Supporting Information

Riddima Singh,^a Gurleen Singh,^a Nancy George,^b Gurjaspreet Singh,^c Pallavi Markan,^cHarminder Singh,^a Gurpreet Kaur,^{d,#} Jandeep Singh,^{a,*}

^a School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara–144411 (Punjab)

^b Division of Research and Development, Lovely Professional University, Phagwara-144411 (Punjab)

^c Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh–160014

^d Department of Chemistry, Gujranwala Guru Nanak Khalsa College, Civil lines, Ludhiana– 141001 (Punjab)

*,# Corresponding Authors

Contact details:

<u>*singhjandeep@gmail.com</u>

Contents:

Figure S1: IR spectrum of chalcone 3a FigureS2: IR spectrum of chalcone 3b FigureS3: IR spectrum of chalcone 3c Figure S4: IR spectrum of alkyne 4a Figure S5: IR spectrum of alkyne 4b FigureS6: IR spectrum of alkyne 4c Figure S7: IR spectrum of benzyl azide 5 Figure S8: IR spectrum of probe 6a Figure S9: IR spectrum of probe 6b Figure S10: IR spectrum of probe 6c Figure S11: ¹H NMR spectrum of alkyne 4a Figure S12: ¹³C NMR spectrum of alkyne 4a Figure S13: ¹H NMR spectrum of alkyne 4b Figure S14: ¹³C NMR spectrum of alkyne 4b Figure S15: ¹H NMR spectrum of alkyne 4c Figure S16: ¹³C NMR spectrum of alkyne 4c Figure S17: ¹H NMR spectrum of benzyl azide 5 Figure S18: ¹³C NMR spectrum of benzyl azide 5 Figure S19: ¹H NMR spectrum of probe 6a Figure S20: ¹³C NMR spectrum of probe 6a Figure S21: ¹H NMR spectrum of probe 6b Figure S22: ¹³C NMR spectrum of probe 6b **Figure S23:** ¹H NMR spectrum of probe 6c Figure S24: ¹³C NMR spectrum of probe 6c Figure S25: Mass spectrum of probe 6a Figure S26: Mass spectrum of probe 6b **Figure S27:** Mass spectrum of probe 6c

Figure S28: Graphical representation of relative absorption changes of probe 6a on addition of 15 equivalents of various metal ions.

Figure S29: Graphical representation of relative absorption changes of probe 6a on addition of 15 equivalents of various metal ions.

Figure S30: Graphical representation of relative absorption changes of probe 6a on addition of 15 equivalents of various metal ions.

Figure S31: B-H plot for the metal complexation with probe 6a with Co(II)

Figure S32: B-H plot for the metal complexation with probe 6a with Cu(II)

Figure S33: B-H plot for the metal complexation with probe 6b with Co(II)

Figure S34: B-H plot for the metal complexation with probe 6b with Cu(II)

Figure S35: B-H plot for the metal complexation with probe 6c with Co(II)

Figure S36: B-H plot for the metal complexation with probe 6c with Cu(II)

Figure S37: Time dependent spectra of probe 6a-Co(II) complex displaying the trend in the absorption.

Figure S38: Time dependent spectra of probe 6a-Cu(II) complex displaying the trend in the absorption.

Figure S39: Time dependent spectra of probe 6b-Co(II) complex displaying the trend in the absorption.

Figure S40: Time dependent spectra of probe 6b-Cu(II) complex displaying the trend in the absorption.

Figure S41: Time dependent spectra of probe 6c-Co(II) complex displaying the trend in the absorption.

Figure S42: Time dependent spectra of probe 6c-Cu(II) complex displaying the trend in the absorption.

Figure S43: Temperature dependent spectra of probe 6a-Co(II) complex displaying the trend in the absorption.

Figure S44: Temperature dependent spectra of probe 6a-Cu(II) complex displaying the trend in the absorption.

Figure S45: Temperature dependent spectra of probe 6b-Co(II) complex displaying the trend in the absorption.

Figure S46: Temperature dependent spectra of probe 6b-Cu(II) complex displaying the trend in the absorption.

Figure S47: Temperature dependent spectra of probe 6c-Co(II) complex displaying the trend in the absorption.

Figure S48: Temperature dependent spectra of probe 6c-Cu(II) complex displaying the trend in the absorption.

Figure S49: Job's plot analysis of probe 6a on interaction with Co(II) ions.

Figure S50: Job's plot analysis of probe 6a on interaction with Cu(II) ions.

Figure S51: Job's plot analysis of probe 6b on interaction with Co(II) ions.

Figure S52: Job's plot analysis of probe 6b on interaction with Cu(II) ions.

Figure S53: Job's plot analysis of probe 6c on interaction with Co(II) ions.

Figure S54: Job's plot analysis of probe 6c on interaction with Cu(II) ions.

Figure S55: UV-Vis spectrum of probe 6a in THF: H_2O (4:1), highlighting the selective detection of Co(II) among various metal ions at equimolar concentrations

Figure S56: UV-Vis spectrum of probe 6b in THF: H_2O (4:1), highlighting the selective detection of Co(II) among various metal ions at equimolar concentrations

Figure S57: UV-Vis spectrum of probe 6c in THF: H_2O (4:1), highlighting the selective detection of Co(II) among various metal ions at equimolar concentrations

Figure S58: LCMS spectra of Co(II)-6a probe.

Figure S59: IR spectra of Co(II)-6a probe.

Figure S60: LCMS spectra of Cu(II)-6a probe.

Figure S61: IR spectra of Cu(II)-6a probe.

 Table S1: Cartesian co-ordinates of probe 6a

Table S2: Cartesian co-ordinates of probe 6b

 Table S3:
 Cartesian co-ordinates of probe 6c

Figure S1: IR spectrum of chalcone 3a

Figure S2: IR spectrum of chalcone 3b

Figure S3: IR spectrum of chalcone 3c

Figure S4: IR spectrum of alkyne 4a

Figure S5: IR spectrum of alkyne 4b

FigureS6: IR spectrum of alkyne 4c

Figure S7: IR spectrum of benzyl azide 5

Figure S8: IR spectrum of probe 6a

Figure S9: IR spectrum of probe 6b

Figure S10: IR spectrum of probe 6c

Figure S17: ¹H NMR spectrum of benzyl azide 5

Figure S18: ¹³C NMR spectrum of benzyl azide 5

Figure S11: ¹H NMR spectrum of alkyne 4a

Figure S12: ¹³C NMR spectrum of alkyne 4a

Figure S13: ¹H NMR spectrum of alkyne 4b

Figure S14: ¹³C NMR spectrum of alkyne 4b

Figure S15: ¹H NMR spectrum of alkyne 4c

Figure S16: ¹³C NMR spectrum of alkyne 4c

Figure S19: ¹H NMR spectrum of probe 6a

Figure S20: ¹³C NMR spectrum of probe 6a

Figure S21: ¹H NMR spectrum of probe 6b

Figure S22: ¹³C NMR spectrum of probe 6b

Figure S23: ¹H NMR spectrum of probe 6c

Figure S24: ¹³C NMR spectrum of probe 6b

Figure S25: Mass spectrum of probe 6a

Figure S26: Mass spectrum of probe 6b

Figure S27: Mass spectrum of probe 6c

Figure S28: Graphical representation of relative absorption changes of probe 6a on addition of 15 equivalents of various metal ions.

Figure S29: Graphical representation of relative absorption changes of probe 6a on addition of 15 equivalents of various metal ions.

Figure S30: Graphical representation of relative absorption changes of probe 6a on addition of 15 equivalents of various metal ions.

Figure S31: B-H plot for the metal complexation with probe 6a with Co(II)

Figure S32: B-H plot for the metal complexation with probe 6a with Cu(II)

Figure S33: B-H plot for the metal complexation with probe 6b with Co(II)

Figure S34: B-H plot for the metal complexation with probe 6b with Cu(II)

Figure S35: B-H plot for the metal complexation with probe 6c with Co(II)

Figure S36: B-H plot for the metal complexation with probe 6c with Cu(II)

Figure S37: Time dependent spectra of probe 6a-Co(II) complex displaying the trend in the absorption.

Figure S38: Time dependent spectra of probe 6a-Cu(II) complex displaying the trend in the absorption.

Figure S39: Time dependent spectra of probe 6b-Co(II) complex displaying the trend in the absorption.

Figure S40: Time dependent spectra of probe 6b-Cu(II) complex displaying the trend in the absorption.

Figure S41: Time dependent spectra of probe 6c-Co(II) complex displaying the trend in the absorption.

Figure S42: Time dependent spectra of probe 6c-Cu(II) complex displaying the trend in the absorption.

Figure S43: Temperature dependent spectra of probe 6a-Co(II) complex displaying the trend in the absorption.

Figure S44: Temperature dependent spectra of probe 6a-Cu(II) complex displaying the trend in the absorption.

Figure S45: Temperature dependent spectra of probe 6b-Co(II) complex displaying the trend in the absorption.

Figure S46: Temperature dependent spectra of probe 6b-Cu(II) complex displaying the trend in the absorption.

Figure S47: Temperature dependent spectra of probe 6c-Co(II) complex displaying the trend in the absorption.

Figure S48: Temperature dependent spectra of probe 6c-Cu(II) complex displaying the trend in the absorption.

Figure S49: Job's plot analysis of probe 6a on interaction with Co(II) ions.

Figure S50: Job's plot analysis of probe 6a on interaction with Cu(II) ions.

Figure S51: Job's plot analysis of probe 6b on interaction with Co(II) ions.

Figure S52: Job's plot analysis of probe 6b on interaction with Cu(II) ions.

Figure S53: Job's plot analysis of probe 6c on interaction with Co(II) ions.

Figure S54: Job's plot analysis of probe 6c on interaction with Cu(II) ions.

Figure S55: UV-Vis spectrum of probe **6a** in THF: H_2O (4:1), highlighting the selective detection of Co(II) among various metal ions at equimolar concentrations

Figure S56: UV-Vis spectrum of probe **6b** in THF: H_2O (4:1), highlighting the selective detection of Co(II) among various metal ions at equimolar concentrations

Figure S57: UV-Vis spectrum of probe **6c** in THF: H_2O (4:1), highlighting the selective detection of Co(II) among various metal ions at equimolar concentrations

Figure S58: LCMS spectra of Co(II)-6a probe.

Figure S59: IR spectra of Co(II)-6a probe.

Figure S60: LCMS spectra of Cu(II)-6a probe.

Figure S61: IR spectra of Cu(II)-6a probe.

С	-7.95789 -2.92461 -1.40511
С	-8.59469 -2.40591 -0.27719
С	-7.85124 -1.87773 0.78437
С	-6.46294 -1.87359 0.71226
С	-5.78779 -2.39255 -0.41129
С	-6.56563 -2.91274 -1.46332
Cl	-10.3466 -2.41236 -0.18622
С	-4.33158 -2.41603 -0.53749
С	-3.41462 -2.01544 0.36836
С	-1.9631 -2.08285 0.05387
0	-1.56193 -2.42052 -1.06075
С	-1.00048 -1.73852 1.15447
С	-1.26791 -2.21698 2.44917
С	-0.35652 -2.0507 3.49086
С	0.83406 -1.36153 3.25256
С	1.09544 -0.84522 1.98263
С	0.20215 -1.02159 0.91568
N	0.55739 -0.44743 -0.33886
С	1.36201 -1.30464 -1.2373
С	-0.40973 0.4526 -0.99899
С	0.16156 1.8267 -1.16641

С	2.81787 -1.34639 -0.90315
Ν	1.42081 2.01278 -1.85895
Ν	1.53232 3.43098 -2.05506
Ν	0.71255 4.01585 -0.98502
С	-0.25725 3.01445 -0.70066
С	3.59822 -2.36886 -0.52025
Ν	4.96116 -1.97428 -0.50396
Ν	4.91559 -0.50607 -0.47856
Ν	3.65859 -0.17464 -1.08702
С	0.27221 5.35612 -1.35154
С	5.83478 -2.50694 0.52831
С	-0.43255 6.06987 -0.21583
С	7.31352 -2.29236 0.25727
С	-1.64397 6.73623 -0.43987
С	-2.27836 7.43395 0.59265
С	-1.70949 7.46517 1.86766
С	-0.50352 6.7961 2.10193
С	0.1311 6.1054 1.06811
С	8.20797 -2.2373 1.33417
С	9.58131 -2.1029 1.11626
С	10.07619 -2.01291 -0.18742
С	9.18804 -2.05799 -1.26572
С	7.81584 -2.19856 -1.04561
Н	-8.5431 -3.32971 -2.22308
Н	-8.36001 -1.47439 1.65285
Н	-5.90056 -1.45644 1.54117
Н	-6.069 -3.31592 -2.3414
Н	-3.94133 -2.80572 -1.47687
Н	-3.70579 -1.61274 1.33319
Н	-2.18523 -2.76968 2.63152
Н	-0.57775 -2.45075 4.47556
Н	1.54734 -1.20415 4.05645

Н	1.99248 -0.26673 1.79312
Н	1.24651 -0.89075 -2.24632
Н	0.96125 -2.32617 -1.26962
Н	-1.31509 0.53375 -0.39131
Н	-0.71468 0.04046 -1.97048
Н	-1.12534 3.24335 -0.09914
Н	3.3191 -3.39634 -0.33184
Н	1.1767 5.90761 -1.63665
Н	-0.38798 5.33222 -2.2409
Н	5.57635 -2.08121 1.5196
Н	5.62737 -3.58219 0.59142
Н	-2.09604 6.7083 -1.42832
Н	-3.21672 7.94631 0.40054
Н	-2.20137 8.00319 2.6728
Н	-0.05529 6.81363 3.09133
Н	1.06488 5.58186 1.24946
Н	7.82858 -2.29638 2.35214
Н	10.26065 -2.06098 1.96282
Н	11.14253 -1.90161 -0.36097
Н	9.5631 -1.97893 -2.28219
Н	7.12304 -2.22221 -1.88004

Table S1: Cartesian co-ordinates of probe 6a

С	-7.65201 0.92038 0.59338
С	-9.02739 0.84285 0.78393
С	-9.63797 -0.4064 0.78311
С	-8.89224 -1.5702 0.59525
С	-7.52139 -1.47606 0.40567
С	-6.86918 -0.22974 0.39926
Cl	-11.37248 -0.52409 1.02317
С	-5.42953 -0.07531 0.20588
С	-4.51864 -1.03963 -0.0168
С	-3.08001 -0.70194 -0.15994

С	-2.11547 -1.81141 -0.46484
0	-2.67776 0.44705 -0.01805
С	-0.76871 -1.58289 -0.17763
С	0.22598 -2.53306 -0.47451
С	-0.19399 -3.73919 -1.07856
С	-1.53449 -3.95815 -1.37683
С	-2.50827 -3.01275 -1.07023
Ν	1.56146 -2.26439 -0.18865
С	1.90103 -1.32879 0.88161
С	2.62817 -3.14532 -0.67081
С	3.90017 -2.41525 -0.98276
С	2.17151 0.0792 0.42739
Ν	4.03542 -1.65563 -2.10866
Ν	5.21997 -1.12154 -2.12736
N	5.87178 -1.52829 -1.01709
С	5.08168 -2.34446 -0.27858
Ν	2.87381 0.9554 1.19845
Ν	2.93541 2.11041 0.5932
Ν	2.27928 1.98838 -0.57545
С	1.78735 0.73353 -0.7202
С	2.11451 3.14097 -1.45788
С	0.94077 4.03494 -1.09757
С	-0.31628 3.50654 -0.78799
С	-1.384 4.35287 -0.49926
С	-1.21136 5.73634 -0.52313
С	0.03807 6.26963 -0.83134
С	1.10823 5.42153 -1.11236
С	7.25145 -1.10056 -0.77724
С	7.48098 -0.56252 0.61997
С	8.59385 -0.98421 1.35168
С	8.84461 -0.4663 2.62228
С	7.97562 0.47111 3.1757

С	6.85723 0.88961 2.45412
С	6.61346 0.38061 1.1817
Н	-7.17227 1.89302 0.5949
Н	-9.61787 1.73783 0.93191
Н	-9.38445 -2.53433 0.59974
Н	-6.95363 -2.38772 0.26421
Н	-5.05064 0.94293 0.25072
Н	-4.80505 -2.08214 -0.06843
Н	-0.51265 -0.6263 0.25623
Н	0.51772 -4.52164 -1.30349
Н	-1.8203 -4.89188 -1.84857
Н	-3.54118 -3.202 -1.3304
Н	1.09223 -1.32751 1.61969
Н	2.78683 -1.69298 1.40853
Н	2.29035 -3.61297 -1.59492
Н	2.83808 -3.94986 0.05064
Н	5.40239 -2.77092 0.65669
Н	1.25416 0.4102 -1.59687
Н	2.0076 2.74882 -2.47275
Н	3.0453 3.70706 -1.41708
Н	-0.4758 2.43458 -0.75557
Н	-2.34836 3.92324 -0.254
Н	-2.04342 6.3938 -0.29724
Н	0.1849 7.34388 -0.84345
Н	2.08297 5.84285 -1.33696
Н	7.92258 -1.9409 -0.97388
Н	7.44325 -0.33896 -1.53603
Н	9.26997 -1.72042 0.92787
Н	9.71266 -0.80129 3.17891
Н	8.16427 0.86965 4.16615
Н	6.16762 1.61002 2.87818
Н	5.73452 0.71106 0.64

Cl	-10.43218 0.30096 0.48427
С	-8.83798 -0.44719 0.52025
С	-7.83632 0.05941 -0.30078
С	-6.58148 -0.53128 -0.26998
С	-6.30851 -1.62388 0.57103
С	-7.35071 -2.10514 1.37914
С	-8.61463 -1.52532 1.36287
С	-5.00456 -2.27932 0.64554
С	-3.87566 -1.94184 0.00006
С	-2.63119 -2.72765 0.19554
С	-1.3903 -2.31124 -0.49787
0	-2.63347 -3.71578 0.92651
С	-1.27393 -1.17356 -1.31032
С	-0.07989 -0.83195 -1.92179
С	1.07903 -1.62335 -1.75972
С	0.96196 -2.76692 -0.93181
С	-0.23452 -3.09254 -0.32835
Ν	2.26233 -1.29428 -2.3851
С	2.47899 0.01991 -2.99123
С	3.36112 -2.25625 -2.53466
С	4.57372 -1.97244 -1.69993
С	2.44343 1.17907 -2.03354
С	4.81911 -2.1291 -0.35563
Ν	6.06625 -1.64632 -0.17606
Ν	6.58589 -1.22945 -1.35355
Ν	5.68319 -1.42176 -2.26604
С	1.72895 2.35097 -2.11126
Ν	2.09615 3.05479 -1.0189
N	2.98935 2.34973 -0.2892
N	3.20071 1.22576 -0.90402
С	6.86629 -1.54768 1.04121

Table S2: Cartesian co-ordinates of probe 6b

С	6.20878 -0.7664 2.16184
С	5.38664 0.33331 1.90782
С	4.84253 1.05886 2.96485
С	5.11758 0.69944 4.28184
С	5.93528 -0.39751 4.54029
С	6.47332 -1.12869 3.48453
С	1.64016 4.36338 -0.55389
С	0.17278 4.39035 -0.17766
С	-0.34857 3.45753 0.72387
С	-1.68983 3.50636 1.08754
С	-2.52502 4.49021 0.559
С	-2.01261 5.42215 -0.33772
С	-0.66905 5.36896 -0.70615
Н	-8.039 0.89883 -0.95274
Н	-5.80653 -0.13623 -0.9151
Н	-7.16441 -2.94924 2.03353
Н	-9.40934 -1.90427 1.9916
Н	-4.93758 -3.14038 1.30515
Н	-3.85613 -1.09355 -0.67144
Н	-2.12465 -0.52671 -1.48141
Н	-0.05268 0.05156 -2.54119
Н	1.82199 -3.39389 -0.74074
Н	-0.30334 -3.96534 0.3088
Н	3.46761 -0.01615 -3.45104
Н	1.76126 0.20077 -3.80145
Н	2.97407 -3.25511 -2.34487
Н	3.68288 -2.2418 -3.58017
Н	4.21486 -2.49104 0.45902
Н	1.01172 2.71907 -2.82616
Н	7.11199 -2.55727 1.38106
Н	7.79671 -1.07184 0.72389
Н	5.14974 0.61936 0.88993

Н	4.20007 1.90376 2.74722
Н	4.69204 1.26545 5.10256
Н	6.14794 -0.69031 5.56208
Н	7.10308 -1.98802 3.69247
Н	1.8489 5.10237 -1.33042
Н	2.27343 4.59353 0.30479
Н	0.29646 2.68993 1.13717
Н	-2.08365 2.77832 1.78723
Н	-3.56921 4.52872 0.8468
Н	-2.65579 6.18907 -0.75358
Н	-0.27423 6.09726 -1.40727

 Table S3: Cartesian co-ordinates of probe 6c