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Figure S1. EDS spectrum of Ho(DAB).
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Figure S2. EDS spectrum of Tb(DAB).
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Figure S3. HAADF-STEM elemental mapping of (a) C, (b) N, and (c) Ho, in Ho(DAB).



Figure S4. HAADF-STEM elemental mapping of (a) C, (b) N, and (c) Tb, in Tb(DAB).
Quantum yield:

Quantum yield is a measure of the efficiency with which absorbed photons are converted into
emitted photons in a photophysical process, such as fluorescence. It is defined as the ratio of
the number of emitted photons to the number of absorbed photons. To calculate quantum yield
using the calibration curve method, a sample's fluorescence intensity is compared with that of
areference standard with a known quantum yield (quinine sulphate, here). The method involves
recording the fluorescence emission spectra of both the sample and reference under identical
experimental conditions. A calibration curve is constructed by plotting the integrated
fluorescence intensity of both the sample and the reference standard against their respective
absorbance values. Using this curve, the quantum yield of the sample can be determined based

on Equation S1.

b= grady | (1 (S1)
x ref gradref 77ref2

¢, = Quantum yield of COP

¢,cr = Quantum yield of ref (for quinine sulphate = 0.55)

grad,
= Gradient of linear plot of integrated emission intensity vs al

gradref
= Gradient of linear plot of integrated emission intensity vs al

n, = Refractive index of solvent used for COP (for DMF = 1.42)

n, = Refractive index of solvent used for ref (for 0.1 M H,50, = 1.33)
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Figure S5. Linear plot of integrated emission intensity vs absorbance of (a) Quinine sulfate (b)

Ho(DAB) (c) Th(DAB)

Table S1. Quantum yield obtained for Ln-COPs

Quantum yield (%)
Ho(DAB) 7.49
Th(DAB) 12.73
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Figure S6. Real time images of fluorescence quenching observed in Ho(DAB) on adding

HEMs.
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Figure S7. Fluorescence spectra of Tb(DAB) suspended in DMF were recorded following the
stepwise addition of micromolar concentrations of (a-b) PNP, (c-d) TNP and (e-f) TNT,

dissolved in acetone, along with their corresponding Stern-Volmer plots.
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Figure S8. Fluorescence spectra of Tb(DAB) suspended in DMF were recorded following the
stepwise addition of micromolar concentrations of (a-b) RDX (c-d) PETN and (e-f) CL-20,

dissolved in acetone, along with their corresponding Stern-Volmer plots.
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Figure S9. Real time images of fluorescence quenching observed in Tb(DAB) on adding

HEMs.
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Figure S10. Graphical representation of quenching efficiency obtained for HEMs using
Ho(DAB) and Tb(DAB).

Table S2. Summary of literature reports based on Ho and Tb based COPs for fluorometric
detection of HEMs

SI. No. COP HEMs LOD Reference




[Tb,L, s(NMP);], TNP 0.11 uM !
(H,L = [1,1:4",1"-terphenyl]-

2'4.4" 5'-tetracarboxylic  acid;

NMP = N-methyl-2-pyrrolidone)

[Tb(BDPO)(H,0)4] (BDPO = TNP 0.21 uM 2
N,N'-bis(3,5-dicarboxyphenyl)-

oxalamide ligand)

Tb @ 1 TNP 6.268 x 10° M 3
(1 =[Zn(L),]-(CH;0H),sH,0) 24-NA 4.18 x 10° M,

PNP 1.1x104M
[Tb(bpbd) (H,0),(NO;)]-xH,O TNP 0.35 ppm 4
(Kybpbd = 2,2'-(butane-1,4-

diylbis((pyridin-2-
ylmethyl)azanediyl))diacetate)

{[Tby(L*%)3(H,0),]-21 H,0}, TNP 67 ppb >
Ho(DAB) TNP 16.4 uM This work
Tb(DAB) TNP 7.7 pM This work
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Figure S11. Overlaid Absorption spectra of HEMs and emission spectra of Ln-COPs
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Figure S12. UV-Vis spectra of Ho(DAB) suspended in DMF were recorded following the
stepwise addition of micromolar concentrations of (a) PNP (b) TNP (c) TNT (d) RDX (e)

PETN (f) CL-20, dissolved in acetone.
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Figure S13. UV-Vis spectra of Tb(DAB) suspended in DMF were recorded following the
stepwise addition of micromolar concentrations of (a) PNP (b) TNP (c) TNT (d) RDX (e)

PETN (f) CL-20, dissolved in acetone.

Fluorescence lifetime decay:

Fluorescence lifetime decay refers to the process by which the fluorescence emission from a

molecule diminishes over time after the molecule absorbs light. This phenomenon occurs as a
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result of the molecule's transition from an excited state back to its ground state, with the
emission of photons. The fluorescence lifetime (7) is defined as the average time the molecule
spends in its excited state before returning to the ground state. The fluorescence decay of a
sample can be better described using a biexponential decay model (Equation S2). In this
biexponential model, the two components represent the contributions from different relaxation
processes or environments within the sample, such as different excited state populations or
energy transfer between different species. Average fluorescence lifetime is calculated using
Equation S3.
-t -t
A+ Be /T1+ B,e /TZ
(52)
Blrlz + B, T22

Average lifetime = S3
gelif Bty + B,t, (53)

Table S3. Average lifetime calculated for Ln-COPs with and without addition of quencher

Average Lifetime (ns)

Ho(DAB) 1.108
Ho(DAB) + TNP 1.047
Th(DAB) 0.868
Th(DAB) + TNP 0.998
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