Electronic supplementary information

Diterpenoids from the aerial parts of Isodon serra and their antihepatocarcinoma potential

Huanling Wu, ‡^a Chang Liu,‡^a Siqin Li,^a Chenchen Zhang,^b Guang Yang,^b Jiang Ma,^a Ziying Huang,^a Shixiong Wang,^a Yonghao Xu,^a Xin He ^{a*} and Ji Yang ^{a*}

^a School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China. Email: yangji@gdpu.edu.cn; hexintn@163.com

^b China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Content

Fig. S1. HR-ESI-MS (+) spectrum of compound 1	4
Fig. S2. ¹ H NMR spectrum for compound 1	4
Fig. S3. ¹³ C and DEPT 135 NMR spectra for compound 1	5
Fig. S4. HSQC NMR spectrum for compound 1	5
Fig. S5. ¹ H– ¹ H COSY NMR spectrum for compound 1	6
Fig. S6. HMBC NMR spectrum for compound 1	6
Fig. S7. NOESY NMR spectrum for compound 1	7
Fig. S8. IR spectrum of compound 1 (KBr)	7
Fig. S9. UV spectrum of compound 1 in MeOH	8
Fig. S10. CD spectrum of compound 1 in MeOH	8
Fig. S11. HR-ESI-MS (+) spectrum of compound 2	9
Fig. S12. ¹ H NMR spectrum for compound 2	9
Fig. S13. ¹³ C and DEPT 135 NMR spectra for compound 2	9
Fig. S14. HSQC NMR spectrum for compound 2.	10
Fig. S15. ¹ H– ¹ H COSY NMR spectrum for compound 2	10
Fig. S16. HMBC NMR spectrum for compound 2	11
Fig. S17. NOESY NMR spectrum for compound 2	11
Fig. S18. IR spectrum of compound 2 (KBr)	12
Fig. S19. UV spectrum of compound 2 in MeOH	12
Fig. S20. CD spectrum of compound 2 in CHCl ₃	12
Fig. S21. HR-ESI-MS (+) spectrum of compound 3	13
Fig. S22. ¹ H NMR spectrum for compound 3	13
Fig. S23. ¹³ C and DEPT 135 NMR spectra for compound 3	14
Fig. S24. HSQC NMR spectrum for compound 3	14
Fig. S25. ¹ H– ¹ H COSY NMR spectrum for compound 3	15
Fig. S26. HMBC NMR spectrum for compound 3	15
Fig. S27. NOESY NMR spectrum for compound 3	16
Fig. S28. IR spectrum of compound 3 (KBr)	16
Fig. S29. UV spectrum of compound 3 in MeOH	17
Fig. S30. CD spectrum of compound 3 in MeOH	17
Fig. S31. ¹ H NMR spectrum for compound 4	18
Fig. S32. ¹³ C and DEPT 135 NMR spectra for compound 4	18
Fig. S33. ¹ H NMR spectrum for compound 5	19
Fig. S34. ¹³ C and DEPT 135 NMR spectra for compound 5	19
Fig. S35. ¹ H NMR spectrum for compound 6	20
Fig. S36. ¹³ C and DEPT 135 NMR spectra for compound 6	20
Fig. S37. ¹ H NMR spectrum for compound 7	21
Fig. S38. ¹³ C and DEPT 135 NMR spectra for compound 7	21
Fig. S39. ¹ H NMR spectrum for compound 8	22
Fig. S40. ¹³ C and DEPT 135 NMR spectra for compound 8	22
Fig. S41. ¹ H NMR spectrum for compound 9	23
Fig. S42. ¹³ C and DEPT 135 NMR spectra for compound 9	23
Fig. S43. ¹ H NMR spectrum for compound 10	24

Fig. S44. ¹³ C and DEPT 135 NMR spectra for compound 10	24
Fig. S45. ¹ H NMR spectrum for compound 11	25
Fig. S46. ¹³ C and DEPT 135 NMR spectra for compound 11	25
Fig. S47. ¹ H NMR spectrum for compound 12	26
Fig. S48. ¹³ C and DEPT 135 NMR spectra for compound 12	26
Fig. S49. ¹ H NMR spectrum for compound 13	27
Fig. S50. ¹³ C and DEPT 135 NMR spectra for compound 13	27
Fig. S51. ¹ H NMR spectrum for compound 14	28
Fig. S52. ¹³ C and DEPT 135 NMR spectra for compound 14	28
Fig. S53. ¹ H NMR spectrum for compound 15	29
Fig. S54. ¹³ C and DEPT 135 NMR spectra for compound 15	29
Fig. S55. ¹ H NMR spectrum for compound 16	30
Fig. S56. ¹³ C and DEPT 135 NMR spectra for compound 16	30
Fig. S57. ¹ H NMR spectrum for compound 17	31
Fig. S58. ¹³ C and DEPT 135 NMR spectra for compound 17	31
Fig. S59. ¹ H NMR spectrum for compound 18	32
Fig. S60. ¹³ C and DEPT 135 NMR spectra for compound 18	32
Fig. S61. ¹ H NMR spectrum for compound 19	33
Fig. S62. ¹³ C and DEPT 135 NMR spectra for compound 19	33
Fig. S63. ¹ H NMR spectrum for compound 20	34
Fig. S64. ¹³ C and DEPT 135 NMR spectra for compound 20	34
Fig. S65. ¹ H NMR spectrum for compound 21	35
Fig. S66. ¹³ C and DEPT 135 NMR spectra for compound 21	35
Fig. S67. ¹ H NMR spectrum for compound 22	36
Fig. S68. ¹³ C and DEPT 135 NMR spectra for compound 22	36
Fig. S69. ¹ H NMR spectrum for compound 23	37
Fig. S70. ¹³ C and DEPT 135 NMR spectra for compound 23	37
Table S1. Key conformers of compound 1.	
Table S2. Conformers and Bolzmann distributions of the optimized 1.	
Table S3. Optimized Z-matrixes of isomer 1 in the gas phase (Å) at B3LYP/6-31G(d) level	el38
Table S4. Key conformers of compound 2.	41
Table S5. Conformers and Bolzmann distributions of the optimized 2.	41
Table S6. Optimized Z-matrixes of isomer 2 in the gas phase (Å) at B3LYP/6-31G(d) level	el41
Table S7. Key conformers of compound 3.	46
Table S8. Conformers and Bolzmann distributions of the optimized 3.	46
Table S9. Optimized Z-matrixes of isomer 3 in the gas phase (Å) at B3LYP/6-31G(d) level	el46

Fig. S2. ¹H NMR spectrum for compound 1

Fig. S3. ¹³C and DEPT 135 NMR spectra for compound 1

Fig. S4. HSQC NMR spectrum for compound 1

Fig. S5. ¹H–¹H COSY NMR spectrum for compound 1

Fig. S6. HMBC NMR spectrum for compound 1

Fig. S8. IR spectrum of compound 1 (KBr)

Fig. S9. UV spectrum of compound 1 in MeOH

Fig. S13. ¹³C and DEPT 135 NMR spectra for compound 2

Fig. S14. HSQC NMR spectrum for compound 2

Fig. S15. ¹H–¹H COSY NMR spectrum for compound 2

Fig. S17. NOESY NMR spectrum for compound 2

Fig. S18. IR spectrum of compound 2 (KBr)

Fig. S22. ¹H NMR spectrum for compound 3

Fig. S23. ¹³C and DEPT 135 NMR spectra for compound 3

Fig. S25. ¹H–¹H COSY NMR spectrum for compound 3

Fig. S26. HMBC NMR spectrum for compound 3

Fig. S28. IR spectrum of compound 3 (KBr)

Fig. S29. UV spectrum of compound 3 in MeOH

Fig. S30. CD spectrum of compound 3 in MeOH

Fig. S34. ¹³C and DEPT 135 NMR spectra for compound 5

Fig. S36. ¹³C and DEPT 135 NMR spectra for compound 6

Fig. S38. ¹³C and DEPT 135 NMR spectra for compound 7

Fig. S40. ¹³C and DEPT 135 NMR spectra for compound 8

Fig. S46. ¹³C and DEPT 135 NMR spectra for compound 11

Fig. S48. ¹³C and DEPT 135 NMR spectra for compound 12

Fig. S52. ¹³C and DEPT 135 NMR spectra for compound 14

Fig. S54. ¹³C and DEPT 135 NMR spectra for compound 15

Fig. S56. ¹³C and DEPT 135 NMR spectra for compound 16

Fig. S58. ¹³C and DEPT 135 NMR spectra for compound 17

Fig. S60. ¹³C and DEPT 135 NMR spectra for compound 18

Fig. S64. ¹³C and DEPT 135 NMR spectra for compound 20

Fig. S68. ¹³C and DEPT 135 NMR spectra for compound 22

Conformer 1-1 79.82%	Conformer 1-2 13.98%	Conformer 1-3 3.93%	Conformer 1-4 2.27%

 Table S1. Key conformers of compound 1.

Table S2. Conformers and Bolzmann distributions of the optimized 1.

species	E' = E + ZPE	Ε	Н	G	⊿G	$\Delta E(kcal/mol)$	<i>p%</i>
1-1	-1307.189372	-1307.164159	-1307.163215	-1307.240857	0	0	79.82%
1-2	-1307.187959	-1307.162715	-1307.161771	-1307.239213	0.001644	1.031625618	13.98%
1-3	-1307.186562	-1307.161184	-1307.16024	-1307.238016	0.002841	1.782754489	3.93%
1-4	-1307.186094	-1307.160767	-1307.159823	-1307.237498	0.003359	2.107804411	2.27%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

1-1			1-2				
atom	Х	Y	Z	atom	Х	Y	Z
С	-2.94781	-2.62934	-0.22802	С	-3.10239	-2.46472	-0.26741
С	-3.58265	-1.37063	-0.82946	С	-3.70104	-1.1553	-0.79406
С	-3.05156	-0.06029	-0.19958	С	-3.09528	0.106015	-0.13042
С	-1.48383	-0.07673	-0.30043	C	-1.53441	0.024645	-0.27987
С	-0.74235	-1.3807	0.160426	C	-0.84406	-1.32046	0.121282
С	-1.42523	-2.63396	-0.4214	С	-1.58543	-2.5224	-0.49338
С	-0.80264	1.133114	0.376678	C	-0.771	1.192083	0.38868
С	0.379803	0.675848	1.251486	C	0.387368	0.654327	1.257686
С	1.465743	-0.13309	0.51696	С	1.427441	-0.20964	0.51388
С	0.744705	-1.23926	-0.329	С	0.645734	-1.22195	-0.38376
С	2.47605	-0.72136	1.535331	С	2.353625	-0.91728	1.540463
С	3.519044	-1.33058	0.586504	С	3.392012	-1.55915	0.610069
С	2.862832	-2.53394	-0.07228	C	2.680378	-2.65907	-0.16453
С	1.57198	-2.50313	-0.421	С	1.409137	-2.51716	-0.55849
С	-0.68034	-1.44286	1.697546	C	-0.7744	-1.42751	1.654471
0	-0.2644	-0.17682	2.225785	0	-0.30723	-0.19424	2.209664
С	3.705135	-0.20919	-0.43419	С	3.718442	-0.3986	-0.32176
С	2.458695	0.675121	-0.38799	С	2.523511	0.560398	-0.3079
С	4.746117	-0.01204	-1.23968	C	4.813364	-0.22614	-1.06282
0	2.0256	0.984869	-1.70422	0	2.178677	1.0333	-1.60436
0	0.973194	1.73379	1.929089	0	1.030965	1.64568	1.982842
0	-1.11087	-2.66854	-1.82035	0	-1.29798	-2.51658	-1.90032
С	-3.57564	1.128593	-1.03437	С	-3.58656	1.345625	-0.91013

C	-3.62733	0.092289	1.227513	C	-3.62683	0.232611	1.316401
0	-0.38572	2.098935	-0.63957	0	-0.33985	2.094134	-0.66337
0	-0.71277	3.823935	0.801629	0	-0.18081	3.837363	0.776835
С	-0.38644	3.415325	-0.29289	С	-0.09623	3.378024	-0.35087
С	0.060689	4.272559	-1.44987	С	0.300605	4.159554	-1.57607
Н	-3.36539	-3.52726	-0.70695	Н	-3.56648	-3.32276	-0.7762
Н	-3.18963	-2.7241	0.83753	Н	-3.32429	-2.59991	0.798024
Н	-3.37184	-1.35887	-1.90595	Н	-3.52492	-1.10536	-1.87589
Н	-4.67423	-1.40899	-0.72015	Н	-4.78937	-1.15511	-0.65024
Н	-1.27064	0.001418	-1.37259	Н	-1.35307	0.125477	-1.35532
Н	-0.99896	-3.52253	0.07249	Н	-1.18561	-3.44624	-0.04362
Н	-1.48771	1.660147	1.040161	Н	-1.41193	1.761197	1.065145
Н	0.690456	-0.86221	-1.35742	Н	0.57621	-0.77749	-1.38519
Н	2.89714	0.092554	2.134584	Н	2.805786	-0.1636	2.193619
Н	2.042262	-1.456	2.215557	Н	1.846775	-1.64923	2.169303
Н	4.456015	-1.61267	1.076371	Н	4.275492	-1.9485	1.125079
Н	3.471267	-3.41343	-0.27397	Н	3.238341	-3.56014	-0.41262
Н	1.118802	-3.35258	-0.92304	Н	0.923858	-3.29892	-1.13556
Н	-1.64184	-1.67475	2.161825	Н	-1.74418	-1.63046	2.113957
Н	0.028808	-2.22714	2.000096	Н	-0.10346	-2.25284	1.935509
Н	2.701939	1.602221	0.153226	Н	2.771848	1.457376	0.270049
Н	4.756711	0.805149	-1.95552	Н	4.925335	0.643155	-1.7065
Н	5.612366	-0.66943	-1.22739	Н	5.633118	-0.94025	-1.05353
Н	1.202408	1.494683	-1.61141	Н	2.346699	0.308061	-2.2271
Н	0.292358	2.398335	2.134123	Н	0.502612	2.466595	1.941888
Н	-1.55146	-3.44459	-2.20072	Н	-1.79866	-3.24356	-2.30271
Н	-4.67155	1.112561	-1.07516	Н	-3.24048	1.327031	-1.95009
Н	-3.20049	1.091077	-2.06378	Н	-3.2355	2.279392	-0.4558
Н	-3.28106	2.091984	-0.60161	Н	-4.68282	1.379896	-0.91999
Н	-3.41012	-0.75664	1.879567	Н	-3.48864	-0.67295	1.911646
Н	-3.26447	0.992429	1.733136	Н	-3.15945	1.055509	1.865529
Н	-4.71882	0.179436	1.164761	Н	-4.70443	0.434612	1.286152
Н	-0.62284	4.148588	-2.29636	Н	0.536684	5.187118	-1.2981
Н	0.084384	5.317723	-1.1408	Н	1.167603	3.674175	-2.03577
Н	1.056045	3.958972	-1.78323	Н	-0.51121	4.147108	-2.31085
		1-3	-			1-4	
atom	X	Y	Z	atom	Х	Y	Z
С	-3.10209	-2.47488	-0.27988	С	-3.08249	-2.4945	-0.28832
С	-3.70355	-1.1597	-0.79305	С	-3.69341	-1.18347	-0.79719
С	-3.09636	0.101144	-0.1289	C	-3.09219	0.077529	-0.12954
C	-1.53481	0.020289	-0.27713	C	-1.52994	0.007947	-0.28018
C	-0.84151	-1.32631	0.119853	C	-0.83388	-1.33404	0.119927
C	-1.58362	-2.53448	-0.50252	C	-1.57054	-2.53524	-0.52169
С	-0.77224	1.190696	0.388807	C	-0.77985	1.181084	0.391424

C	0.385358	0.654041	1.258363	C	0.381533	0.652367	1.258944
С	1.426696	-0.20728	0.514197	С	1.431842	-0.19733	0.512852
С	0.648339	-1.2237	-0.38141	С	0.660296	-1.23191	-0.37114
С	2.35576	-0.90939	1.541871	С	2.377263	-0.87414	1.541087
С	3.396963	-1.54716	0.612355	С	3.420541	-1.51029	0.611043
С	2.689638	-2.64999	-0.16228	С	2.717653	-2.64191	-0.12206
С	1.417119	-2.51658	-0.55548	С	1.439242	-2.52792	-0.50204
С	-0.77372	-1.42936	1.653218	С	-0.7635	-1.44257	1.652341
0	-0.30915	-0.19412	2.209503	0	-0.29818	-0.20655	2.209799
С	3.720067	-0.3841	-0.31716	С	3.713726	-0.35964	-0.3444
С	2.517255	0.564661	-0.3129	С	2.50591	0.581603	-0.32782
С	4.819581	-0.2011	-1.04916	С	4.795923	-0.18383	-1.10352
0	2.165481	1.013699	-1.61781	0	2.136833	1.02635	-1.62851
0	1.028129	1.647795	1.981092	0	1.019571	1.64849	1.982774
0	-1.29229	-2.68185	-1.89914	0	-1.41481	-2.5536	-1.9472
С	-3.5895	1.3448	-0.90093	C	-3.59008	1.319447	-0.90144
С	-3.62552	0.219675	1.319505	С	-3.62185	0.193407	1.31917
0	-0.3417	2.09159	-0.66319	0	-0.35441	2.092991	-0.65476
0	-0.20297	3.837031	0.776388	0	-0.22333	3.830907	0.794799
С	-0.10556	3.378283	-0.34981	С	-0.13435	3.379821	-0.33579
С	0.29837	4.159434	-1.57278	С	0.240833	4.176604	-1.55809
Н	-3.55372	-3.3263	-0.80178	Н	-3.5275	-3.34519	-0.81688
Н	-3.32886	-2.60562	0.784938	Н	-3.29377	-2.64191	0.777211
Н	-3.55809	-1.09535	-1.88298	Н	-3.53201	-1.12762	-1.88012
Н	-4.79094	-1.16198	-0.64489	Н	-4.77991	-1.19179	-0.63912
Н	-1.35105	0.138969	-1.35368	Н	-1.35047	0.110548	-1.35617
Н	-1.19047	-3.45507	-0.05667	Н	-1.16707	-3.46714	-0.09368
Н	-1.41616	1.758041	1.063799	Н	-1.42755	1.740652	1.069156
Н	0.586045	-0.77727	-1.38341	Н	0.606852	-0.79043	-1.3774
Н	2.804066	-0.15287	2.194372	Н	2.820121	-0.10258	2.179012
Н	1.851637	-1.64299	2.170996	Н	1.885938	-1.60461	2.183862
Н	4.281533	-1.93303	1.127963	Н	4.317569	-1.873	1.121457
Н	3.251606	-3.54872	-0.4095	Н	3.27419	-3.55454	-0.3259
Н	0.935859	-3.3018	-1.13055	Н	0.967877	-3.37718	-0.99582
Н	-1.74281	-1.63432	2.112726	Н	-1.73222	-1.64804	2.111397
Н	-0.10079	-2.25276	1.934368	Н	-0.08846	-2.2642	1.935516
Н	2.757335	1.470795	0.254162	Н	2.745641	1.488729	0.238189
Н	4.931426	0.67089	-1.68943	Н	4.89112	0.68064	-1.75655
Н	5.644685	-0.90883	-1.03487	Н	5.62457	-0.88746	-1.09702
Н	2.399229	0.301068	-2.23395	Н	2.398274	0.330188	-2.25199
Н	0.491058	2.463131	1.954169	Н	0.480987	2.463369	1.948428
Н	-1.63529	-1.90289	-2.36353	Н	-0.4735	-2.63404	-2.1582
Н	-4.68562	1.376224	-0.91162	Н	-4.68645	1.343977	-0.91392
Н	-3.24368	1.336145	-1.9416	Н	-3.24215	1.310262	-1.9409

Н	-3.24097	2.276312	-0.44053	Н	-3.24887	2.253633	-0.43996
Н	-3.49377	-0.69239	1.905546	Н	-3.49312	-0.72156	1.902181
Н	-3.15088	1.034048	1.874712	Н	-3.14939	1.005487	1.880242
Н	-4.70136	0.430209	1.291492	Н	-4.69773	0.403973	1.290165
Н	-0.51163	4.151415	-2.30974	Н	-0.58187	4.166241	-2.28077
Н	0.536694	5.185896	-1.29281	Н	0.47278	5.203044	-1.27264
Н	1.16489	3.671957	-2.03111	Н	1.104459	3.70356	-2.03645

Table S4. Key conformers of compound 2.

 Table S5. Conformers and Bolzmann distributions of the optimized 2.

species	E'=E+ZPE	Ε	Н	G	ΔG	$\Delta E(kcal/mol)$	<i>p</i> %
2-1	-1462.202372	-1462.172763	-1462.171819	-1462.262087	0	0	60.74%
2-2	-1462.202284	-1462.1729	-1462.171955	-1462.260776	0.001311	0.822664954	15.14%
2-3	-1462.200254	-1462.170696	-1462.169752	-1462.260203	0.001884	1.182227898	8.25%
2-4	-1462.200065	-1462.170516	-1462.169572	-1462.260163	0.001924	1.207328278	7.90%
2-5	-1462.200026	-1462.170464	-1462.16952	-1462.25999	0.002097	1.315887422	6.58%
2-6	-1462.199026	-1462.169454	-1462.16851	-1462.258525	0.003562	2.235188839	1.39%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

2-1						2-2	
atom	X	Y	Z	atom	Х	Y	Z
С	-3.72171	1.086331	-0.91976	C	3.281379	0.877034	0.977047
С	-3.79524	-0.15051	-1.81354	C	3.06428	-0.17473	2.062364
С	-3.31027	-1.42983	-1.09738	C	2.56285	-1.51939	1.493153
С	-1.851	-1.17599	-0.57713	С	1.252089	-1.25364	0.667842
С	-1.53091	0.192069	0.158513	C	1.193456	0.001545	-0.30427
С	-2.27692	1.369924	-0.51429	С	1.959108	1.209997	0.29063

C	-1.29393	-2.32361	0.304925	C	0.773555	-2.47836	-0.14981
С	-0.34529	-1.75016	1.376649	С	-0.01448	-2.0041	-1.38928
C	0.73123	-0.76886	0.859659	С	-1.05978	-0.90004	-1.12098
С	0.023449	0.380915	0.022218	С	-0.33192	0.347319	-0.44666
С	1.588492	-0.1707	2.00132	С	-1.826	-0.47683	-2.39778
C	2.723908	0.498391	1.203964	С	-2.89826	0.46145	-1.80922
C	2.157222	1.739928	0.455147	С	-2.21999	1.799328	-1.40639
C	0.61197	1.759189	0.389284	С	-0.69553	1.655553	-1.17866
С	-1.85847	0.081407	1.666235	С	1.726616	-0.39304	-1.70168
0	-1.1747	-1.02222	2.282886	0	0.944865	-1.4462	-2.2899
С	3.139952	-0.67751	0.279076	С	-3.43719	-0.41283	-0.63991
C	1.812645	-1.34791	-0.05661	С	-2.22426	-1.23686	-0.19517
0	0.245291	-2.79109	2.095659	0	-0.60135	-3.09773	-2.0269
0	-0.7145	-3.41524	-0.39538	0	0.063928	-3.47025	0.578828
0	1.658022	-2.15925	-0.95948	0	-2.23698	-2.00396	0.756016
C	-4.33071	-1.82734	-0.00659	С	3.701672	-2.19536	0.694772
C	-3.26741	-2.57682	-2.13108	С	2.218312	-2.44613	2.680102
С	4.023333	-0.41108	-0.93276	С	-4.19444	0.203165	0.534629
0	5.228865	0.165791	-0.47004	0	-3.31263	0.967651	1.340607
С	6.152349	0.446528	-1.51107	С	-3.91251	1.42839	2.544225
С	7.400808	1.054695	-0.89368	С	-2.87756	2.215051	3.330545
0	-2.28284	2.502432	0.40262	0	2.234977	2.16231	-0.77749
0	-2.04663	3.965983	-1.31521	0	1.943486	3.912441	0.637073
С	-2.18844	3.74444	-0.13226	С	2.216722	3.479845	-0.46162
С	-2.27235	4.795506	0.949883	С	2.563595	4.320406	-1.66845
Н	-4.34131	0.961358	-0.02437	Н	4.010747	0.532873	0.234591
Н	-4.10079	1.967184	-1.44997	Н	3.677652	1.801956	1.410739
Н	-3.17846	0.017772	-2.70874	Н	2.330624	0.2075	2.78777
Н	-4.8222	-0.29711	-2.17167	Н	3.99322	-0.3387	2.623435
Н	-1.23637	-1.16132	-1.48808	Н	0.480616	-1.0674	1.427794
Н	-1.72529	1.673356	-1.40987	Н	1.314555	1.711916	1.019385
Н	-2.10129	-2.76943	0.890603	Н	1.631632	-3.00604	-0.57364
Н	0.247688	0.221985	-1.04132	Н	-0.71265	0.45866	0.57647
Н	1.962629	-0.98219	2.634014	Н	-2.26562	-1.36559	-2.86313
Н	1.031306	0.512811	2.643942	Н	-1.1842	-0.00226	-3.14191
Н	3.569069	0.794329	1.829759	Н	-3.70906	0.663499	-2.51719
Н	2.490073	2.6508	0.965777	Н	-2.37771	2.528561	-2.21048
Н	2.57301	1.803629	-0.55702	Н	-2.69057	2.208128	-0.50971
Н	0.295718	2.505181	-0.34693	Н	-0.34555	2.512201	-0.59497
Н	0.217289	2.093019	1.353645	Н	-0.17671	1.703595	-2.14169
Н	-1.56095	0.998573	2.183927	Н	1.689206	0.462382	-2.38101
Н	-2.93319	-0.04835	1.834639	Н	2.77284	-0.71835	-1.64937
Н	3.678248	-1.40108	0.913338	Н	-4.12454	-1.14907	-1.08748
Н	0.107204	-3.58726	1.547267	Н	-0.5581	-3.82289	-1.37363
L	1						

Н	0.087261	-3.07494	-0.85092	Н	-0.76781	-3.04882	0.893283
Н	-4.10091	-2.80337	0.431595	Н	3.444462	-3.22014	0.40989
Н	-5.32718	-1.90904	-0.45743	Н	4.598547	-2.25605	1.32314
Н	-4.40317	-1.10743	0.813314	Н	3.980125	-1.65872	-0.21699
Н	-2.61709	-2.32264	-2.97727	Н	1.467727	-1.98553	3.334434
Н	-2.88726	-3.50297	-1.69166	Н	1.817281	-3.40424	2.339637
Н	-4.27233	-2.76676	-2.52829	Н	3.114443	-2.63623	3.283915
Н	3.524384	0.259563	-1.65226	Н	-4.63012	-0.61138	1.133583
Н	4.210653	-1.35931	-1.46008	Н	-5.02401	0.830274	0.167091
Н	5.700704	1.141226	-2.23978	Н	-4.27718	0.568568	3.129829
Н	6.399205	-0.47975	-2.05686	Н	-4.78642	2.059645	2.311127
Н	8.137176	1.28768	-1.67054	Н	-3.30991	2.581398	4.267981
Н	7.855053	0.358187	-0.18164	Н	-2.52389	3.075194	2.753012
Н	7.154358	1.978461	-0.36019	Н	-2.01611	1.583558	3.570573
Н	-2.2193	5.786887	0.498938	Н	2.619957	5.369541	-1.37632
Н	-3.20763	4.687953	1.508607	Н	3.517383	3.996632	-2.09647
Н	-1.45067	4.667795	1.662665	Н	1.798394	4.19449	-2.44218
	1	2-3	1			2-4	1
atom	Х	Y	Z	atom	Х	Y	Z
С	-3.70527	0.843238	-1.07558	С	3.617187	1.150724	0.965139
С	-3.63042	-0.40468	-1.95385	С	3.675459	-0.0513	1.90648
С	-3.09311	-1.63632	-1.19237	С	3.232885	-1.36228	1.221072
С	-1.69289	-1.26673	-0.58536	C	1.788644	-1.1478	0.643661
С	-1.52232	0.130434	0.145819	С	1.481137	0.18322	-0.16055
С	-2.31302	1.239916	-0.58904	С	2.185491	1.396566	0.49358
С	-1.1137	-2.35706	0.352599	С	1.274195	-2.34004	-0.20433
С	-0.26453	-1.70143	1.460247	С	0.369182	-1.82527	-1.3413
С	0.765272	-0.65426	0.979875	С	-0.73878	-0.83395	-0.91624
С	0.01794	0.43914	0.100022	С	-0.07942	0.358071	-0.09746
С	1.533678	0.007971	2.149063	С	-1.55153	-0.29281	-2.11759
С	2.643564	0.761415	1.390987	С	-2.72661	0.397435	-1.39804
С	2.011957	1.962968	0.630805	С	-2.2043	1.676081	-0.6809
С	0.474593	1.859162	0.495937	С	-0.66397	1.713885	-0.54726
С	-1.93197	0.008331	1.63216	С	1.870032	0.014121	-1.6482
0	-1.18789	-1.0182	2.309516	0	1.232467	-1.12934	-2.24118
С	3.176636	-0.37582	0.477554	С	-3.17154	-0.74195	-0.44156
С	1.920747	-1.16045	0.114146	C	-1.85413	-1.38472	-0.02417
0	0.359272	-2.68601	2.228276	0	-0.17918	-2.90301	-2.0391
0	-0.42675	-3.42159	-0.28957	0	0.673583	-3.40214	0.522433
0	1.867115	-1.99994	-0.77471	0	-1.73237	-2.15446	0.919325
С	-4.14633	-2.10133	-0.16016	С	4.296469	-1.78213	0.180692
С	-2.89875	-2.78585	-2.20531	С	3.170016	-2.47267	2.292799
G	4.052027	0.0292	0.72201	С	-4.09769	-0.4323	0.728322

0	5.193124	0.649321	-0.24124	0	-5.28774	0.12207	0.197478
С	6.06263	1.137697	-1.2566	C	-6.31993	0.33448	1.154043
С	6.916336	0.051883	-1.90961	C	-6.09009	1.555608	2.043456
0	-2.45846	2.380854	0.30546	0	2.213202	2.493103	-0.46573
0	-2.23234	3.833622	-1.4228	0	1.893031	4.016617	1.185028
С	-2.42399	3.618836	-0.2456	C	2.083221	3.75294	0.017569
С	-2.64067	4.676472	0.811394	C	2.195413	4.764234	-1.09928
Н	-4.36703	0.681681	-0.21688	Н	4.272423	1.003588	0.09905
Н	-4.11637	1.687094	-1.64093	Н	3.96238	2.056582	1.475994
Н	-2.97564	-0.19785	-2.81343	Н	3.025343	0.14019	2.772989
Н	-4.61981	-0.6333	-2.37002	Н	4.691134	-0.16991	2.304949
Н	-1.02205	-1.22047	-1.45464	Н	1.145317	-1.10123	1.533677
Н	-1.73259	1.572288	-1.45567	Н	1.595029	1.726007	1.354512
Н	-1.92186	-2.84313	0.904388	Н	2.107998	-2.80687	-0.73408
Н	0.314711	0.301536	-0.94873	Н	-0.34834	0.240356	0.961032
Н	1.944312	-0.77312	2.797217	Н	-1.89126	-1.13351	-2.7314
Н	0.903486	0.6478	2.768743	Н	-0.97345	0.369489	-2.76404
Н	3.443086	1.115156	2.046003	Н	-3.54647	0.656736	-2.07187
Н	2.248037	2.890258	1.16534	Н	-2.5211	2.560052	-1.24617
Н	2.465704	2.073231	-0.36074	Н	-2.66659	1.780564	0.307373
Н	0.133694	2.580004	-0.2539	Н	-0.38744	2.492537	0.170879
Н	0.009334	2.154651	1.441362	Н	-0.22856	2.011617	-1.5058
Н	-1.75413	0.954123	2.152606	Н	1.575625	0.90202	-2.21655
Н	-2.99888	-0.2184	1.735513	Н	2.952281	-0.101	-1.77125
Н	3.764796	-1.04914	1.12251	Н	-3.68197	-1.49478	-1.06434
Н	0.299701	-3.50062	1.692985	Н	-0.05874	-3.67319	-1.45109
Н	0.371429	-3.03497	-0.71359	Н	-0.15069	-3.04917	0.925193
Н	-3.87039	-3.05314	0.30394	Н	4.089253	-2.7704	-0.241
Н	-5.10441	-2.26247	-0.66902	Н	5.275225	-1.84598	0.671506
Н	-4.32335	-1.38157	0.643796	Н	4.397702	-1.08308	-0.65393
Н	-2.21805	-2.48928	-3.01283	Н	2.4821	-2.20096	3.102963
Н	-2.47723	-3.67543	-1.72974	Н	2.824462	-3.42153	1.873588
Н	-3.85974	-3.05549	-2.66073	Н	4.161937	-2.62843	2.734917
Н	3.508607	0.587183	-1.45032	Н	-3.61368	0.256366	1.437369
Н	4.318251	-0.97141	-1.23905	Н	-4.30664	-1.3626	1.278755
Н	6.705881	1.867769	-0.75394	Н	-6.45246	-0.57059	1.76924
Н	5.479619	1.679048	-2.02025	Н	-7.23259	0.46937	0.563845
Н	7.622017	0.503116	-2.61697	Н	-6.95804	1.717032	2.693451
Н	6.308362	-0.67129	-2.46342	Н	-5.94752	2.45172	1.430139
Н	7.489047	-0.49093	-1.15022	Н	-5.21223	1.436332	2.687543
Н	-2.6462	5.661661	0.344068	Н	2.119	5.770866	-0.68711
Н	-3.58787	4.503006	1.331999	Н	3.149636	4.645011	-1.62238
Н	-1.84305	4.626412	1.560332	Н	1.398944	4.60305	-1.83361
	1		1	 1			

2-5				2-6			
atom	Х	Y	Z	atom	Х	Y	Z
С	-3.81511	0.912122	-0.80253	С	-3.82974	-0.07011	-1.13072
С	-3.87183	-0.35102	-1.65985	С	-3.42862	-1.35652	-1.85108
С	-3.28426	-1.58396	-0.93955	С	-2.59405	-2.30246	-0.96069
С	-1.81514	-1.24308	-0.50245	С	-1.34405	-1.50916	-0.43723
С	-1.527	0.159402	0.17983	С	-1.55616	-0.04393	0.129418
С	-2.36785	1.279072	-0.48111	С	-2.59207	0.726701	-0.72288
С	-1.16024	-2.3351	0.380662	С	-0.49405	-2.29721	0.593592
С	-0.17751	-1.68697	1.376267	С	0.105064	-1.3282	1.63102
С	0.818878	-0.67462	0.766368	С	0.827943	-0.09137	1.050594
С	0.006241	0.423022	-0.04753	С	-0.14552	0.642578	0.033487
С	1.724382	-0.01274	1.832561	С	1.309421	0.88416	2.149993
С	2.764104	0.696801	0.943723	С	2.237859	1.807163	1.338746
С	2.085873	1.903635	0.233207	С	1.380065	2.675561	0.366606
С	0.540728	1.836701	0.26271	С	-0.07563	2.171872	0.229163
С	-1.76676	0.073219	1.705478	С	-1.94891	-0.09663	1.624035
0	-0.9816	-0.96761	2.311579	0	-0.99954	-0.84781	2.39883
С	3.167501	-0.46711	-0.00263	С	3.123576	0.755648	0.62206
С	1.862754	-1.22782	-0.20685	С	2.127981	-0.34874	0.277111
0	0.503318	-2.67763	2.086476	0	0.944986	-2.02335	2.503562
0	-0.57279	-3.42419	-0.31692	0	0.482925	-3.17147	0.047484
0	1.694478	-2.08381	-1.06559	0	2.319628	-1.22698	-0.55013
С	-4.22496	-2.00377	0.213205	С	-3.49621	-2.89712	0.144854
С	-3.23601	-2.75554	-1.9452	С	-2.09516	-3.47614	-1.83216
С	3.895737	-0.15042	-1.31768	С	4.021008	1.202356	-0.53236
0	5.036461	0.669072	-1.13873	0	5.122998	0.321778	-0.59393
С	6.174176	0.000794	-0.61096	С	5.971536	0.558811	-1.7056
С	7.340302	0.975841	-0.61891	С	7.119844	-0.43505	-1.65007
0	-2.38664	2.435548	0.405166	0	-3.03897	1.8942	0.026659
0	-2.3182	3.857078	-1.36213	0	-3.14736	3.135636	-1.86966
С	-2.38677	3.664388	-0.16772	С	-3.30634	3.023775	-0.67345
С	-2.4713	4.74213	0.887642	С	-3.81066	4.111885	0.245582
Н	-4.38082	0.78194	0.127285	Н	-4.43983	-0.28727	-0.24618
Н	-4.26543	1.7578	-1.33428	Н	-4.4359	0.564077	-1.78745
Н	-3.31326	-0.17621	-2.59134	Н	-2.84577	-1.09698	-2.74737
Н	-4.90746	-0.55862	-1.95797	Н	-4.3229	-1.88255	-2.20876
Н	-1.24724	-1.22582	-1.44316	Н	-0.70951	-1.383	-1.32524
Н	-1.87944	1.584953	-1.41184	Н	-2.10281	1.087151	-1.63354
Н	-1.91234	-2.79475	1.026329	Н	-1.139	-2.94449	1.192123
Н	0.177058	0.254696	-1.11954	Н	0.209834	0.443576	-0.98616
Н	2.18308	-0.7923	2.449946	Н	1.8639	0.326848	2.911848
Н	1.181086	0.656014	2.502178	Н	0.492581	1.402716	2.654377
Н	3.635621	1.04263	1.506065	Н	2.852956	2.451621	1.974733

Н	2.397308	2.831059	0.727249	Н	1.352929	3.710227	0.727278
Н	2.439297	1.991738	-0.79958	Н	1.848703	2.719721	-0.62459
Н	0.139456	2.551596	-0.46264	Н	-0.54912	2.677573	-0.61846
Н	0.187383	2.163925	1.245356	Н	-0.63951	2.46795	1.118821
Н	-1.49971	1.020709	2.183304	Н	-2.0024	0.916829	2.035086
Н	-2.8211	-0.11659	1.934498	Н	-2.93504	-0.55139	1.764935
Н	3.801119	-1.1508	0.58595	Н	3.795765	0.321613	1.379017
Н	0.366322	-3.49632	1.571892	Н	1.149297	-2.86072	2.044587
Н	0.185472	-3.06411	-0.82883	Н	1.150328	-2.61313	-0.41004
Н	-3.92281	-2.95585	0.659975	Н	-2.98132	-3.67168	0.721307
Н	-5.23805	-2.14605	-0.1818	Н	-4.36867	-3.37348	-0.3185
Н	-4.29069	-1.26785	1.019298	Н	-3.86936	-2.15323	0.853536
Н	-2.64635	-2.49237	-2.8321	Н	-1.50795	-3.11378	-2.685
Н	-2.78483	-3.64823	-1.50389	Н	-1.45944	-4.16012	-1.26337
Н	-4.24942	-3.0076	-2.28161	Н	-2.94749	-4.04165	-2.22917
Н	3.238279	0.402499	-1.99561	Н	4.363283	2.238222	-0.35831
Н	4.158421	-1.09395	-1.8186	Н	3.471714	1.19479	-1.48785
Н	6.403818	-0.88693	-1.2237	Н	6.352102	1.594926	-1.67876
Н	5.981777	-0.35284	0.41518	Н	5.40351	0.44517	-2.64428
Н	8.241455	0.497624	-0.21977	Н	7.690911	-0.31059	-0.72435
Н	7.111409	1.852656	-0.00448	Н	7.796188	-0.28638	-2.49898
Н	7.547355	1.316749	-1.63826	Н	6.738248	-1.46038	-1.68302
Н	-2.49459	5.720498	0.406756	Н	-4.05036	4.999911	-0.34009
Н	-3.36969	4.603364	1.497648	Н	-4.69839	3.768753	0.786419
Н	-1.60837	4.679257	1.559119	Н	-3.04783	4.355793	0.992691

Table S7. Key conformers of compound **3**.

Table S8. Conformers and Bolzmann distributions of the optimized 3.

species	E'=E+ZPE	E	Н	G	ΔG	$\Delta E(kcal/mol)$	<i>p%</i>
3-1	-1228.64088	-1228.618337	-1228.617393	-1228.689615	0	0	99.78%
3-2	-1228.635118	-1228.61262	-1228.611675	-1228.683859	0.005756	3.611944682	0.22%

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy

3-1			3-2				
atom	X	Y	Z	atom	Х	Y	Z
С	-2.28372	2.052085	0.82678	C	2.344688	2.067223	-0.6812
С	-3.22586	0.94363	1.31339	C	3.433453	1.165828	-0.06991
С	-3.35607	-0.22465	0.306744	C	3.275329	-0.32648	-0.43299
С	-1.93017	-0.82747	0.025863	C	1.916245	-0.87442	0.137315
С	-0.75982	0.204812	-0.15242	C	0.754123	0.195776	0.197128
С	-0.88504	1.474862	0.703493	C	0.953471	1.409169	-0.72487
С	0.653907	-0.36276	0.174489	C	-0.64963	-0.38928	-0.1321
С	1.762218	0.776303	0.113158	C	-1.76831	0.735408	-0.19516
С	1.237374	2.173039	-0.22378	C	-1.25917	2.157439	0.01247
0	-0.01784	2.503128	0.14544	0	0.005004	2.456958	-0.34295
С	0.790428	-1.0843	1.522638	C	-0.75159	-1.21916	-1.41872
С	2.190281	-1.60691	1.836002	C	-2.13817	-1.78931	-1.7091
С	3.26467	-0.58283	1.371466	C	-3.23363	-0.74252	-1.35909
С	2.604717	0.815775	1.425409	C	-2.58405	0.651686	-1.52354
С	-0.85087	0.490089	-1.67948	C	0.796321	0.646957	1.70229
С	-1.84791	-1.58917	-1.29696	C	1.958963	-1.32868	1.602015
0	-0.85746	-2.6006	-1.17584	0	0.91452	-2.27966	1.775379
0	1.928347	2.99979	-0.78217	0	-1.97342	3.034884	0.453584
С	2.905452	0.365304	-0.86653	C	-2.93269	0.407784	0.790301
С	3.606942	-0.74283	-0.1062	C	-3.60567	-0.77387	0.120132
С	4.3437	-1.70187	-0.66302	C	-4.34418	-1.68806	0.745801
0	2.50443	-0.04306	-2.16086	0	-2.56658	0.129709	2.128901
0	-1.50538	-0.63667	-2.2819	0	1.752656	-0.17629	2.380508
0	-0.10742	-1.18807	2.340622	0	0.161763	-1.37799	-2.2093
С	-4.21112	-1.33326	0.956232	C	3.299725	-0.51526	-1.96692
C	-4.11181	0.271785	-0.94957	C	4.487558	-1.09727	0.131111
Н	-2.2628	2.88753	1.536035	Н	2.622831	2.359712	-1.69931
Н	-2.61405	2.464202	-0.13275	Н	2.265139	2.9958	-0.10739
Н	-4.22137	1.359768	1.513359	Н	3.427941	1.258115	1.022318
Н	-2.85153	0.551622	2.269444	Н	4.417195	1.520282	-0.4033
Н	-1.70384	-1.49986	0.849584	Н	1.622525	-1.72743	-0.47147
Н	-0.52878	1.248231	1.714318	Н	0.708794	1.118017	-1.74983
Н	0.912205	-1.10314	-0.59019	Н	-0.92239	-1.06854	0.684403
Н	2.336623	-2.57545	1.341458	Н	-2.28235	-2.7115	-1.13211
Н	2.23496	-1.7701	2.917334	Н	-2.15932	-2.04899	-2.77205
Н	4.150813	-0.66615	2.008467	Н	-4.10482	-0.89221	-2.00445
Н	3.339533	1.624909	1.360206	Н	-3.32501	1.457265	-1.54271
Н	2.009808	0.974752	2.331211	Н	-1.97058	0.7376	-2.42688
Н	0.132941	0.600517	-2.14231	Н	-0.18456	0.528508	2.173475
Н	-1.43603	1.390086	-1.89789	Н	1.117616	1.684544	1.824087
Н	-2.79138	-2.0446	-1.61927	Н	2.906271	-1.75753	1.935978

Table S9. Optimized Z-matrixes of isomer **3** in the gas phase (Å) at B3LYP/6-31G(d) level.

Н	-0.671	-2.91264	-2.07686	Н	0.82281	-2.42112	2.732147
Н	3.567848	1.237453	-0.94736	Н	-3.60339	1.277339	0.769386
Н	4.48146	-1.74559	-1.73914	Н	-4.50558	-1.63649	1.818254
Н	4.822186	-2.47679	-0.06854	Н	-4.80129	-2.5191	0.213578
Н	2.428442	0.759015	-2.70196	Н	-2.4899	0.983595	2.584108
Н	-4.31098	-2.20279	0.29539	Н	3.307682	-1.58104	-2.22216
Н	-5.22189	-0.96649	1.172884	Н	4.204967	-0.06118	-2.3892
Н	-3.76718	-1.67709	1.897559	Н	2.431399	-0.08309	-2.46781
Н	-5.07157	0.704435	-0.64168	Н	5.392183	-0.81522	-0.42052
Н	-3.57223	1.036001	-1.51348	Н	4.670765	-0.87408	1.187674
Н	-4.33335	-0.5438	-1.64438	Н	4.36279	-2.18193	0.024946