Comparative Study of the Reaction of 2-Mercaptobenzimidazole with 2-Bromo-1,3-Diketones under Conventional and Green Conditions: Regioselective Access to N/Sdifunctionalized Benzimidazoles and Benzimidazo[2,1-*b*]thiazoles

Ranjana Aggarwal^{a,b}*, Prince Kumar^a and Suresh Kumar^a

^aDepartment of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India ^bCouncil of Scientific and Industrial Research-National Institute of Science Communication and Policy Research, New Delhi 110012, India

*Corresponding author:

Prof. Ranjana Aggarwal, CSIR-National Institute of Science Communication and Policy

Research, New Delhi, India. Tel: +91-9896740740

E-mails: ranjanaaggarwal67@gmail.com, ranjana67in@yahoo.com

	Page no.
General synthesis	S 2
Characterization of Final	

TABLE of CONTENT

¹H NMR, ¹³C NMR, HSQC, HMBC

Compounds

HRMS spectrum of final compounds

S25-S26

S3-S25

SUPPLEMENTARY DATA

General method for preparation of 6-substituted-2-aroyl-3-methylbenzimidazo[2,1b]thiazoles 6(a-n)

1,3-Diketones **3** (1.0 mmol) were ground with N-bromosuccinimide (1.0 mmol) in a dry mortar for 15-30 min, forming a thick paste. The mixture was then transferred to a conical flask and stirred with 15 mL of absolute ethanol under visible-light irradiations. Next, 2-mercaptobenzimidazoles **5** (1.0 mmol) were added and stirred for 30-40 min until completion, monitored by TLC using ethyl acetate-petroleum ether (20:80, v/v). Excess ethanol was removed under reduced pressure and the reaction mixture was neutralized with aqueous sodium bicarbonate. The obtained solid products **6(a-n)** were recrystallized using ethanol and dried, yielding high-purity products.

General method for preparation of 2-((1-acetyl-1*H*-benzimidazol-2-yl)thio)-1-arylethan-1-one 10(a-e)

1,3-Diketones **3** (1.0 mmol) were grounded with NBS (1.0 mmol) in a dry mortar for 15-30 min to form a thick paste. Subsequently, 2-mercaptobenzimidazole **5** (1.0 mmol) was added and the reaction mixture was further grounded thoroughly at room temperature for 15-20 min. Reaction progress was monitored by TLC using ethyl acetate-petroleum ether (20:80, v/v). After completion, 30 mL of saturated sodium bicarbonate solution was added and the mixture was filtered to obtain the crude solid. N/S-difunctionalized benzimidazole derivatives **10(a-e)**, were recrystallized from ethanol and dried, yielding high-purity products.

Characterization of Final Compounds

¹H NMR, ¹³C NMR, HSQC, HMBC and HRMS Spectrum of Final Compounds 2-Benzoyl-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6a)

¹³C NMR spectrum of **6a**

¹H-¹³C HMBC

¹H-¹³C HSQC

2-(4-Fluorobenzoyl)-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6b)

¹⁹F NMR spectrum of **6b**

2-(4-Chlorobenzoyl)-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6c)

¹H NMR spectrum of **6c**

¹³C NMR spectrum of **6c**

2-(4-Bromobenzoyl)-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6d)

¹H NMR spectrum of **6d**

¹³C NMR spectrum of **6d**

2-(4-Methylbenzoyl)-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6e)

¹H NMR spectrum of **6e**

¹³C NMR spectrum of **6e**

2-(4-Methoxylbenzoyl)-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6f)

¹H NMR spectrum of **6f**

¹³C NMR spectrum of **6f**

2-(3-Methoxylbenzoyl)-3-methylbenzo[4,5]imidazo[2,1-b]thiazole (6g)

¹H NMR spectrum of **6g**

¹³C NMR spectrum of **6g**

3-Methyl-(2-(2-thiophen)oyl)-benzo[4,5]imidazo[2,1-b]thiazole 6h

¹H NMR spectrum of **6h**

¹³C NMR spectrum of **6h**

2-(4-Fluorobenzoyl)-3-methyl-6-methylbenzo[4,5]imidazo[2,1-b]thiazole 6i

¹H NMR spectrum of **6i**

2-(4-Chlorobenzoyl)-3-methyl-6-methylbenzo[4,5]imidazo[2,1-b]thiazole (6j)

¹³C NMR spectrum of **6j**

2-(4-Methylbenzoyl)-3-methyl-6-methylbenzo[4,5]imidazo[2,1-b]thiazole (6k)

¹H NMR spectrum of **6k**

¹³C NMR spectrum of **6k**

2-(4-Methoxybenzoyl)-3-methyl-6-methylbenzo[4,5]imidazo[2,1-b]thiazole (6l)

¹H NMR spectrum of **6**l

¹³C NMR spectrum of **6**

2-(3-Methoxybenzoyl)-3-methyl-6-methylbenzo[4,5]imidazo[2,1-b]thiazole (6m)

¹H NMR spectrum of **6m**

¹³C NMR spectrum of **6m**

2-(2-Methoxybenzoyl)-3-methyl-6-methylbenzo[4,5]imidazo[2,1-b]thiazole (6n)

¹H NMR spectrum of **6n**

¹³C NMR spectrum of **6n**

1-Acetyl-2-((2-oxo-2-phenylethyl)thio)benzo[4,5]imidazole (10a)

¹H NMR spectrum of **10a**

-1.3

f1 (ppm)

- 140 -150

190220_S_B1

5.0 4.5 f2 (ppm)

4.0 3.5 3.0

2.5 2.0 1.5 1.0 0.5

{8.09,129.38} {7.61,133.60}

9.0 8.5 8.0 {7.61,134.73}

7.0 6.5

6.0 5.5

7.5

¹H-¹³C HMBC

Table 4.2. ¹H, ¹³C and 2D NMR correlations of 10a.

Chemical shifts (δ in ppm)	gs-HSQC	gs-HMBC	Assignments
193.9		8.09-8.11 (H2'/H6'),	CH ₂ COC ₆ H ₅
		4.85 (CH ₂)	
168.8		2.81 (CH ₃)	COCH ₃
154.3		4.85 (CH ₂)	C2
144.0		7.60-7.63 (H7), 7.25-7.30	Co
144.0		(H6), 7.50-7.54 (H4)	68
136.1		8.09-8.11 (H2'/H6'),	C1'

		7.50-7.54 (H3'/H5')	
		4.85 (CH ₂)	
133.6	7.60-7.63 (H4')	8.09-8.11 (H2'/H6'),	C4'
		7.50-7.54 (H3'/H5')	
128.8	8.09-8.11	7.50-7.54 (H3'/H5')	C2'/C6'
	(H2'/ H6')	7.60-7.63 (H4')	
128.6	7.50-7.54	8.09-8.11 (H2'/H6'),	C3'/C5'
	(H3'/H5')	7.60-7.63 (H4')	
124.6	7.25-7.30 (H5)	7.25-7.30 (H6), 7.50-7.54	C5
		(H4), 7.60-7.63 (H7)	
123.6	7.25-7.30 (H6)	7.25-7.30 (H5), 7.50-7.54	C6
		(H4), 7.60-7.63 (H7)	
119.1	7.50-7.54 (H4)	7.25-7.30 (H5/H6)	C4
113.2	7.60-7.63 (H7)	7.25-7.30 (H5/H6)	C7
40.5	4.85 (CH ₂)		CH_2
26.2	2.81 (CH ₃)		CH ₃

1-Acetyl-2-((2-oxo-2-(4-fluorophenyl)ethyl)thio)benzo[4,5]imidazole (10b)

¹H NMR spectrum of **10b**

¹³C NMR spectrum of **10b**

1-Acetyl-2-((2-oxo-2-(4-chlorophenyl)ethyl)thio)benzo[4,5]imidazole (10c)

¹H NMR spectrum of **10c**

¹³C NMR spectrum of **10c**

1-Acetyl-2-((2-oxo-2-(4-tolyl)ethyl)thio)benzo[4,5]imidazole (10d)

¹H NMR spectrum of **10d**

¹³C NMR spectrum of **10d**

1-Acetyl-2-((2-oxo-2-(4-methoxyphenyl)ethyl)thio)benzo[4,5]imidazole (10e)

¹³C NMR spectrum of **10e**

HRMS

HRMS of 6d

HRMS of 10d