Supporting Information

Facile Synthesis of Ni–Cu Composite Reinforced with a Para-Phenylenediamine Layer for Enhanced Hydrogen Evolution Reaction

Soufiane SKAKRI ¹, Anas El ATTAR ^{1,2}, Saad BENHAIBA ¹, Badr BOULJOIHEL ¹, Anas MOUAKKAR ¹, Adiba RAIS ¹, Abdellah AADDANE¹, Mama EL RHAZI ^{1*}

¹ Laboratory of Materials, Membranes, and Environment, Faculty of Sciences and Technologies Mohammedia, University Hassan II of Casablanca, Morocco

² Centrale Lille, UMET – Unité Matériaux et Transformation, UMR 8207, F-59000 Lille, France

Email*: Mama.elrhazi@fstm.ac.ma

I. Effect of the electrodeposition mode of pPD

Fig. S1: electrodeposition of pPD on CPE by a) Cyclic Voltammetry b) Chronopotentiometry c) Chronoamperometry

Once the film of polymer was prepared using different mode of electrodeposition, the electrochemical responses towards ferri-ferrocyanure system were investigated for comparative purposes. In this perspective, CV measurements were performed in 100 mM KCI containing 1 mM [Fe(CN)₆]^{3-/4-} on different electrodes. As depicted in Fig.S2, the peak-to-peak separation on CPE (black line) is equal to 428 mV, which indicate a slow electron transfer¹. On the (CPE/pPD) _{CV}, the peak-to-peak separation was reduced to reach the value of 196 mV (red line) and the current intensities increased by about 45 %. This behavior could be explained by the high electrical conductivity and a large specific surface area offered by the polymer. The same phenomena was observed by Oularbi et al. (2017) ². It is important to note that after the electrodeposition of paraphenylenediamine on CPE by CA and CP methods (green and blue line respectively), the peak-to-peak separation was decreased at the value of Δ Ep equal 82 mV and 121 mV respectively due to the improvement of the electron transfer at the interface electrode-solution and the current intensities increased by about 97 % and 65 % respectively.

The increasing percentage was calculated as follows ³.

$$\%(Increase) = \frac{Ipa (CPE / pPD) - Ipa (CPE)}{Ipa (CPE)}$$

Table S1 summarize the obtained results, i.e., the current densities of the anodic peak Ip_a and cathodic peak Ip_c and also the peak-to-peak separation. According to these findings, the chronoamperometry (CA) method was relied upon for the deposition of the pPD in the rest of the work.

Table S1: Comparison between Ipa, Ipc and the peak-to-peak separation (Δ Ep) for CPE, CPE / pPD CV, CPE / pPD CP, CPE / pPD CA

Electrode	Іра µА	Ірс µА	Epa mV	Epc mV	peak-to- peak ▲ Ep (mV)	increasing percentage (current)
CPE	10.78	-11,2	418	-10	428	
CPE / pPD CV	15,69	-15,71	303	107	196	45 %
CPE / pPD CP	17,85	-18,93	278	157	121	65 %
CPE / pPD CA	21,27	-22,46	260	178	82	97 %

Fig. S2: CV of CPE (black line), CPE/pPD by CV (red line), and CPE/pPD by CP (blue line), and CPE/pPD by CA (green line) in 0.1 M of KCI containing 1 mM of [Fe(CN)6]^{3-/4-} at scan rate 0.05 V/s.

Fig. S3: SEM photographs of the Ni_4Cu_1 deposit on a, b) pPD deposit by potentiostatic mode, c, d) pPD deposit by cyclic voltammetry.

II. Effect of the electrodeposition mode of Nickel Copper particles

Fig. S4: a) Chronopotentiometry curve of the deposition of Ni₄Cu₁ at -3 mA. b) Chronoamperometry curve of the deposition of Ni₄Cu₁ at -0.9 V vs. Ag/AgCl.

Fig. S5: a) Electrodeposition of pPD on CPE by Chronoamperometry 0V during 40s. b) Chronopotentiometry curve of the deposition of Ni_4Cu_1 at -4 mA during 90s on the prepared pPD/CPE electrode.

III. Electrocatalytic performance of the electrocatalysts on HER

Fig. S6: The relationship between the current density and the scanning speed of (a) $Ni_4Cu_1/pPD/CPE$ and (b) Ni_4Cu_1/CPE .

Fig. S7: Polarization curves initially and after 1000 electrolysis of the electrocatalyst $Ni_4Cu_1/pPD/CPE$ at -10 mA cm⁻² in alkaline media 1M KOH.

Reference

- 1 O. Salhi, T. Ez-zine, L. Oularbi and M. El Rhazi, *Front. Chem.*, 2022, **10**, 870393.
- 2 Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers | Journal of Solid State Electrochemistry, https://link.springer.com/article/10.1007/s10008-017-3676-2, (accessed 26 April 2024).
- 3 S. Chemchoub, M. Elbasri, El. M. Halim and M. El Rhazi, *Materials Today: Proceedings*, 2019, **13**, 720–729.