Supplementary Material

Synergetic Interplay of Nitrogen and Sulfur-rich Copper bi-linker 2D cubic layered MOF Composite with MXene for Improved hybrid Supercapacitor Application

FTIR and Thermal Analysis

Fourier transform infrared spectrum was measured using ATR in the range of 400-4000 cm⁻¹. The FTIR spectrum of Cu-SIP-MOF and 5-sulfoisophhalic acid monosodium salt is presented in Fig. S1 and S. Cu-SIP-MOF frequencies was observed at 3229 cm⁻¹, 1653 cm⁻¹, 1604 cm⁻¹, 1549 cm⁻¹, 1437 cm⁻¹, 1364 cm⁻¹, 1244 cm⁻¹, 668 cm⁻¹, 492 cm⁻¹. The shifting of symmetric and asymmetric vibrations of 5-sulfoisophhalic acid monosodium salt from 1702 cm⁻¹, 1618 cm⁻¹, 1447 cm⁻¹, 1499 cm⁻¹ to 1653 cm⁻¹, 1604 cm⁻¹, 1549 cm⁻¹, 1437 cm⁻¹ indicates binding of metal and ligand. Moreover, broad band at 3229 cm⁻¹ indicates presence of water molecules.

TGA of **Cu-SIP-MOF** (Fig.S3) demonstrates that at first stage nine non-coordinated water molecules were released corresponding to weight loss of 10.3 % (calculated 5.5 %). Experimental and theoretical difference in first weight loss may be attributed to removal of SO₂ along with water molecules. After release of water molecules, MOF remains stable up to 260 °C. Then successive weight loss between 260°C to 450°C corresponds to the removal of organic ligands such as 5-Sulfoisophthalic acid (SIP) and 4,4-bipyridine. The baseline was stable after 450°C, indicating the stability of residual product which may be attributed to 5 moles of CuO 13.8 % (calculated 13.6 %).

Fig. S1. FTIR spectrum of Cu-SIP-MOF.

🕀 SHIMADZU

Fig. S2. FTIR spectrum of 5-sulfoisophthalic acid (SIP).

Fig. S3. TGA of Cu-SIP-MOF.

Fig. S4. Scanning electron micrograph of Cu-SIP-MOF

Single crystal XRD of Cu-SIP-MOF:

An appropriate Cu-SIP-MOF crystal was chosen, and data collection was carried out at 293 K using D8-QUEST diffractometer fitted with a graphite-monochromatic Mo-Kα radiation source. Direct techniques were used to solve the structure using SHELXS-2013 [1-3] and full-matrix least-squares approaches on F2 were used to improve it using SHELXL-2013 [4]. Aqua ligands' H atoms were found in a distinct map and optimized at desire. Following their location from various maps, the remaining H atoms were handled as riding atoms with O-H distances of 0.82 Å and C-H distances of 0.93 Å. The subsequent protocols were employed in our analysis: gathering of data: Bruker APEX3 [5]; The programs was utilized for molecular graphics: MERCURY programs [6]; GUI for other software related to structure solution: WinGX [7, 8]. Table S1 provides information on data gathering and crystal structure calculations.

Fig. S5. An infinite 3D supramolecular network in Cu-SIP-MOF.

Fig. S6. Simulated XRD diffractogram of Cu-SIP-MOF

Fig.S7. b-value for Cu-SIP-MOF (A), CM-100 (B), CM-300 (C), Specific Capacitance of Cu-SIP-MOF, CM-100, CM-200 & CM-300 at various current densities (D)

Fig.S8. (A) Bar graph of diffusive and capacitive contribution for Cu-SIP-MOF (B) Diffusive, capacitive and experimental current Cu-SIP-MOF at 10 mV/s and (C) 50 mV/s (D) Bar graph of diffusive and capacitive contribution for CM-100 (E) Diffusive, capacitive and experimental current CM-100 at 10 mV/s and (F) 50 mV/s. (G) Graph between percentage contribution and scan rates (H) Diffusive and capacitive participation of current at 10 mV/s (I) Graph between diffusive and capacitive participation of current at scan rate (80 mV/s)

Fig.S9. (A) R^2 -value for and CM-200//AC (B) b-value for and CM-200//AC

Empirical formula	$C_{108}H_{114}Cu_3N_{12}O_{60}S_6$
Formula weight	2923.09
Crystal system	Monoclinic
Space group	<i>C2/c</i>
<i>a (</i> Å)	53.485 (6)
<i>b (</i> Å)	11.0654 (12)
<i>c (</i> Å)	22.520 (2)
β (°)	113.926 (6)
$V(Å^3)$	12183 (2)
Z	4
$D_{\rm c}$ (g cm ⁻³)	1.594
μ (mm ⁻¹)	0.73
θ range (°)	2.2-27.1
Measured refls.	225002
Independent refls.	15367
<i>R</i> _{int}	0.077
S	1.08
R1/wR2	0.063/0.146
$\Delta \rho_{max} / \Delta \rho_{min} \ (e {\rm \AA}^{-3})$	0.90/-0.88
CCDC	2311394

 Table S1 Crystal data and structure refinement parameters.

Cu1-N1	2.046(2)	Cu1-N2	2.040(2)	Cu1-N6	2.009(2)
Cu1-N7 ⁱⁱⁱ	2.015(2)	Cu1-O1	2.505(2)	Cu1-O8	2.687)2)
Cu2-N3	2.041(2)	Cu2-N4	2.000(3)	Cu2-N5 ^{iv}	2.014(3)
Cu2-O15	2.851(2)				

Table S2 Selected bond distances(Å)

Symmetry codes: (iii) x, y-1, z;(iv) x, y+1, z.

D-H····A	D-H	Н…А	D…A	D-H···A
C4—H4…O23 ^v	0.93	2.56	3.191 (5)	125
C10—H10…O22	0.93	2.53	3.154 (5)	125
C12—H12…O15 ⁱⁱ	0.93	2.31	3.030 (4)	134
C13—H13…O21 ⁱⁱ	0.93	2.60	3.497 (5)	163
C14—H14····O30 ^{vi}	0.93	2.57	3.220 (5)	128
C21—H21…O15 ^{vii}	0.93	2.47	3.244 (4)	140
C23—H23…O17 ^{viii}	0.93	2.53	3.307 (4)	141
C27—H27…O8 ^{iv}	0.93	2.50	3.243 (4)	137
C28—H28…O1 ^{iv}	0.93	2.51	3.220 (4)	133
O4—H4A…O26	0.82	1.77	2.572 (4)	164

Table S3 Hydrogen bond parameters (Å, °)

_

O6—H6A…O22	0.82	1.76	2.574 (5)	169
O11—H11A…O28	0.82	1.79	2.598 (4)	171
013—H13A…O23 ^{ix}	0.82	1.78	2.580 (4)	163
O18—H18…O24 ⁱⁱⁱ	0.82	1.78	2.576 (4)	164
O21—H21A…O30 ^x	0.82	1.82	2.639 (5)	172
O22—H22A…O16	0.81 (2)	2.36 (5)	3.139 (8)	162
O23—H23B⋯O2 ^v	0.82 (2)	2.20 (9)	2.728 (4)	122
O23—H23B…S1 ^v	0.82 (2)	2.83 (6)	3.583 (4)	153
O24—H24A…O25 ^{xi}	0.82 (2)	2.01 (2)	2.803 (5)	163
O24—H24B…O7 ^{xii}	0.82 (2)	2.23 (2)	3.031 (5)	164
O25—H25B…O5	0.84 (2)	1.97 (2)	2.810 (4)	178
O25—H25A⋯O2 ^v	0.83 (2)	2.35 (3)	3.129 (5)	157
O26—H26B····O14 ^{xiii}	0.81 (2)	2.15 (2)	2.945 (5)	164
O26—H26A…O27 ^{xiv}	0.83 (2)	2.01 (2)	2.820 (5)	167
O27—H27B…O19 ^{xv}	0.84 (2)	2.01 (3)	2.823 (4)	161
O27—H27A⋯O9 ^{iv}	0.84 (2)	2.19 (3)	2.988 (5)	160
O28—H28A…O29	0.83 (2)	2.18 (5)	2.704 (6)	122
O29—H29A…O12 ^{xvi}	0.85 (2)	2.13 (3)	2.908 (4)	151
O29—H29B…O10 ^{vi}	0.84 (2)	2.12 (3)	2.908 (4)	157
O30—H30B…O16 ^{xvii}	0.85 (2)	2.07 (4)	2.830 (6)	147
O30—H30A…O9 ^{vi}	0.85 (2)	1.95 (4)	2.714 (4)	148

Symmetry codes: (ii) -x+1, y, -z+1/2; (iii) x, y-1, z; (iv) x, y+1, z; (v) -x+3/2, -y+1/2, -z+1; (vi) -x+1, y, -z+3/2; (vii) -x+1, y-1, -z+1/2; (viii) x, -y+1, z+1/2; (ix) x, y, z+1; (x) x, y, z-1; (xi) -x+3/2, y+1/2, -z+1/2; (xii) x, -y+1, z-1/2; (xiii) -x+3/2, y+1/2, -z+3/2; (xiv) -x+3/2, y-1/2, -z+3/2; (xv) x, y+1, z+1; (xvi) -x+1, -y+1, -z+2; (xvii) -x+1, -y, -z+1.

MOF	Electrolyte	Qs (Cg ⁻¹)	Es (Wh kg-1)/	Ps (W kg ⁻¹)	Ref
Cu-MOF	6 M KOH	181	22.6	124	[9]
Cu-CAT	3M KCl	134	2.6	200	[10]
Ni-MOF	3 M KOH	161	57.3	160	[11]
Fe-MOF	6 M KOH	112.4	40	799	[12]
Cu-M-CNTs	1M KOH	348.6	27.7	1640	[13]
(MC) HMRL-1/R	1M Na ₂ SO ₄	-	57.2	4380	[14]
Cu-MOF/G	6 М КОН	-	34.5	1350	[15]
MOF-5/V ₂ CT _x	ЗМ КОН	923	48.75	920	[16]
Cu–BTC/N– MXene	1M KOH	961	65.23	923	[17]
CuCo ₂ S ₄ / mxene	6М КОН	992.3	66.8	895.1	[18]
CM- 200//AC	1 М КОН	683.69	62	2330.4	This Work

Table S4: A comparison of present work with various synthesized MOFs.

Eq. S2-10

The equation 2&3 represent the relation between b-value and peak current.

$$i = av^{b} - - - (2)$$

 $\log (i) = \log (a) + blog (v) - - - (3)$

Dunn's equation (eq.4) can be utilized to investigate kinetic mechanisms to differentiate between capacitive and diffusive processes.

$$i(V) = k_1 v + k_2 v^{1/2} - \cdots (4)$$

From CV profile, specific capacity (Qs) and specific capacitance (Cs) were calculated using equation 5 & 6. For non-symmetric GCD curve due to quasi-reversible faradaic reaction, the ratio of faradaic reaction charge/voltage does not remain constant and changes with time. Hence, equation 7 to 10 were used to determined Cs, Qs, Es and Ps.

References:

- B. M. Omkaramurthy, G. Krishnamurthy, and S. Foro, "Synthesis and characterization of mesoporous crystalline copper metal-organic frameworks for electrochemical energy storage application," *SN Appl. Sci.*, vol. 2, no. 3, p. 342, 2020.
- [2] G. M. Sheldrick, "SHELXT–Integrated space-group and crystal-structure determination," *Acta Crystallogr. Sect. A Found. Adv.*, vol. 71, no. 1, pp. 3–8, 2015.
- [3] C. F. Macrae *et al.*, "Mercury 4.0: From visualization to analysis, design and prediction," *Appl. Crystallogr.*, vol. 53, no. 1, pp. 226–235, 2020.
- [4] W. Li *et al.*, "Microstructure and a coherent-interface strengthening mechanism of NbSiN nanocomposite film," *Thin Solid Films*, vol. 636, pp. 1–7, 2017.
- [5] C. Zhang, Q. Zhang, K. Zhang, Z. Xiao, Y. Yang, and L. Wang, "Facile synthesis of a two-dimensional layered Ni-MOF electrode material for high performance supercapacitors," *RSC Adv.*, vol. 8, no. 32, pp. 17747–17753, 2018.
- [6] K. Wang *et al.*, "Fe-based coordination polymers as battery-type electrodes in semi-solidstate battery–supercapacitor hybrid devices," *ACS Appl. Mater. Interfaces*, vol. 13, no. 13, pp. 15315–15323, 2021.
- [7] G. M. Sheldrick, "Crystal structure refinement with SHELXL," *Acta Crystallogr. Sect. C Struct. Chem.*, vol. 71, no. 1, pp. 3–8, 2015.
- [8] L. J. Farrugia, "WinGX and ORTEP for Windows: an update," J. Appl. Crystallogr., vol. 45, no. 4, pp. 849–854, 2012.
- [9] W. Li, X. Zhao, Q. Bi, Q. Ma, L. Han, and K. Tao, "Recent advances in metal-organic

framework-based electrode materials for supercapacitors," *Dalt. Trans.*, vol. 50, no. 34, pp. 11701–11710, 2021.

- [10] F.-M. Zhang *et al.*, "Effect of imidazole arrangements on proton-conductivity in metalorganic frameworks," *J. Am. Chem. Soc.*, vol. 139, no. 17, pp. 6183–6189, 2017.
- [11] S.-S. Liu, Z. Han, J.-S. Yang, S.-Z. Huang, X.-Y. Dong, and S.-Q. Zang, "Sulfonic groups lined along channels of metal–organic frameworks (MOFs) for super-proton conductor," *Inorg. Chem.*, vol. 59, no. 1, pp. 396–402, 2019.
- [12] M. Du, Q. Li, Y. Zhao, C.-S. Liu, and H. Pang, "A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites," *Coord. Chem. Rev.*, vol. 416, p. 213341, 2020.
- [13] M. K. Singh, S. Krishnan, K. Singh, and D. K. Rai, "CNT Interwoven Cu-MOF: A Synergistic Electrochemical Approach for Solid-State Supercapacitor and Hydrogen Evolution Reaction," *Energy & Fuels*, 2024.
- [14] M. K. Singh, A. K. Gupta, S. Krishnan, N. Guha, S. Marimuthu, and D. K. Rai, "A new hierarchically porous Cu-MOF composited with rGO as an efficient hybrid supercapacitor electrode material," *J. Energy Storage*, vol. 43, p. 103301, 2021.
- [15] M. Azadfalah, A. Sedghi, and H. Hosseini, "Synthesis of nano-flower metal-organic framework/graphene composites as a high-performance electrode material for supercapacitors," J. Electron. Mater., vol. 48, no. 11, pp. 7011–7024, 2019.
- [16] H. Hassan *et al.*, "Innovative MOF-5/V2CTx composite for high-performance, and ultrafast supercapacitors and hydrogen evolution reaction," *Electrochim. Acta*, vol. 489, p. 144277, 2024.
- [17] H. Hassan *et al.*, "Effect of electrolyte optimization on nitrogen-doped MXene (Ti 3 C 2 T x) coupled with Cu–BTC MOF for a supercapattery and the hydrogen evolution reaction," *New J. Chem.*, vol. 48, no. 14, pp. 6277–6295, 2024.
- [18] X. Chen, Z. Ding, H. Yu, H. Ge, W. Liu, and S. Sun, "Facile fabrication of CuCo 2 S 4 nanoparticles/MXene composite as anode for high-performance asymmetric supercapacitor," *Mater. Chem. Front.*, vol. 5, no. 20, pp. 7606–7616, 2021.