A new strategy for optimizing the microstructure and giant dielectric properties of TiO_2 *via* acceptor/donor ratio tuning

Wattana Tuichai^a, Jurimart Wongsricha^a, Nutthakritta Phromviyo^b, Bundit Putasaeng^c, Supamas Danwittayakul^c, Pornjuk Srepusharawoot^{a,b}, and Prasit Thongbai^{a,b,*}

¹Giant Dielectric and Computational Design Research Group (GD–CDR), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand ²Institute of Nanomaterials Research and Innovation for Energy (IN–RIE), Khon Kaen University, Khon Kaen 40002, Thailand ³National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand

*E-mail address: <u>pthongbai@kku.ac.th</u> (P. Thongbai)

Fig. S1 Rietveld refinements for ScTa–TO ceramics with Sc^{3+}/Ta^{5+} ratios of (a) 0.4, (b) 0.8, (c) 1.0, (d) 1.2, (e) 1.6, and (f) 2.0.

Sample	(Sc/Ta)1.2	(Sc/Ta)1.6
a = b (Å)	4.604	4.603
<i>c</i> (Å)	2.972	2.972
V (Å) ³	62.995	62.962
$R_{\rm exp}(\%)$	4.322	5.927
$R_{\rm p}(\%)$	3.541	3.923
$R_{\rm wp}(\%)$	5.280	6.159
χ^2	1.492	1.080
ρ(%)	4.36	4.42
Bond length (Å)		
[A –O] ₁	1.954	1.953
[A –O] ₂	1.987	1.987
[A –O] ₃	3.494	3.493
$\mathbf{A}_{(0,0,0)}$ - $\mathbf{A}_{(0,0,1)}$	2.972	2.972

Table S1Lattice parameters and density of ScTa–TO ceramics with Sc3+/Ta5+ ratios of1.2 and 1.6.

 $[A-O]_1 = A_{(0,0,0)} - O_{(0.19480, -0.19480, 0.50000)}$

 $[A-O]_2 = A_{(0,0,0)} - O_{(0.30520,0.30520,0.00000)}$

 $[A-O]_3 = A_{(0,0,0)} - O_{(0.30520, -0.69480, 0.00000)}$

Fig. S2 EDS spectrum and SEM-mapping images of (Sc/Ta)0.4 ceramic.

Fig. S3 EDS spectrum and SEM-mapping images of (Sc/Ta)0.8 ceramic.

Fig. S4 Z* plots at 25 °C for ScTa–TO ceramics with Sc^{3+}/Ta^{5+} ratios of 0.4, 0.8, and 1.0; inset shows Z* plots at 25 °C for ScTa–TO ceramic with Sc^{3+}/Ta^{5+} ratio of 2.0.