Supporting information

Influence of phosphorus activation and carbonization temperature on the electrochemical performance of hard carbon made from olive pomace as an anode for sodium-ion batteries

Imad Alouiz¹, Mohamed Aqil², Abdelwahed Chari², Mouad Dahbi², Mohamed Yassine Amarouch¹, and Driss Mazouzi^{1,*}

¹R.N.E Laboratory, Multidisciplinary Faculty of Taza, University Sidi Mohamed Ben Abdellah, Fez, Morocco.

²MSN Materials Science, Energy, and Nano-engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco

*Address correspondence to: <u>driss.mazouzi@usmba.ac.ma</u>

Fig. S1. Hard carbon preparing process from olive pomace.

The thermogram (Fig. S2) shows three different stages of weight loss. First, from room temperature to 105°C, there is a weight loss of about 4-6% due to the physical evaporation of water molecules, accompanied by a weak DTG peak. Second, the decomposition of hemicellulose and volatile matter, which is characterized by a weight loss of half the mass [1-2]. Usually, the degradation of hemicelluloses occurs in a temperature range of 240°C to 300°C. Afterward, the breakdown of the cellulose bonding and its decomposition between 250°C and 380°C. The DTG curve provides a clearer representation of this thermal decomposition, displaying a strong asymmetrical peak that highlights the degradation of hemicelluloses is a degrade later and has better thermal stability than other components of olive pomace [3]. The DTG curve also shows an intense peak at temperatures between 400 and 600°C, followed by stabilizing the mass loss and decomposition of olive pomace.

Fig. S2. TG and DTG curves of the OP-R

Fig. S3. (A) FT-IR spectra of OP-R, (B) of HCs obtained for different temperatures.

Fig.S4. SEM images and magnification of (a) Raw olive pomace OP-R, and (b) chemically activated OP-A.

Fig. S5. HR-TEM images of HC samples synthesized at various temperatures. (A) HC-750°C, (B) HC-1000°C, (C) HC-1250°C, and (D) OP-1250°C.

Sample	EDS (wt %)						XRF (%)						
	C%	O%	Ca%	K%	P%	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	K ₂ O	P_2O_5		
OP- R	82.50	15.40	0.93	0.63	0.05	0.46	-	0.13	1.97	2.05	0.19		
OP-A	67.38	31.49	-	-	0.33	0.51	-	0.03	0.06	0.02	5.45		

Table S1. Results of EDX (SEM) and XRF analysis for activated carbons derived from olive pomace.

Table S2. Results of EDX (HRTEM) of HCs derived from olive pomace.

Sample	EDS (wt %)										
	С%	O%	Mg%	Si%	Ca%	K%	S%	Cu%	Cl%	Fe%	P%
НС-750 °С	69.87	20.93	2.13	0.44	2.18	-	-	-	-	-	4.46
НС-1000°С	93.33	4.95	-	0.22	0.13	-	0.10	-	0.17	-	1.10
НС-1250°С	89.39	6.19	-	0.26	0.31	-	0.33	2.99	-	-	0.53
OP-1250°C	77.06	10.47	-	0.33	1.95	1.60	0.10	7.73	-	0.29	0.21

Fig. S6. (A-D) EDX-HRTEM spectra of HC-750, HC-1000, HC-1250 and OP-1250°C respectively.

Fig. S7. (C-E) Fitted Raman spectra of HC-1250, OP-1250, HC-1000 and HC-750°C respectively.

REFERENCES

- [1] Nowak, A.P., Sprynskyy, M., Wojtczak, I., Trzciński, K., Wysocka, J., Szkoda, M., Buszewski, B. and Lisowska-Oleksiak, A. Diatoms biomass as a joint source of biosilica and carbon for lithium-ion battery anodes. Materials. 2020; 13(7): 1673.
- [2] Slopiecka, K., Bartocci, P. and Fantozzi, F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy. 2012; 97: 491-497.
- [3] Sahu, A., Sen, S. and Mishra, S.C. Processing and properties of Calotropis gigantea bio-char: a wasteland weed. Materials Today: Proceedings.2020; 33: 5334-5340.
- [4] Rout, T., Pradhan, D., Singh, R.K. and Kumari, N. Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering. 2016; 4(3): 3696-3705.