The impact of nanostructuring on the hemocompatibility of polysulfobetaine (PSB) coated hydrogel surfaces

Subramanian Suriyanarayanan ^a[†], Nizreen Mohammad Nizam ^a, Linnea I. Andersson ^a, Per H. Nilsson ^{a,b §}, Teodor Aastrup ^c, Ulrik Palmqvist ^d and Ian A. Nicholls ^a*

^{*a*} Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden.

^b Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, NO-0372 Oslo, Norway.

^c Attana AB, Engelbrekts väg 6, SE-19162 Sollentuna, Sweden.

^d LUMA Wire Tech, Amerikavägen 5, SE-39356 Kalmar, Sweden.

Scheme 1A-SI	2
Scheme 1B-SI	3
Scheme 2-SI	4
Scheme 3-SI	5
Scheme 4-SI	6
Figure 1-SI	7
Figure 2-SI	8
Figure 3-SI	9
Figure 4-SI	10
Figure 5-SI	11
Figure 6-SI	12
Figure 7-SI	13
Figure 8-SI	14
Figure 9-SI	15
Figure 10-SI	16
Figure 11-SI	17
Table 1-SI	18
Table 2-SI	19

Table of Contents

Scheme 1A-SI. Scheme for the preparation of PSB film ($PSB_{WAT-onto}$) grafted-onto functionalized SiO_2 coated Au/quartz or silicon wafers.

Scheme 1B-SI. Schematic representation of the blood chamber. In each experiment, chamber wells were filled with 100 μ L of blood from an individual healthy human donor.

Scheme 2-SI. Chart showing the preparation protocol of nanoporous polysulfobetaine (PSB_{LB}) on silicon or Au/quartz substrate.

Scheme 3-SI. Preparation protocol for the nanofibrous polysulfobetaine (PSB_{LC}) on silicon or Au/quartz substrate from the AOT/p-xylene/water LC medium.

Scheme 4-SI. Illustration of polysulfobetaine film ($PSB_{WAT-from}$) synthesis on the functionalized SiO₂ coated Au/quartz surfaces via graft-from approach.

Figure 1-SI. SEM image of the (A) anodized aluminium oxide (AAO) membrane and (B) selfassembled 300-nm sized latex beads on Si wafer. Hexagonal liquid crystals of the *p*-xylene/AOT/water reverse micelle phase, imaged with polarizing light microscope, in the (C) absence and (D) presence of sulfobetaine methacrylate monomer. (E) Phase diagram of the NMA-NMU ni-DES system.

Figure 2-SI. Image showing the static contact angle of water droplet on (A) Si-wafer (B) Si/SiO₂, (C) Si/SiO₂/silane.

Figure 3-SI. Electron micrograph of PSB_{AAO} films observed with scanning electron microscope (SEM) at (A) 1350 and (B) 105000 x magnification scale. Inset is the image of the water droplet on the corresponding surface.

Figure 4-SI. Morphology of the PSB_{LC} films observed under SEM at 9000 magnification scale. Inset is the image of the water droplet on the corresponding surface.

Figure 5-SI. Surface topography of the PSB_{LB} films imaged with SEM at 3000 magnification scale. Inset is the image of the water droplet on the corresponding surface.

(B)

Figure 6-SI. Electron micrograph of the (A) PSB_{DES} and (B) PSB_{MeOH} films imaged with SEM. Inset is the image of the water droplet on the corresponding surfaces.

Figure 7-SI. SEM image of (A) $PSB_{WAT-onto}$ and (B) $PSB_{WAT-from}$ films. Inset is the image of the water droplet on the corresponding surfaces.

Figure 8-SI. XPS Survey spectra of PSB film prepared in this study.

Figure 9-SI. Histogram for the resonant frequency change observed on modified $SiO_2/Au/quartz$ surfaces due to the repetitive injection of different protein samples under FIA conditions. The blood plasma was diluted with PBS (pH 7.4).

Figure 10-SI. Piezoelectric microgravimetric analysis for amount of proteins adsorbed on $PSB_{WAT-onto}$ and PSB_{AAO} modified SiO₂/Au/quartz surfaces when introduced with different protein samples under FIA conditions. Inset is the resonant frequency change due to the adsorption of fibrinogen protein on $PSB_{WAT-onto}$ and PSB_{AAO} surfaces. The blood plasma was diluted with PBS (pH 7.4). (Dilution factor was 50, 10, 5, 2.5 or undiluted in the order mentioned in the figure).

Figure 11-SI. Resonant frequency change for the PSB_{AAO} coated SiO₂/Au/quartz resonators upon injecting human plasma-hirudin and hemoglobin repeatedly under FIA conditions. Measurements were performed using quartz crystal microbalance (QCM) techniques at stipulated time intervals after storing the resonators in specified conditions.

Substrate	End group	Static contact angle, θ
Si wafer	Si	54 ± 5
Si wafer/SiO ₂	Si-OH	22 ± 4
Si wafer/SiO ₂ /Silane	-C(=CH ₂)CH ₃	70 ± 9
Si wafer/SiO ₂ /Silane/ PSB _{AAO}	R_4N^+/SO_3^-	14 ± 3
Si wafer/SiO ₂ /Silane/PSB _{LB}	R_4N^+/SO_3^-	48 ± 3
Si wafer/SiO ₂ /Silane/PSB _{LC}	R_4N^+/SO_3^-	16 ± 3
Si wafer/SiO ₂ /Silane/PSB _{DES}	R_4N^+/SO_3^-	21 ± 4
Si wafer/SiO ₂ /Silane/PSB _{MeOH}	R_4N^+/SO_3^-	31 ± 3
Si wafer/SiO ₂ /Silane/PSB _{WAT-onto}	R_4N^+/SO_3^-	28 ± 3
Si wafer/SiO ₂ /Silane/PSB _{WAT-from}	R_4N^+/SO_3^-	42 ± 4

Table 1-SI. Contact angles values of the water droplet measured on the PSB film coated surfaces prepared in this study.

Proteins	Molecular weight (kD)	pI
Cytochrome c (Cyt C)	12.4	10.0
Human serum albumin (HSA)	66.4	4.7
Hemoglobin	64.5	6.8
Fibrinogen	340	5.1-6.3
ribonuclease A	13.7	9.8

Table 2-SI. List of protein used for the evaluation of anti(bio)fouling characteristics of the PSB films synthesized in this study.

_