Supplementary information

Microwave-Assisted Hydrothermal Synthesis of Amino Acid-Loaded Cu₂O Hybrid Particles for CO₂ Reduction Electrocatalysis

Yuki Tsuda,^{a,b*} Mizuki Irizawa,^c Saki Fukuma,^a Minami Kato,^a Takao Gunji,^c Kazuki Yoshii,^a and Nobuhiko Takeichi^a

^a Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan ^b Renewable Energy Research Center, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 2-2-9 Machiikedai, Koriyama, Fukushima 963-0298, Japan

^c Department of Chemical and Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka 808-0135, Japan

*Corresponding author: y-tsuda@aist.go.jp (Y. T.)

Fig. S1 Zoom-in XRD patterns in a 2θ range of $40.0-51.5^{\circ}$.

Fig. S2 Average crystallite size calculated by applying Scherrer equation for Cu_2O (111) diffraction peak of the synthesized Cu_2O with and without 5.0 mmol dm⁻³ amino acids.

Fig. S3 Chronoamperogramas measured during CO₂ electrolysis under an applied potential of -1.27 V vs. RHE at 3.0 C in a CO₂-purged 0.5 mol dm⁻³ aqueous KHCO₃ solution (pH \approx 8.75) using unloaded and amino acid-loaded Cu₂O electrodes synthesized with 5.0 mmol dm⁻³ amino acids and CP with Nafion ionomer.

Fig. S4 XRD patterns (a) and SEM pictures of fabricated electrodes applied unloaded

(b, d) and His-loaded Cu₂O particles synthesized 5.0 mmol dm⁻³ His (c, e) before (b,

c) and after (d, e) CO_2 electrolysis.

Fig. S5 XRD patterns and average of crystallite size of the His-loaded Cu_2O hybrid partiles synthesized with 0, 2.0, 5.0, 10.0 and 20.0 mmol dm⁻³ of His.

Fig. S6 EDS spectra of His-loaded Cu_2O hybrid particles synthesized with 0 and 10 mmol dm⁻³ L-His. Spectra were normalized to the intensity of the Cu L α 1 peak.

Fig. S7 TG curves of His-loaded Cu₂O hybrid particles synthesized with 0, 2.0, 5.0,

10.0 and 20.0 mmol dm⁻³.

Fig. S8 IR spectra of His-loaded Cu₂O hybrid particles synthesized with 0, 2.0, 5.0, 10.0 and 20.0 mmol dm⁻³ of His and commercializing His powder. Black dashed circle means originated to Cu₂O peaks and yellow ones are peaks appeared by loading His.

Fig. S9 FT-IR spectra of synthesized unloaded Cu_2O before and after soaking 60 min in the 10.0 mmol dm⁻³ His aqueous solutions.

Fig. S10 Chronoamperogram during CO₂ electrolysis for 1800 seconds in a CO₂purged 0.5 mol dm⁻³ aqueous KHCO₃ solution (pH \approx 8.75) using His-loaded Cu₂Oelectrocatalysis synthesized with 5.0 mmol dm⁻³ His.