Sustainable Synthesis of Schiff Base Derivatives via Ionic Liquid and Microwave-Assisted Approach: Structural, Biological, and Computational Evaluation Nilesh Bhusari[#], Abhay Bagul^{b#}, Vipin Kumar Mishra^c, Aisha Tufail^d, Digambar Gaikwad^{b*} and Amit Dubey^{e*} ^a Department of Chemistry, Maulana Azad College of Arts, Science and Commerce, Chhatrapati Sambhajinagar 431004, Maharashtra, India ^b Department of Forensic Chemistry, Government Institute of Forensic Sciences, Chhatrapati Sambhajinagar 431004, Maharashtra, India ^cChemistry Division, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India ^dComputational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida-201310, Uttar Pradesh, India ^eCenter for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, Tamil Nadu, India

*Corresponding Authors:

Digambar Gaikwad, Department of Forensic Chemistry, Government Institute of Forensic Sciences, Chhatrapati Sambhajinagar 431004, Maharashtra, India

Email Address: gaikwad.dd.dg@gmail.com

Amit Dubey, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, Tamil Nadu, India Email address: <u>ameetbioinfo@gmail.com</u>, <u>amitdubey@saveetha.com</u>

<u>#</u>Equal Contribution

Figure. S1 IR spectrum of APR1a

Figure. S2 IR spectrum of APR1b

Figure. S3 IR spectrum of APR1c

Figure. S4 IR spectrum of APR1d

Figure. S5 ¹H NMR (400 MHz in DMSO-d₆) of the Compound APR1a : δ 11.145 (Ar-NH), δ 10.828 (Ar-OH), δ 9.221 (Ar-CH=NH), δ 7.438-7.702 (Ar-CH) ppm.

Figure. S6 ¹H NMR (400 MHz in DMSO-d₆) of the Compound APR1b: δ 11.145 (Ar-NH), δ 10.828 (Ar-OH), δ 9.231 (Ar-CH=NH), δ 7.438-7.702 (Ar-CH)

Figure. S7 ¹H NMR (400 MHz inn DMSO-d₆) of the Compound APR1c: δ 12.38 (Ar-NH), δ 12.258 (Ar-OH), δ 10.341 (Ar-CH=NH), δ 6.974-8.408 (Ar-CH)

Figure. S8 ¹H NMR (400 MHz in DMSO-d₆) of the Compound APR1d: δ 12.392 (Ar-NH), δ 10.593 (Ar-OH), δ 8.047 (Ar-CH=NH), δ 7.333-7.586 (Ar-CH)

Figure. S9 ¹³C NMR [400 MHz, DMSO-d₆, δ (ppm)] of the Compound APR1a: 157.26 (-C=N imine carbon), 151.38 (Pyrimidine C between 2 N atom), 148.50 (Pyrimidine C to Adjust N group), 131.49 (-CH=), 120.02 (C1 Phenyl ring), 119.96 (C3 Phenyl ring), 116.02 (Pyrrole C₁), 104.04 (Pyrrole C₂), 101.71 (Pyrrole C₃)

Figure. S10¹³C NMR [400 MHz, DMSO-d₆, δ (ppm)] of the Compound APR1b: 163.07 (-C=N imine carbon), 149.33 (Pyrimidine C between 2 N atom), 140.67 (Pyrimidine C to Adjust N group), 127.98 (-CH=), 126.48(C1 Phenyl ring), 123.02 (C3 Phenyl ring), 120.01 (Pyrrole C₁), 117.44 (Pyrrole C₂), 102.02 (Pyrrole C₃)

Figure. S11 ¹³C NMR [400 MHz, DMSO-d₆, δ (ppm)] of the Compound APR1c : 160.02 (-C=N imine carbon), 152.06 (Pyrimidine C between 2 N atom), 142.42 (Pyrimidine C to Adjust N group), 130.53 (-CH=), 126.78(C1 Phenyl ring), 124.55 (C3 Phenyl ring), 116.99 (Pyrrole C₁), 102.09 (Pyrrole C₂), 99.93 (Pyrrole C₃)

Figure. S12 ¹³C NMR [400 MHz, DMSO-d₆, δ (ppm)] of the Compound APR1d: 163.02 (-C=N imine carbon), 149.39 (Pyrimidine C between 2 N atom), 140.07 (Pyrimidine C to Adjust N group), 127.38 (-CH=), 126.40 (C1 Phenyl ring), 123.02 (C3 Phenyl ring), 120.01 (Pyrrole C₁), 117.40 (Pyrrole C₂), 102.02 (Pyrrole C₃)

Figure. S13 MS spectrum of APR1a

Figure. S14 MS spectrum of APR1b

Figure. S15 MS spectrum of APR1c

Figure. S16 MS spectrum of APR1d

Figure. S17 HPLC Chromatogram of APR1a

Figure. S18 HPLC Chromatogram of APR1b

Figure. S19 HPLC Chromatogram of APR1c

Figure. S20 HPLC Chromatogram of APR1d

Figure S21. Comparison of computed electronic and chemical properties of synthesized compounds.

Figure S22. Molecular Electrostatic Potential analysis of synthesized compounds.

Figure S23. Optimized structures (a) of APR1a, APR1b, APR1c, APR1d; Three-dimensional MESP (b) of APR1a, APR1b, APR1c, APR1d.

Figure S24. Binding energies of synthesised compounds (APR1a-d) with *E.coli* and *C.albicans*

Figure S27. Combined ADMET properties comparison of the synthesized compounds.

Figure S28. Structural and Molecular Interaction of synthesised compounds

	Antibac	terial Activ	HPLC Purity		
Compound	S. aureus	B. subtilis	E. coli	P. aeruginosa	(Area %)
APR1a	21.5	7.5	15.0	16.0	97.00%
APR 1b	22.0	9.0	16.0	14.0	98.99%
APR 1c	25.0	11.0	17.0	18.5	97.76%
APR 1d	23.0	28.0	20.0	23.0	98.01%
Streptomycin	15.5	14.5	12.0	14.0	

Table S1. Antibacterial activities of synthesized compounds

Table S2. Antifungal activities of synthesized compounds

Compound	Candida albicans	Saccharomyces cerevisiae	HPLC Purity (Area %)
APR1a	16.5	11.0	97.00%
APR 1b	12.5	15.5	98.99%
APR 1c	11.0	14.5	97.76%
APR 1d	19.0	19.0	98.01%
Fluconazole	10.5	14.0	

Table S3. Brine shrimp bioassay of synthesized compounds

Compound	LC ₅₀ (M)	HPLC Purity (Area %)
APR1a	>6.50 × 10 ⁻⁴	97.00%
APR1b	$>3.50 \times 10^{-4}$	98.99%
APR1c	$> 8.50 \times 10^{-4}$	97.76%
APR1d	>4.50 × 10 ⁻⁴	98.01%
Vincristine Sulphate	$> 3.24 \times 10^{-4}$	

Table S4. Computed Electronic and Chemical Properties of the Investigated Structures

Compo unds	Total Energy (a.u.)	Binding Energy (eV)	HOMO Energy (eV)	LUMO Energy (eV)	Band Gap Energy (eV)	Chemica l Hardnes s (η) (eV)	Chemica l Softness (S) (eV ⁻¹)	Electron egativity (χ) (eV)	Chemical Potential (µ) (eV)	Electroph ilicity Index (ω) (eV)	Dipole Moment (D)
APR1a	- 788.649	-5.83885	-0.196596	- 0.10494 8	0.091648	0.045824	10.9153	0.150772	-0.150772	0.247746	1.97171
APR 1b	- 788.724	-5.91375	-0.190962	- 0.10228 2	0.088680	0.044340	11.2792	0.146622	-0.146622	0.242446	1.22855
APR 1c	- 788.726	-5.91646	-0.188788	- 0.09893 3	0.089855	0.044928	11.1282	0.143861	-0.143861	0.230262	0.781615
APR 1d	- 991.781	-6.27115	-0.204577	- 0.13666 7	0.067909	0.033954	14.7216	0.170622	-0.170622	0.428791	1.63151

Structure	Electrostatic	Key Reactive Sites	Charge Distribution	Predicted Reactivity	Potential Applications
	Distribution	Sites	Distribution	Reactivity	representations
APR1a	Well-	Oxygen and	High dipole	Strong	Drug-
	distributed,	nitrogen	moment (1.97	hydrogen	receptor
	moderate	atoms.	D), suggesting	bonding	interactions,
	negative		strong	interactions,	molecular
	potential near		polarity.	good	recognition
	electronegative			nucleophilicity.	in biological
	atoms (O, N).				systems.
APR1b	Uniform	Moderate	Balanced	Selective	Enzyme
	electrostatic	electron-rich	charge	molecular	inhibition,
	potential	and electron-	distribution,	interactions,	selective
	gradient,	deficient	slightly lower	stable	binding in
	moderate	zones.	dipole moment	reactivity.	drug design.
	charge		(1.23 D).		
	separation.				
APR1c	Less polarized	Weak	Lowest dipole	Moderate	Solid-state
	MESP, more	nucleophilic	moment (0.78	reactivity,	applications,
	uniform	and	D), indicating	reduced	packing
	charge	electrophilic	minimal	hydrogen	efficiency in
	distribution.	regions.	charge	bonding	materials
			separation.	ability.	science.
APR1d	Strong	Highly	Highest	Most reactive	Catalysis,
	localized	nucleophilic	electrophilicity	structure,	charge-
	negative	regions around	(0.4288 eV),	strong charge	transfer
	potential,	electronegative	lowest	transfer	materials,
	intense	atoms.	chemical	potential.	bioactive
	electrostatic		hardness		molecule
	variations.		(0.0339 eV).		development.

Table S5. Molecular Electrostatic Potential (MESP) Analysis of Investigated Structures

Table S6. Binding Energies, Hydrogen Bonding, and Steric Interactions of Compounds with*E. coli* (PDB: 1hnj) and *Candida albicans* (PDB: 5v5z)

Compounds	Binding Energy (Kcal/Mol) (Delta G)	Hydrogen Bond	Steric Interactions
E.Coli (PDB: 1hnj)			
APR1a	-7.0	Ala246, Asn247	Ala246, Asn247
APR 1b	-7.3	Asn247	Ala246, Asn247
APR1c	-7.1		Asn247
APR 1d	-7.4	Phe304	Asn210, Arg249, Ile250, Phe304
Streptomycin (Control)	-6.2	Asp150, Gly152, Met207, Gly209, Asn210	Arg36, Asp150, Met207, Gly209, Asn210
Candida Albicans (PDB:	5v5z)		
APR1a	-7.8		

APR1b	-7.8	Tyr118	Tyr118, Phe463
APR1c	-7.5		His377, Ser378
APR1d	-8.0	His377, Ser378	Gly307, His377,
			Ser378
Fluconazole (Control)	-7.8	Ile304, Thr311	Leu204, Leu276,
			Ile304, Gly308,
			Thr311, Gly472

Table S7. Binding free energy values of Streptomycin with E. Coli

Binding free energy components of E. Coli and Streptomycin					
$\Delta E_{ m ELEC}$	-24.6				
$\Delta E_{ m VDW}$	-16.0				
ΔEPB	33.0				
ΔEPB_{np}	-2.5				
ΔE_{Disper}	0.0				
ΔG	-9.63±3.2				

Binding free energy (ΔG) of *E. Coli protein* and ligand complex was calculated from the 100 ns simulation. The molecular-mechanical energy calculations were performed using MM/PBSA, and entropy calculations using nmode analysis. ΔE_{EELEC} , ΔE_{VDW} , ΔEPB_{np} and ΔEPB_{solv} are referred to the electrostatic, Vander Waals, polar, the non-polar contribution to the solvation energy and the electrostatic contribution to the solvation energy, respectively.

Table S8. Binding free energy values of APR1d ligand with Candida Albicans protein

Binding free energy components of Candida Albicans protein and APR1d ligand				
$\Delta \mathrm{E}_{\mathrm{ELEC}}$	000			
$\Delta E_{ m VDW}$	-39.41			
ΔEPB	11.37			
ΔEPB_{np}	-0.82			
ΔE_{Disper}	0.0			
$\Delta G(\Delta H_{PB}-T\Delta S)$	-28.8±3.2			

Binding free energy (ΔG) of Candida Albicans protein and ligand complex was calculated from the 100 ns simulation. The molecular-mechanical energy calculations were performed using MM/PBSA, and entropy calculations using nmode analysis. ΔE_{EELEC} , ΔE_{VDW} , ΔEPB_{np} and ΔEPB_{solv} are referred to the electrostatic, Vander Waals, polar, the non-polar contribution to the solvation energy and the electrostatic contribution to the solvation energy, respectively.

Table S9. Binding free energy values of Flucanazol with Candida Albicans protein

Binding free energy components of Candida Albicans protein and Flucanazol

 ΔE_{ELEC}

-29.12

-35.92
42.21
-3.42
0.0
-25.8±3.2

Binding free energy (ΔG) of Candida Albicans protein and ligand complex was calculated from the 100 ns simulation. The molecular-mechanical energy calculations were performed using MM/PBSA, and entropy calculations using nmode analysis. ΔE_{EELEC} , ΔE_{VDW} , ΔEPB_{np} and ΔEPB_{solv} are referred to the electrostatic, Vander Waals, polar, the non-polar contribution to the solvation energy and the electrostatic contribution to the solvation energy, respectively

Parameters	APR1a	APR1b	APR1c	APR1d	
]	PHYSICOCHE	MICAL PROP	PERTY	
Formula	C13H11N4O	C13H10N4O	C1H10N4O	C13H9N5O3	
MW (G /Mol)	239.25	238.24	238.24	283.24	
Num. Heavy Atoms	18	18	18	21	
Num. arom. Heavy Atoms	6	15	15	15	
Fraction Csp3	0.08	0.00	0.00	0.00	
Num. Of Rotatable Bonds	2	2	2	3	
Num. H-Bond Acceptors	4	4	4	6	
Num. H-Bond Donors	2	2	2	2	
Molar Refractivity	83.25	69.61	69.61	78.43	
TPSA (A ²)	56.98	74.16	74.16	119.98	
	LIPOPHILICITY				
Log P _{o/W} (Ilogp)	0.00	1.65	1.65	1.04	
Log P _{o/W} (XLOGP3)	-0.73	1.94	1.94	1.77	
Log P _{o/W} (WLOGP)	-0.90	2.41	2.41	2.32	
Log P _{o/W} (MLOGP)	0.93	1.25	1.25	0.33	
Log Po/W (SILICOS-IT)	1.40	2.85	2.85	0.66	
Consensus Log P _{o/W}	0.14	2.02	2.02	1.22	
		WATER SO	LUBILITY		
Log S (ESOL)	-0.98	-3.02	-3.02	-3.04	
Solubility Class	Very soluble	Soluble	Soluble	Soluble	
Log S (ALI)	0.01	-3.12	-3.12	-3.91	
Solubility Class	Highly	Soluble	Soluble	Soluble	
	soluble				
Log S (SILICOS-IT)	-3.22	-4.58	-4.58	-3.95	
Solubility Class	soluble	Moderately	Moderately	Soluble	
		soluble	soluble		
	PF	IARMACOKIN	NETICS	1	
GI Absorption	High	High	High	High	
BBB Permeation	No	Yes	Yes	No	
P-Gp Substrate	No	No	No	No	
CYP1A2 Inhibitor	No	Yes	Yes	No	

Table S10. ADMET Calculations

CYP2C19 Inhibitor	No	No	No	No
CYP2C9 Inhibitor	No	No	No	No
CYP2D6 Inhibitor	No	No	No	No
CYP3A4 Inhibitor	No	No	No	No
Log K _p (Skin Permeation) cm/s	-8.28	-6.38	-6.38	-6.77
		DRUG LIKEN	ESS	
Lipinski	Yes: 0	Yes: 0	Yes: 0	Yes: 0 violation
	violation	violation	violation	
Ghose	No: 1	Yes	Yes	Yes
	violation			
Veber	Yes	Yes	Yes	Yes
Egan	Yes	Yes	Yes	Yes
Muegge	Yes	Yes	Yes	Yes
Bioavailability Score	0.55	0.55	0.55	0.55
	ME	DICINAL CHE	MISTRY	
PAINS	0 alert	0 alert	0 alert	0 alert
Brenk	1 alert:	1 alert:	1 alert:	3 alert: imine_1,
	imine_1	imine_1	imine_1	nitro_group, oxygen-
				nitrogen_single_bond
Leadlikeness	No; 1	No; 1	No; 1	Yes
	violation;	violation;	violation;	
	MW<250	MW<250	MW<250	
Synthetic Accessibility	3.43	2.53	2.50	2.77

Table S11. Hydrogen Bonding, Hydrophobicity, and Aromaticity Profile of the Compounds

Compound	Hydrogen Bond	Hydrogen Bond	Hydrophobi c	Ring Aromati	Negative Ionizable	Positive Ionizable
	Acceptor	Donor		c		
1a	5	3	2	6		
1b	5	3	2	6		
1c	5	3	2	6		
1d	7	3	1	6		