¹H} NMR (151 MHz, Acetic acid -*d*4) δ 179.9, 170.2, 160.1, 147.5, 137.8, 134.7, 133.0, 132.9, 129.8, 128.9, 128.3, 128.0, 125.8, 124.3, 123.6, 120.0, 113.7, 107.9, 78.4, 58.6, 54.6, 39.2, 24.5, 24.1.HRMS (ESI) m/z: calculated for C₂₈H₂₆N₃O₃ [M-H]⁻:452.1980, found:452.1981.

(3ag)

(Z/E)-3-((5,5-dimethyl-4-oxo-2-(4-pentylphenyl)-1-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 48 mg, yield: 49%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.86 (s, 1H), 8.54 (s, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.04 (t, *J* = 7.8 Hz, 2H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 2H), 6.34 (s, 1H), 3.71 (d, *J* = 13.0 Hz, 1H), 3.17 (d, *J* = 12.9 Hz, 1H), 2.59 - 2.52 (m, 2H), 1.55 (q, J = 7.4 Hz, 2H), 1.37 (s, 3H), 1.29 – 1.21 (m, 4H), 1.05 (s, 3H), 0.85 (t, J = 7.1 Hz, 3H). ¹³C{¹H} **NMR (151 MHz, DMSO-***d*₆) δ 175.3, 168.6, 148.0, 143.2, 138.2, 133.0, 130.1, 128.6, 128.5, 128.5, 128.4, 125.3, 123.4, 123.2, 121.1, 106.8, 106.8, 77.9, 59.3, 35.1, 31.2, 31.0, 26.3, 23.8, 23.8, 22.4, 14.4. **HRMS (ESI) m/z**: calculated for C₃₂H₃₄N₃O₂ [M- H]⁻:492.2657, found:492.2657.

(3ai) (*Z/E*)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(m-tolyl)hexahydropyrimidin-2yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 60 mg, yield: 69%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.81 (s, 1H), 8.55 (s, 1H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.76 – 7.67 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.26 – 7.12 (m, 4H), 7.07 (t, *J* = 7.7 Hz, 2H), 6.90 (t, *J* = 7.3 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.32 (s, 1H), 3.68 (d, *J* = 13.0 Hz, 1H), 3.18 (d, *J* = 13.0 Hz, 1H), 2.26 (s, 3H), 1.36 (s, 3H),

1.05 (s, 3H). ¹³C{¹H} **NMR (126 MHz, DMSO-***d*₆) δ 168.1, 147.5, 142.1, 137.2, 132.5, 129.7, 129.2, 128.8, 128.5, 128.0, 125.4, 124.9, 123.0, 122.7, 120.6, 112.3, 106.4, 106.3, 77.6, 77.5, 58.9, 25.9, 23.5, 23.5, 21.2. **HRMS (ESI) m/z**: calculated for C₂₈H₂₆N₃O₂ [M-H]⁻:436.2031, found:436.2032. HPLC purity: 95.1%; *t*_R = 2.568 min, MeOH-H₂O (80:20).

(3ak)

(Z/E)-3-((2-(3-chlorophenyl)-5,5-dimethyl-4-oxo-1-

phenylhexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 65 mg, yield: 72%. ¹**H NMR (600 MHz, DMSO-***d*₆**)** δ 9.80 (s, 1H), 8.63 (s, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.45 – 7.32 (m, 4H), 7.11 (t, J = 7.7 Hz, 2H), 6.94 (t, J = 7.3 Hz, 1H), 6.87 (d, J = 8.0 Hz, 2H), 6.36 (s, 1H), 3.70 (d, J = 13.1 Hz, 1H), 3.20 (d, J = 13.1 Hz,

1H), 1.35 (s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (151 MHz, DMSO-d₆) δ 175.43, 168.63, 147.63, 144.97, 138.09, 136.56, 133.29, 133.04, 130.55, 130.27, 129.03, 128.65, 128.41, 128.21, 127.37, 125.43, 123.79, 123.19, 121.24, 106.07, 77.60, 59.44, 26.28, 23.96. HRMS (ESI) m/z: calculated for C₂₇H₂₅ClN₃O₂ [M+H]⁺:458.1630, found: 458.1634.

(3al) (*Z/E*)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(thiophen-3yl)hexahydropyrimidin-2-yl)methylene)isoindolin-1-one

Following by general procedure for the synthesis of **3aa**. White solid, 56 mg, yield: 66%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 8.62 (s, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.77 – 7.68 (m, 2H), 7.61 – 7.51 (m, 2H), 7.25 (d, J = 2.8 Hz, 1H), 7.11 (t, J = 7.3 Hz, 3H), 6.94 (t, J = 7.3 Hz, 1H), 6.86 (d, J = 8.0 Hz, 2H), 6.30 (s, 1H), 3.64 (d, J = 12.9 Hz, 1H), 3.16 (d, J = 12.9 Hz, 1H), 1.33 (s, 3H), 1.05 (s, 3H). ¹³C{¹H} NMR (151

MHz, DMSO-*d*₆) δ 175.3, 175.3, 168.5, 148.1, 144.1, 144.0, 138.3, 132.9, 130.1, 128.5, 128.1, 127.2, 126.4, 126.3, 125.2, 123.7, 123.1, 121.1, 107.2, 107.2, 75.3, 75.2, 59.0, 26.2, 26.2, 24.0, 23.9. **HRMS (ESI)** m/z: calculated for C₂₅H₂₂N₃O₂S [M-H]⁻:428.1438, found:428.1441. HPLC purity: 92.8%; *t*_R = 2.484 min, MeOH-H₂O (80:20).

(4aa) (*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 25 mg, yield: 60%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.93 (s, 1H), 7.86 (d, *J* = 7.4 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.60 (td, *J* = 7.6, 1.2 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.43 – 7.32 (m, 6H), 7.11 – 7.01 (m, 2H), 6.90 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 1H), 3.78 (d, *J* = 8.3 Hz, 1H), 3.44 (d, *J* = 8.3 Hz, 1H), 1.40 (s, 3H), 1.33 (s, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 169.8, 168.4, 138.9, 137.7, 137.0, 135.9, 132.0, 129.6, 129.5, 129.4, 128.8, 128.5, 127.8, 123.8, 123.5, 120.1, 110.3, 104.9, 69.1, 64.3, 46.0, 22.8, 22.7. HRMS (ESI) m/z: calculated for C₂₇H₂₂N₃O₂ [M - H]⁻: 420.1718, found: 420.1716.

(4ba) (*Z/E*)-7-fluoro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 44 mg, yield: 51%. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.05 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.58 (td, *J* = 7.5, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.37 – 7.31 (m, 5H), 7.02 (td, *J* = 8.6, 2.5 Hz, 1H), 6.82 (dd, *J* = 8.7, 4.1 Hz, 1H), 6.70 (dd, *J* = 7.9, 2.5 Hz, 1H), 5.85 (s, 1H), 3.76 (d, *J* = 8.2 Hz, 1H), 3.35 (d, *J* = 8.2 Hz, 1H), 1.37 (s,

3H), 1.29 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 169.6, 167.9, 159.2 (d, *J* = 242.6 Hz), 141.8, 137.6, 137.1, 137.0, 131.7, 129.3, 129.1, 128.4, 128.3, 127.3, 123.1, 119.6, 115.9 (d, *J* = 24.0 Hz), 110.8 (d, *J* = 8.5 Hz), 110.6 (d, *J* = 25.0 Hz), 103.5, 68.8, 64.3, 45.7, 22.3, 22.1. HRMS (ESI) m/z: calculated for C₂₇H₂₁FN₃O₂ [M - H]⁻: 438.1623, found: 438.1628.

(4ca) (*Z/E*)-7-chloro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 42 mg, yield: 47%. ¹**H NMR (400 MHz, Chloroform-d)** δ 9.00 (s, 1H), 7.86 (dt, J = 7.5, 1.1 Hz, 1H), 7.72 (dt, J = 7.7, 1.0 Hz, 1H), 7.61 (td, J= 7.4, 1.1 Hz, 1H), 7.54 (td, J = 7.3, 0.8 Hz, 1H), 7.43 – 7.32 (m, 5H), 7.30 (dd, J = 8.4, 2.0 Hz, 1H), 6.97 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 5.85 (s, 1H), 3.79 (d, J = 8.3 Hz, 1H), 3.39 (d, J = 8.3 Hz, 1H), 1.39 (s, 3H), 1.32 (s, 3H). ¹³C{¹H} **NMR (126 MHz, Chloroform-***d***)** δ 169.4, 167.9, 144.2, 137.5, 137.3, 137.0, 131.65, 129.31, 129.02, 128.48, 128.33, 127.31, 123.40, 123.12, 119.6, 110.8, 103.5, 68.7, 63.8, 45.7, 22.4, 22.2. **HRMS (ESI) m/z**: calculated for C₂₇H₂₁ClN₃O₂ [M - H]⁻: 454.1328, found: 454.1326.

(4da) (*Z/E*)-7-bromo-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 57 mg, yield: 56%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.99 (s, 1H), 7.86 (dt, J = 7.5, 1.1 Hz, 1H), 7.72 (dt, J = 7.8, 1.0 Hz, 1H), 7.61 (td, J= 7.5, 1.2 Hz, 1H), 7.54 (td, J = 7.4, 1.0 Hz, 1H), 7.45 (dd, J = 8.4, 1.9 Hz, 1H), 7.42 – 7.32 (m, 5H), 7.11 (d, J = 1.8 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.85 (s, 1H), 3.78 (d, J = 8.3 Hz, 1H), 3.39 (d, J = 8.3 Hz, 1H), 1.39

(s, 3H), 1.32 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 169.3, 167.9, 144.6, 137.7, 137.5, 137.1, 137.0, 131.8, 131.7, 129.3, 128.5, 128.3, 127.3, 126.2, 123.1, 119.6, 115.4, 111.3, 103.6, 68.6, 63.7, 45.7, 22.4, 22.2. HRMS (ESI) m/z: calculated for C₂₇H₂₂BrN₃NaO₂ [M + Na]⁺: 522.0788, found: 522.0790.

(4ea) (*Z/E*)-2,2,7-trimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 47 mg, yield: 54%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.79 (s, 1H), 7.59 (td, J = 7.5, 1.2 Hz, 1H), 7.52 (td, J = 7.4, 1.0 Hz, 1H), 7.38 – 7.30 (m, 1H), 7.28 – 7.23 (m, 1H), 7.21 – 7.12 (m, 3H), 7.10 – 7.03 (m, 2H), 6.90 (d, J = 7.9 Hz, 1H), 5.95 (s, 1H), 3.74 (d, J = 8.3 Hz, 1H), 3.47 (d, J = 8.3 Hz, 1H), 2.34 (s, 3H), 1.39 (s, 3H), 1.34 (s, 3H). ¹³C{¹H} NMR (126 **MHz, Chloroform-***d***)** δ 169.4, 167.9, 143.5, 138.5, 137.2, 136.5, 135.5, 133.2, 131.6, 129.6, 129.1, 128.3, 128.0, 127.3, 123.6, 123.0, 119.6, 109.7, 104.7, 68.6, 64.3, 45.6, 22.3, 22.2, 20.6. **HRMS (ESI) m/z**: calculated for C₂₈H₂₅N₃NaO₂ [M + Na]⁺: 458.1839, found: 458.1841.

(4fa) (*Z/E*)-7-methoxy-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 45 mg, yield: 50%. ¹H NMR (500 MHz, Chloroform-d) δ 9.01 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.40 – 7.31 (m, 5H), 6.87 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.81 (d, *J* = 8.7 Hz, 1H), 6.52 (d, *J* = 2.4 Hz, 1H), 5.91 (s, 1H), 3.73 (d, *J* = 6.4 Hz, 4H), 3.33 (d, *J* = 8.2 Hz, 1H), 1.36 (s, 3H), 1.28 (s, 3H).

¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 169.6, 167.9, 156.5, 139.5, 138.1, 136.7, 131.6, 129.2, 128.3, 128.1, 127.4, 123.1, 119.6, 114.6, 110.7, 109.0, 104.2, 68.8, 64.8, 55.4, 45.6, 22.3, 22.2. HRMS (ESI) m/z: calculated for C₂₈H₂₅N₃NaO₃ [M + Na]⁺: 474.1788, found: 474.1790.

(4ga) (*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-7-(trifluoromethyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow oil, 65 mg, yield: 71%. ¹**H NMR (400 MHz, Chloroform-***d***)** δ 9.00 (s, 1H), 7.87 (dt, *J* = 7.5, 1.1 Hz, 1H), 7.73 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.62 (td, *J* = 7.6, 1.3 Hz, 2H), 7.55 (td, *J* = 7.3, 1.2 Hz, 1H), 7.43 – 7.34 (m, 5H), 7.23 (s, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 5.83 (s, 1H), 3.85 (d, *J* = 8.4 Hz, 1H), 3.46 (d, *J* = 8.4 Hz, 1H), 1.41 (s, 3H), 1.34 (s, 3H). ¹³C{¹H} NMR (126 **MHz, Chloroform-***d***)** δ 169.3, 167.9, 148.0, 137.3, 137.2, 137.0, 136.4, 131.7, 129.4, 129.1, 128.6, 128.4, 127.3, 126.6, 126.6, 123.1, 120.5, 120.4, 119.7, 68.7, 63.0, 45.6, 22.5, 22.2. **HRMS (ESI) m/z**: calculated for C₂₈H₂₁F₃N₃O₂ [M - H]⁻: 488.1591, found:488.1595.

(4ha) (*Z/E*)-2,2-dimethyl-1-oxo-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazole-7-carbonitrile

Following by general procedure for the synthesis of **4aa**. Yellow solid, 55 mg, yield: 62%. ¹H NMR (500 MHz, Chloroform-d) δ 8.93 (s, 1H), 7.84 (d, J = 7.5Hz, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.54 (dd, J = 7.5, 0.9 Hz, 1H), 7.40 – 7.32 (m, 5H), 7.24 (d, J = 1.5 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 5.75 (s, 1H), 3.83 (d, J = 8.5 Hz, 1H), 3.47 (d, J = 8.5 Hz,

1H), 1.38 (s, 3H), 1.33 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 169.1, 167.8, 148.3, 137.5, 137.0, 137.0, 136.9, 133.6, 131.8, 129.5, 129.1, 128.7, 128.6, 127.2, 127.1, 123.2, 119.6, 109.7, 105.9, 102.8, 68.6, 62.4, 45.7, 22.6, 22.2. HRMS (ESI) m/z: calculated for C₂₈H₂₂N₄NaO₂ [M + Na]⁺: 469.1635, found: 469.163.

(4ia) (*Z/E*)-5-chloro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-a]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 40 mg, yield: 45%. ¹H NMR (600 MHz, DMSO-*d*₆) δ ¹H NMR (600 MHz, DMSO) δ 9.51 (s, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.41 – 7.35 (m, 4H), 7.33 (t, *J* = 6.7 Hz, 1H), 7.03 (d, *J* = 9.9 Hz, 1H), 7.02 – 6.99 (m, 1H), 6.86 (t, *J* =

8.0 Hz, 1H), 6.16 (s, 1H), 3.99 (d, J = 8.7 Hz, 1H), 3.54 (d, J = 8.7 Hz, 1H), 1.25 (s,

3H), 1.23 (s, 3H). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 169.9, 167.5, 163.5, 162.1, 147.3, 147.2, 139.0, 137.3, 136.4, 132.6, 131.7, 130.0, 129.7, 128.8, 128.7, 128.1, 127.5, 125.2, 122.9, 121.2, 110.1, 110.0, 105.6, 98.5, 98.3, 68.4, 62.7, 45.6, 22.5, 22.1. HRMS (ESI) m/z: calculated for C₂₇H₂₂FN₃NaO₂ [M + Na]⁺: 462.1588, found: 462.1591. HPLC purity: 93.2%; *t*_R = 3.055 min, MeOH-H₂O (80:20).

(4ja) (*Z/E*)-6-chloro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 43 mg, yield: 47%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.52 (s, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.40 – 7.35 (m, 4H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.25 (d, *J* = 1.7 Hz, 1H), 7.08 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.01 (d, *J* = 8.2 Hz, 1H), 6.15 (s, 1H), 4.01 (d, *J* = 8.7 Hz, 1H), 3.56 (d, *J* = 8.7 Hz, 1H), 1.24

(s, 3H), 1.23 (s, 3H). ¹³C{¹H} **NMR (201 MHz, DMSO-***d*₆) 169.3, 166.9, 146.4, 138.3, 136.6, 135.9, 134.0, 133.1, 132.0, 129.4, 128.1, 127.5, 126.9, 124.5, 122.5, 122.2, 120.6, 110.1, 104.5, 67.8, 62.0, 44.9, 21.9, 21.5. **HRMS (ESI) m/z**: calculated for $C_{27}H_{21}CIN_{3}O_{2}$ [M- H]⁻: 454.1328, found:454.1328. HPLC purity: 93.4%; *t*_R = 3.054 min, MeOH-H₂O (80:20).

(4ka) (*Z/E*)-6-bromo-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 67 mg, yield: 68%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 7.86 (dt, J = 7.4, 1.1 Hz, 1H), 7.70 (dt, J = 7.8, 1.0 Hz, 1H), 7.61 (td, J= 7.5, 1.2 Hz, 1H), 7.53 (td, J = 7.4, 1.1 Hz, 1H), 7.42 - 7.33 (m, 5H), 7.18 (dd, J = 8.1, 1.7 Hz, 1H), 7.04 (d, J = 1.7 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 5.85 (s, 1H), 3.76 (d, J = 8.3 Hz, 1H), 3.43 (d, J = 8.3 Hz, 1H), 1.39 (s, 3H), 1.33 (s, 3H).¹³C{¹H} **NMR (126 MHz, Chloroform-***d***)** δ 169.3, 167.9, 146.9, 137.8, 137.1, 136.9, 134.7, 131.7, 129.3, 129.1, 128.5, 128.3, 127.2, 126.2, 124.6, 123.1, 122.5, 119.6, 113.1, 103.7, 68.6, 63.5, 45.6, 22.4, 22.2. **HRMS (ESI) m/z**: calculated for C₂₇H₂₁BrN₃O₂ [M- H]⁻: 498.0823, found:498.0822.

(4ab) (*Z/E*)-9-(4-fluorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1ylidene)methyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 52 mg, yield: 60%. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.10 (s, 1H), 7.86 (dt, J = 7.4, 1.0 Hz, 1H), 7.69 (dd, J = 7.6, 1.0 Hz, 1H), 7.60 (td, J= 7.5, 1.2 Hz, 1H), 7.52 (td, J = 7.4, 1.0 Hz, 1H), 7.40 - 7.34 (m, 3H), 7.10 - 6.98 (m, 4H), 6.91 (d, J = 7.9Hz, 1H), 5.90 (s, 1H), 3.83 (d, J = 8.3 Hz, 1H), 3.38 (d, J = 8.4 Hz, 1H), 1.40 (s, 3H), 1.31 (s, 3H). ¹³C{¹H}

NMR (126 MHz, Chloroform-*d*) δ 169.4, 168.0, 162.1 (d, J = 248.5 Hz), 145.6, 137.1, 136.7, 135.3, 134.1, 134.1, 131.7, 129.4 (d, J = 8.5 Hz), 129.2 (d, J = 26.0 Hz), 123.5, 123.2, 123.1, 119.6, 115.4, 115.2, 109.9, 104.2, 68.1, 63.9, 45.6, 22.4, 22.1. HRMS (ESI) m/z: calculated for C₂₇H₂₂FN₃NaO₂ [M+ Na]⁺: 462.1588, found:462.1588.

(4ac) (*Z/E*)-9-(4-chlorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1ylidene)methyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 47 mg, yield: 52%. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.06 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.36 – 7.27 (m, 5H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 1H), 5.85 (s, 1H), 3.80 (d, *J* = 8.3 Hz, 1H), 3.36 (d, J = 8.4 Hz, 1H), 1.37 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-d) δ 169.4, 167.9, 145.5, 136.9, 135.1, 134.1, 131.7, 129.3, 129.1, 129.1, 128.8, 128.5, 123.5, 123.1, 119.6, 110.0, 103.8, 68.1, 63.9, 45.6, 22.4, 22.1. HRMS (ESI) m/z: calculated for C₂₇H₂₁ClN₃O₂ [M-H]⁻: 454.1328, found:454.1329.

(4ad) (*Z/E*)-9-(4-bromophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1ylidene)methyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 40 mg, yield: 40%. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.08 (s, 1H), 7.86 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.69 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.60 (td, *J* = 7.5, 1.2 Hz, 1H), 7.53 (td, *J* = 7.4, 1.1 Hz, 1H), 7.51 - 7.45 (m, 2H), 7.36 (td, *J* = 7.6, 1.2 Hz, 1H), 7.31 -7.23 (m, 3H), 7.08 (td, *J* = 7.6, 1.0 Hz, 1H), 6.98 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.91 (dt, *J* = 7.9, 0.8 Hz, 1H),

5.86 (s, 1H), 3.83 (d, *J* = 8.3 Hz, 1H), 3.38 (d, *J* = 8.3 Hz, 1H), 1.40 (s, 3H), 1.31 (s, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 169.8, 168.4, 146.0, 137.9, 137.5, 137.4, 135.6, 132.1, 131.9, 129.8, 129.6, 129.6, 124.0, 123.6, 123.6, 122.9, 120.1, 110.4, 104.1, 68.5, 64.4, 46.1, 22.8, 22.6.HRMS (ESI) m/z: calculated for C₂₇H₂₁BrN₃O₂ [M-H]⁻: 498.0823, found:498.0825.

(4ae) (*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(p-tolyl)-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 37 mg, yield: 43%. ¹H NMR (500 MHz, **Chloroform-***d***)** δ 8.97 (s, 1H), 7.83 (d, *J* = 7.5 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.31 (td, *J* = 7.6, 1.3 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.07 – 6.97 (m, 2H), 6.87 (d, *J* = 7.9

S36
Hz, 1H), 5.90 (s, 1H), 3.76 (d, J = 8.3 Hz, 1H), 3.39 (d, J = 8.2 Hz, 1H), 2.32 (s, 3H), 1.37 (s, 3H), 1.29 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 169.3, 167.9, 145.7, 137.9, 137.2, 136.4, 135.6, 135.4, 131.5, 129.1, 129.1, 128.8, 127.3, 123.3, 123.0, 119.6, 109.8, 104.8, 68.6, 63.9, 45.6, 22.4, 22.2, 20.7.HRMS (ESI) m/z: calculated for C₂₈H₂₅N₃NaO₂ [M+ Na]⁺: 458.1839, found:458.1841.

(4ag) (*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(4pentylphenyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 47 mg, yield: 48%. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.86 (s, 1H), 7.83 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.56 (td, *J* = 7.5, 1.2 Hz, 1H), 7.49 (td, *J* = 7.5, 1.0 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.30 – 7.24 (m, 3H), 7.16 – 7.12 (m, 2H), 7.07 – 7.00 (m, 2H), 6.87 (d, *J* = 7.9 Hz, 1H), 5.92 (s, 1H), 3.73 (d, *J* = 8.3 Hz, 1H), 3.41 (d, *J* = 8.3 Hz, 1H),

2.61 – 2.55 (m, 2H), 1.63 – 1.55 (m, 2H), 1.37 (s, 3H), 1.34 – 1.30 (m, 7H), 0.91 – 0.87 (m, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 145.7, 142.8, 136.3, 135.6, 135.5, 131.5, 129.1, 129.1, 128.8, 128.3, 127.1, 123.4, 123.2, 123.0, 119.6, 109.8, 104.9, 68.6, 63.8, 45.6, 35.1, 31.2, 30.4, 22.4, 22.3, 22.1, 13.6.HRMS (ESI) m/z: calculated for C₃₂H₃₂N₃O₂ [M- H]⁻: 490.2500, found:490.2503.

(4ai) (*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(m-tolyl)-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 46 mg, yield: 54%. ¹H NMR (500 MHz, Chloroform-d) δ 8.83 (s, 1H), 7.85 (d, J = 7.5Hz, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.26 (dd, J = 15.7, 8.0 Hz, 1H), 7.19 (d, J = 7.9 Hz, 2H), 7.14 (d, J = 7.5 Hz, 1H), 7.11 – 7.03 (m, 2H), 6.90 (d, J = 7.9 Hz, 1H), 5.95 (s, 1H), 3.75 (d, J = 8.3 Hz, 1H), 3.47 (d, J = 8.3 Hz, 1H), 2.34 (s, 3H), 1.39 (s, 3H), 1.34 (s, 3H). ¹³C{¹H} NMR (126 MHz, Chloroform-*d*) δ 169.2, 167.8, 145.6, 138.5, 137.9, 137.2, 136.3, 135.3, 131.5, 129.1, 129.0, 128.9, 128.8, 128.2, 127.7, 124.4, 123.3, 123.2, 123.0, 119.6, 109.8, 104.6, 68.6, 63.8, 45.5, 22.3, 22.3, 21.2.HRMS (ESI) m/z: calculated for C₂₈H₂₅N₃NaO₂ [M+ Na]⁺: 458.1839, found:458.1841.

(4aj) (*Z/E*)-9-(2-chlorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1ylidene)methyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 47 mg, yield: 52%. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.38 (s, 1H), 7.86 (dt, J = 7.5, 1.1 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.68 – 7.64 (m, 1H), 7.57 (td, J = 7.5, 1.2 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.36 – 7.26 (m, 4H), 7.02 (td, J = 7.6, 1.0 Hz, 1H), 6.86 (dd, J = 7.6, 1.2 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 5.71 (s,

1H), 3.85 (d, J = 8.1 Hz, 1H), 3.61 (d, J = 8.1 Hz, 1H), 1.40 (s, 3H), 1.34 (s, 3H). ¹³C{¹H} **NMR (126 MHz, Chloroform-***d***)** δ 169.5, 168.0, 146.6, 137.1, 136.9, 134.3, 133.2, 132.0, 131.9, 131.6, 130.7, 130.1, 129.4, 129.3, 129.0, 126.7, 123.2, 122.8, 121.5, 119.7, 109.0, 104.6, 67.7, 62.4, 45.5, 23.5, 22.1. **HRMS (ESI) m/z**: calculated for C₂₇H₂₂ClN₃NaO₂ [M+ Na]⁺: 478.1293, found:478.1295.

(4ak) (*Z/E*)-9-(3-chlorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1ylidene)methyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 42 mg, yield: 46%. ¹H NMR (600 MHz, DMSO-*d*₆) δ ¹H NMR (600 MHz, DMSO) δ 9.51 (s, 1H), 8.08 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.4 Hz, 1H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.41 (s, 2H), 7.37 (t, *J* = 6.4 Hz, 1H), 7.34 (s, 2H), 7.13 – 7.02 (m, 3H), 6.17 (s, 1H), 4.00 (d, *J* = 8.6 Hz, 1H), 3.52 (d, J = 8.6 Hz, 1H), 1.26 (s, 3H), 1.23 (s, 3H). ¹³C{¹H} NMR (201 MHz, DMSO-*d*₆) δ 169.4, 166.9, 145.0, 140.9, 136.6, 135.9, 134.5, 132.6, 132.0, 129.5, 128.9, 128.1, 127.6, 126.6, 126.0, 123.0, 123.0, 122.2, 120.7, 110.0, 104.4, 67.4, 62.4, 45.0, 21.8, 21.4. HRMS (ESI) m/z: calculated for C₂₇H₂₂ClN₃NaO₂ [M+ Na]⁺: 478.1293, found:478.1294.

(4al) (Z/E)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(thiophen-3-yl)2,3-dihydro-1H,9H-pyrazolo[1,2-a]indazol-1-one

Following by general procedure for the synthesis of **4aa**. Yellow solid, 17 mg, yield: 21%. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.28 (s, 1H), 7.86 (dt, J = 7.4, 1.1 Hz, 1H), 7.67 (dt, J = 7.8, 1.0 Hz, 1H), 7.59 (td, J= 7.5, 1.3 Hz, 1H), 7.52 (td, J = 7.4, 1.0 Hz, 1H), 7.38 – 7.30 (m, 3H), 7.12 – 7.05 (m, 2H), 6.90 (dd, J = 7.9, 0.8 Hz, 1H), 6.87 – 6.83 (m, 1H), 5.94 (s, 1H), 3.82 (d, J = 8.3 Hz, 1H), 3.33 (d, J = 8.3 Hz, 1H), 1.40 (s, 3H),

1.31 (s, 3H). ¹³C{¹H} **NMR (151 MHz, Chloroform-***d***)** δ 170.0, 168.4, 146.1, 140.0, 137.6, 137.0, 135.3, 132.0, 129.7, 129.5, 127.1, 127.1, 124.7, 123.8, 123.5, 123.5, 120.0, 110.4, 105.4, 66.0, 64.6, 46.1, 22.9, 22.7.**HRMS (ESI) m/z**: calculated for C₂₅H₂₀N₃O₂S[M-H]⁻: 426.1282, found:426.1284. HPLC purity: 98.6%; *t*_R = 2.443 min, MeOH-H₂O (80:20).

(5aa) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-phenyl-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 72 mg, yield: 80%. ¹H NMR (400 MHz, **DMSO-***d*₆) δ 8.02 (d, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.72 (s, 1H), 7.43 – 7.33 (m, 3H), 7.28 – 7.24 (m, 1H), 7.22 – 7.09 (m, 7H), 7.02 – 6.98 (m, 1H), 6.92 (s, 1H), 6.88 (dd, *J* = 7.7, 1.2 Hz, 1H), 4.42 (s, 2H), 0.68 (s, 6H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 192.8, 178.2, 169.7, 147.8, 142.4, 137.6, 135.6, 130.9, 129.3, 128.8, 128.6, 128.2, 127.8, 127.5, 127.3, 123.1, 122.4, 121.8, 115.2, 112.7, 50.5, 44.0, 24.7. HRMS (ESI) m/z: calculated for C₂₇H₂₄N₃O₃ [M - H]⁻: 438.1823, found: 438.1824.

(5ba) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-5-fluoro-2-phenyl-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 76 mg, yield: 85%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.78 (dd, *J* = 9.1, 4.5 Hz, 1H), 7.75 (s, 1H), 7.70 (dd, *J* = 10.1, 2.7 Hz, 1H), 7.40 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.25 – 7.10 (m, 7H), 7.01 (td, *J* = 7.5, 1.2 Hz, 1H), 6.94 (s, 1H), 6.91 – 6.86 (m, 1H), 4.41 (s, 2H), 0.68 (s, 6H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 192.7, 178.2, 169.6,

159.1 (d, J = 234.6 Hz), 149.2, 142.1, 135.5, 134.2, 131.9, 130.6, 129.4, 129.0, 128.7, 128.1, 128.0 (d, J = 11.0 Hz), 127.9, 127.5, 115.2, 114.1 (d, J = 9.7 Hz), 111.2 (d, J = 25.9 Hz), 106.5 (d, J = 24.8 Hz), 50.9, 43.9, 24.6. **HRMS (ESI) m/z**: calculated for C₂₇H₂₃FN₃O₃ [M - H]⁻: 456.1729, found: 456.1732.

(5ca) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-5-chloro-2-phenyl-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 86 mg, yield: 91%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (d, J = 2.2 Hz, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.75 (s, 1H), 7.40 (dd, J = 7.7, 1.1 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.28 (dd, J = 8.9, 2.2 Hz, 1H), 7.23 (s, 1H), 7.20 – 7.07 (m, 5H), 7.02 (td, J = 7.5, 1.2 Hz, 1H), 6.96 – 6.83 (m, 2H), 4.40 (s, 2H),

0.67 (s, 6H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 177.6, 169.0, 148.4, 141.5, 135.6, 134.9, 129.8, 128.9, 128.5, 128.2, 128.0, 127.6, 127.4, 127.0, 126.7, 122.6, 120.3, 114.4, 113.9, 50.4, 43.4, 24.1. HRMS (ESI) m/z: calculated for C₂₇H₂₃ClN₃O₃ [M - H]⁻: 472.1433, found: 472.1434.

(5fa) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-5-methoxy-2-phenyl-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 76 mg, yield: 81%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.72 (s, 1H), 7.64 (d, *J* = 9.0 Hz, 1H), 7.57 (d, *J* = 2.6 Hz, 1H), 7.42 – 7.31 (m, 3H), 7.21 (s, 1H), 7.18 – 7.07 (m, 5H), 7.00 – 6.95 (m, 1H), 6.91 (s, 1H), 6.88 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.84 (d, *J* = 7.5 Hz, 1H), 4.38 (s, 2H), 3.76 (s, 3H), 0.66 (s, 6H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 178.2, 169.8,

155.9, 148.1, 142.4, 135.6, 132.6, 131.1, 129.2, 128.7, 128.5, 128.2, 128.1, 127.8, 127.5, 114.9, 113.5, 112.8, 103.5, 55.7, 50.7, 44.0, 24.6. **HRMS (ESI) m/z**: calculated for C₂₈H₂₆N₃O₄ [M - H]⁻: 468.1929, found: 468.1928.

(5ab) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(4-fluorophenyl)-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 65 mg, yield: 72%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 2.3 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.73 (s, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.26 (dd, *J* = 8.8, 2.3 Hz, 1H), 7.21 (s, 1H), 7.18 – 7.11 (m, 3H), 7.12 – 7.06 (m, 3H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.91 (s, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 4.38 (s, 2H), 0.65 (s, 6H). ¹³C{¹H} NMR

(126 MHz, DMSO-*d*₆) δ 192.7, 178.1, 169.7, 162.3 (d, *J* = 246.3 Hz), 146.7, 142.4, 137.7, 135.6, 129.4, 128.5, 128.2, 127.6, 127.2, 123.3, 122.5, 121.8, 115.4, 114.9, 114.7, 112.7, 50.6, 44.1, 24.7. HRMS (ESI) m/z: calculated for C₂₇H₂₃FN₃O₃ [M - H]⁻: 456.1729, found: 456.1733.

(5af) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(4-methoxyphenyl)-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 68 mg, yield: 72%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.02 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 2H), 7.39 (d, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 6.3 Hz, 3H), 7.16 (dd, *J* = 14.1, 7.4 Hz, 3H), 7.08 (s, 1H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.90 (s, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 8.3 Hz, 2H), 4.40 (s, 2H), 3.67 (s, 3H), 0.68 (s, 6H). ¹³C{¹H} NMR (126 MHz,

DMSO-*d*₆) δ 192.4, 177.8, 169.3, 159.1, 147.6, 142.0, 137.1, 135.1, 128.8, 127.9, 127.7, 127.1, 127.0, 122.6, 122.5, 121.9, 121.2, 112.9, 112.1, 55.1, 50.0, 43.6, 24.2. **HRMS** (**ESI**) **m**/**z**: calculated for C₂₈H₂₆N₃O₄ [M – H]⁻: 468.1929, found: 468.1927. HPLC purity: 95.4%, MeOH-H₂O (80:20).

(5ai) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(3-methylphenyl)-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 56 mg, yield: 62%. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.12 (d, *J* = 7.7 Hz, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.70 (s, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.18 (s, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.13 – 7.09 (m, 2H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.96 – 6.91 (m, 2H), 6.83 (d, *J* = 7.2

Hz, 1H), 4.44 (s, 2H), 2.08 (s, 3H), 0.69 (s, 6H). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 192.9, 178.3, 169.7, 148.1, 142.4, 137.6, 136.9, 135.4, 130.7, 129.4, 129.2, 128.4, 127.7, 127.4, 127.3, 123.1, 122.4, 121.8, 115.1, 112.6, 50.6, 44.0, 21.1. HRMS (ESI) m/z: calculated for C₂₈H₂₈N₃O₃ [M + H]⁻: 454.2125, found: 454.2129. HPLC purity: 95.2%, MeOH-H₂O (80:20).

(5ak) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(3-chlorophenyl)-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 67 mg, yield: 71%. ¹H NMR (600 MHz, DMSO-*d*₆) δ ¹H NMR (600 MHz, DMSO) δ 8.06 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.49 (s, 1H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.24 (s, 1H), 7.23 – 7.18 (m, 4H), 7.11 (s, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.91 (s, 1H), 6.88 (d, *J* = 7.3 Hz, 1H),

4.41 (d, J = 72.9 Hz, 2H), 0.87 – 0.85 (m, 3H), 0.71 (s, 6H). ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆) δ 194.6, 179.9, 171.5, 147.8, 144.2, 139.6, 137.3, 134.8, 134.6, 131.5, 131.3, 130.7, 130.5, 129.5, 129.0, 125.3, 124.5, 123.8, 117.3, 114.7, 114.5, 52.6, 46.0. HRMS (ESI) m/z: calculated for C₂₈H₂₅ClN₃O₃ [M + H]⁻: 474.1579, found: 474.1579. HPLC purity: 99.4%, MeOH-H₂O (80:20).

(5al) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(thiophen-3-yl)-1*H*-indole-3carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 66 mg, yield: 75%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.08 (d, *J* = 7.5 Hz, 1H), 7.80 (s, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.62 (dd, *J* = 2.9, 1.2 Hz, 1H), 7.43 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.32 - 7.18 (m, 5H), 7.15 - 7.03 (m, 3H), 6.94 (s, 1H), 6.88 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.47 (s, 2H), 0.71 (s, 6H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆) δ 192.2, 177.7, 169.7,

142.7, 141.7, 137.3, 135.5, 130.5, 129.7, 128.7, 128.2, 127.4, 127.2, 126.9, 125.4, 122.8, 122.0, 121.2, 114.9, 112.0, 50.3, 43.6, 24.0. **HRMS (ESI) m/z**: calculated for C₂₅H₂₂N₃O₃S [M - H]⁻: 444.1387, found: 444.1389.

(5am) 2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-5,6-dichloro-2-phenyl-1*H*-indole-3-carbonyl)benzamide

Following by general procedure for the synthesis of **5aa**. White solid, 62 mg, yield: 61%. ¹**H NMR (500 MHz, DMSO-***d*₆**)** δ 8.24 (d, *J* = 7.1 Hz, 1H), 7.90 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.54 (s, 1H), 7.42 (s, 1H), 7.34 – 7.25 (m, 4H), 7.21 – 7.12 (m, 3H), 7.09 (s, 1H), 6.98 (s, 1H), 6.91 (s, 1H), 4.39 (s, 2H), 0.68 (s, 6H). ¹³C{¹H} NMR (126 MHz, DMSO-*d*₆**)** δ 177.7, 167.0, 148.1, 141.5, 137.3, 135.2, 131.6, 131.4, 130.5, 130.3,

129.9, 129.0, 128.3, 127.4, 126.8, 123.1, 122.4, 121.4, 114.5, 112.3, 50.3, 43.5, 24.2. HRMS (ESI) m/z: calculated for C₂₇H₂₂Cl₂N₃O₃ [M - H]⁻: 506.1044, found: 506.1048.

VIII. X-ray Crystallographic Data

Single Crystal X-ray Diffraction (SCXRD): X-ray diffractions of all single crystals were carried out at 100(2) K on a Bruker D8 VENTURE diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). Integration and scaling of intensity data was performed using the SAINT program. Data were corrected for the effects of absorption using SADABS. The structures were solved by direct method and refined with full-matrix least-squares technique using SHELX-2014 software. Non-hydrogen atoms were refined with anisotropic displacement parameters, and hydrogen atoms were placed in calculated positions and refined with a riding model.

(1) The Single Crystal Structure of 3aa (Deposition Data: CCDC 2410303)

Crystal Data for C₅₄H₅₂N₆O₅ (M = 865.01 g/mol): monoclinic, space group P2₁/c (no. 14), a = 10.9888(2) Å, b =18.4115(5) Å, c =12.1884(3) Å, α =90°, β = 109.3740(10)°, γ = 90°, V = 2326.32(10) Å³, Z = 2, T = 170(2) K, μ (CuK α) = 0.640 mm⁻¹, Dcalc = 1.235 g/cm³, 22292 reflections measured (8.53° ≤ 2 Θ ≤ 149.236°), 4691 unique (R_{int} = 0.0599, R_{sigma} = 0.0412) which were used in all calculations. The final R₁ was 0.1018 (I > 2 σ (I)) and wR₂ was 0.2367 (all data).

(2) The Single Crystal Structure of 4aa (Deposition Data: CCDC 2410625)

Crystal Data for C₅₅H₄₈Cl₂N₆O₄ (M = 927.89 g/mol): monoclinic, space group Pn (no. 7), a = 14.0724(3) Å, b = 41.3599(10) Å, c = 16.7154(4) Å, $\alpha = 90^{\circ}$, $\beta = 102.8130(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 9486.7(4) Å³, Z = 8, T = 170(2) K, μ (CuK α) = 1.662 mm⁻¹, Dcalc = 1.299 g/cm³, 150635 reflections measured (4.272° ≤ 2 Θ ≤ 149.836°), 36461 unique (R_{int} =

0.0557, $R_{sigma} = 0.0449$) which were used in all calculations. The final R_1 was 0.0526 (I > 2 σ (I)) and wR_2 was 0.1531 (all data).

(3) The Single Crystal Structure of 5aa (Deposition Data: CCDC 2410305)

Crystal Data for C₂₇H₂₅N₃O₃ (M = 439.50 g/mol): orthorhombic, space group Pbca (no. 61), a = 19.2491(12) Å, b = 9.9787(4) Å, c =22.4268(14) Å, α = 90°, β = 90°, γ = 90°, V = 4307.8(4) Å³, Z = 8, T = 170.00 K, μ (MoK α) = 0.720 mm⁻¹, Dcalc = 1.355 g/cm³, 18845 reflections measured (7.884° ≤ 2 Θ ≤ 127.572°), 3488 unique (R_{int} = 0.0995, R_{sigma} = 0.0666) which were used in all calculations. The final R₁ was 0.0590 (I > 2 σ (I)) and wR₂ was 0.1477 (all data).

IX. NMR Spectra of Products

(Z/E)-3-((5,5-dimethyl-4-oxo-1,2-diphenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3aa)

(Z/E)-3-((1-(4-fluorophenyl)-5,5-dimethyl-4-oxo-2-phenylhexahydropyrimidin-2-yl)

methylene)isoindolin-1-one (3ba)

 $\langle {}^{9.81}_{9.80}$

(Z/E)-3-((1-(4-chlorophenyl)-5,5-dimethyl-4-oxo-2-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ca)

(Z/E)-3-((1-(4-bromophenyl)-5,5-dimethyl-4-oxo-2-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3da)

(Z/E)-3-((5,5-dimethyl-4-oxo-2-phenyl-1-(p-tolyl)hexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ea)

(Z/E)-3-((1-(4-methoxyphenyl)-5,5-dimethyl-4-oxo-2-phenylhexahydropyrimidin-2yl)methylene)isoindolin-1-one (3fa)

(Z/E)-3-((1-(3-fluorophenyl)-5,5-dimethyl-4-oxo-2-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ia)

(Z/E)-3-((2-(4-fluorophenyl)-5,5-dimethyl-4-oxo-1-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ab)

(Z/E)-3-((2-(4-chlorophenyl)-5,5-dimethyl-4-oxo-1-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ac)

(Z/E)-3-((2-(4-bromophenyl)-5,5-dimethyl-4-oxo-1-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ad)

(Z/E)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(p-tolyl)hexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ae)

(Z/E)-3-((2-(4-methoxyphenyl)-5,5-dimethyl-4-oxo-1-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3af)

	∫ 3.85 ∫ 3.58 √ 3.35	×1.39
--	----------------------------	-------

(Z/E)-3-((5,5-dimethyl-4-oxo-2-(4-pentylphenyl)-1-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ag)

(Z/E)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(m-tolyl)hexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ai)

 $\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & &$

(Z/E)-3-((2-(3-chlorophenyl)-5,5-dimethyl-4-oxo-1-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ak)

(Z/E)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(thiophen-3-yl)hexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3al)

(Z/E)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-1H,9H-

pyrazolo[1,2-*a*]indazol-1-one (4aa)

(Z/E) - 7 - fluoro - 2, 2 - dimethyl - 9 - ((3 - oxoisoindolin - 1 - ylidene) methyl) - 9 - phenyl - 2, 3 - dihydro-2, 3 - d

1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ba)

(Z/E)-7-chloro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-

88888888888888888888888888888888888888	ରୁ ନ	03
SFFFFFFFFFFFFFFFFFFFFFFFFFFF550000000000		•
	0	

(Z/E)-7-bromo-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4da)

899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899
899

(Z/E)-2,2,7-trimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-

1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ea)

8.79 8.79 7.86 7.86 7.86 7.86 7.75 7.86 7.75

(*Z/E*)-7-methoxy-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4fa)

(*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-7-(trifluoromethyl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ga)

(Z/E)-2,2-dimethyl-1-oxo-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-dihydro-

1*H*,9*H*-pyrazolo[1,2-*a*]indazole-7-carbonitrile (4ha)

33	82	8	2	6	3	5	8	6	8	22	5	8	8	8	8	5	5	5	36	36	35	34	e	32	8	5	5	8	88	22	1	2	8	₩	ą	8 8
8	5	5	5	-	1	1	1	1	-	-	-	-	-	-	-	-	-	1	-	1	1	-	1	1	-	5	1	6	6	10		2	m -	m	m -	

(*Z/E*)-6-fluoro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3dihydro-1*H*,9H-pyrazolo[1,2-a]indazol-1-one (4ia)

(Z/E)-6-chloro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ja)

(Z/E)-6-bromo-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-
dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ka)

- 890 - 890

S73

(Z/E)-6-bromo-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ab)

9.10 9.20

(Z/E)-9-(4-chlorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ac)

(Z/E)-9-(4-bromophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ad)

(Z/E)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(p-tolyl)-2,3-dihydro-1H,9H-

pyrazolo[1,2-*a*]indazol-1-one (4ae)

7 28 7 25 7 25	3.76 3.75 3.39 3.39 3.39 3.38	2.32	1.37
	- Y Y	1	52

(Z/E)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(4-pentylphenyl)-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ag)

(Z/E)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(m-tolyl)-2,3-dihydro-

(Z/E)-9-(2-chlorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4aj)

(*Z/E*)-9-(3-chlorophenyl)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-2,3dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ak)

(*Z/E*)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(thiophen-3-yl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4al)

- 9.28 - 9.28 - 7.38 -

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-5-fluoro-2-phenyl-1*H*-indole-3-

carbonyl)benzamide (5ba)

77.75 77.77 77.77 77.77 77.77 77.77 77.78 77.74 77.410

S84

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-5-methoxy-2-phenyl-1*H*-indole-3-

S87

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(4-methoxyphenyl)-1*H*-indole-3-

carbonyl)benzamide (5af)

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(3-methylphenyl)-1H-indole-3-

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(3-chlorophenyl)-1H-indole-3-

carbonyl)benzamide (5ak)

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(thiophen-3-yl)-1*H*-indole-3-

carbonyl)benzamide (5al)

8.80 8.12 8.17 8.17 8.17 8.17 8.17 8.17 8.17 1

carbonyl)benzamide (5am)

2,2-dimethyl-9-((3-oxoisoindolin-1-yl)methyl)-9-phenyl-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-

a]indazol-1-one (6)

2-(1-(2-cyano-2-methylpropyl)-2-phenyl-1*H*-indole-3-carbonyl)benzonitrile (7)

2,2-dimethyl-3-(3-(3-oxoisoindolin-1-yl)-2-phenyl-1*H*-indol-1yl)propenamide (8)

X. HPLC Data of Products

(Z/E)-3-((1-(4-methoxyphenyl)-5,5-dimethyl-4-oxo-2-phenylhexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3fa)

(Z/E)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(m-tolyl)hexahydropyrimidin-2-

yl)methylene)isoindolin-1-one (3ai)

(Z/E)-3-((5,5-dimethyl-4-oxo-1-phenyl-2-(thiophen-3-yl)hexahydropyrimidin-2-

(*Z/E*)-6-fluoro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3dihydro-1*H*,9H-pyrazolo[1,2-a]indazol-1-one (4ia)

(Z/E)-6-chloro-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-phenyl-2,3-

dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4ja)

(Z/E)-2,2-dimethyl-9-((3-oxoisoindolin-1-ylidene)methyl)-9-(thiophen-3-yl)-2,3-dihydro-1*H*,9*H*-pyrazolo[1,2-*a*]indazol-1-one (4al)

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(4-methoxyphenyl)-1H-indole-3-

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(3-methylphenyl)-1*H*-indole-3carbonyl)benzamide (5ai)

2-(1-(3-amino-2,2-dimethyl-3-oxopropyl)-2-(3-chlorophenyl)-1H-indole-3-

carbonyl)benzamide (5ak)

