Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary Information (SI) for RSC Advances.

This journal is © The Royal Society of Chemistry 2025

Supporting Information for

Metal-Organic Framework-Injectable Hydrogel Hybrid Scaffolds

Promote Accelerated Angiogenesis for In Vivo Tissue Engineering

Sobuj Shahidul Islam, Tatsuya Dode, Soma Kawashima, Myu Fukuoka, Takaaki Tsuruoka,* and Koji Nagahama*

Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.

*Corresponding author.

K. Nagahama. Tel: +81-78-303-1328; E-mail: nagahama@konan-u.ac.jp

T. Tsuruoka. Tel: +81-78-303-1452; E-mail: tsuruoka@konan-u.ac.jp

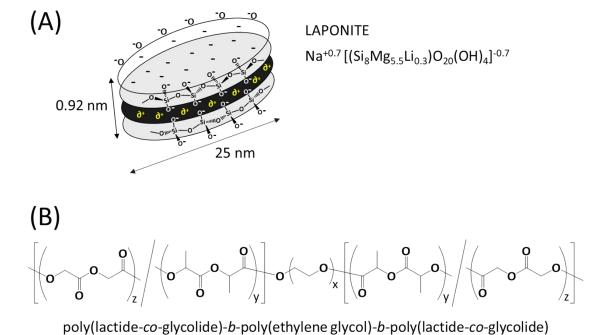


Fig. S1. Structures of (A) LAPONITE and (B) PLGA-PEG-PLGA copolymer.

(PLGA-PEG-PLGA)

$$\left\{ \begin{array}{c|c} & O & O \\ \hline \\ O & O \\ \hline \\ O & O \\ \end{array} \right\}_{z} \left(\begin{array}{c} O & O \\ \hline \\ O & O \\ \hline \\ O & O \\ \end{array} \right)_{y} \left(\begin{array}{c} O & O \\ \hline \\ O & O \\ \hline \\ O & O \\ \end{array} \right)_{z} \right]$$

PLGA-PEG-PLGA

Scheme S1. Synthesis of PLGA-PEG-PLGA copolymer.

Table S1. Characterization of the synthesized PLGA-PEG-PLGA copolymers.

			· · · · · · · · · · · · · · · · · · ·		
	DP of LA ^a	DP of GA ^a	$M_{ m w}$ of PEG	$M_{ m w}$ of copolymer b	$M_{\rm w}/M_{\rm n}$ ^c
	8	4	3,000	6,300	1.27

^a Estimated by ¹H-NMR.

^b Estimated by the following equation: $M_{\rm w}$ of copolymer = $M_{\rm w}$ of PEG segment + 2 × ($M_{\rm w}$ of PLGA segment).

^c Estimated by GPC (eluent: DMSO, standard: PEG).

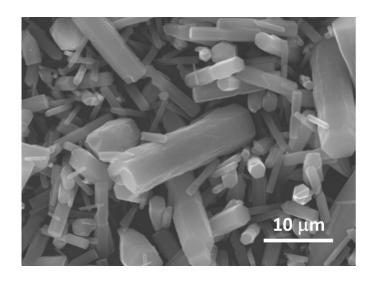
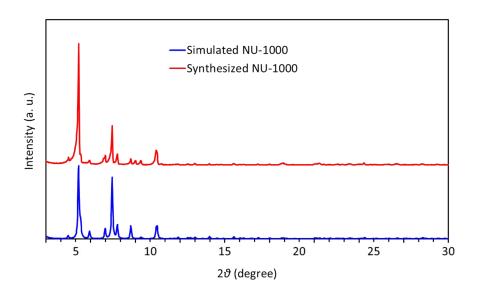
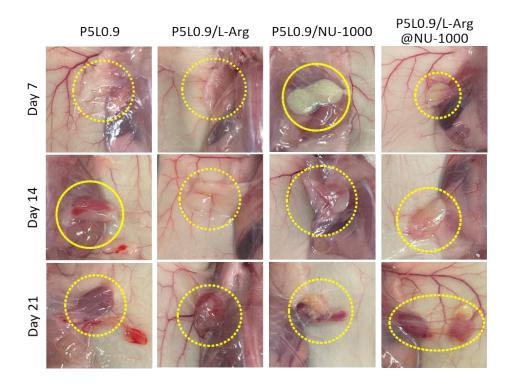
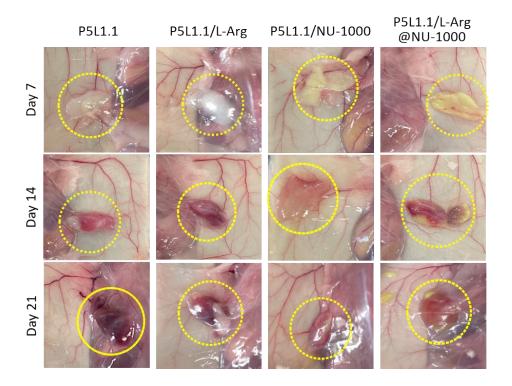
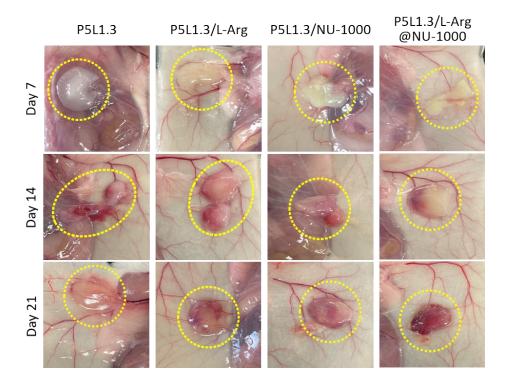
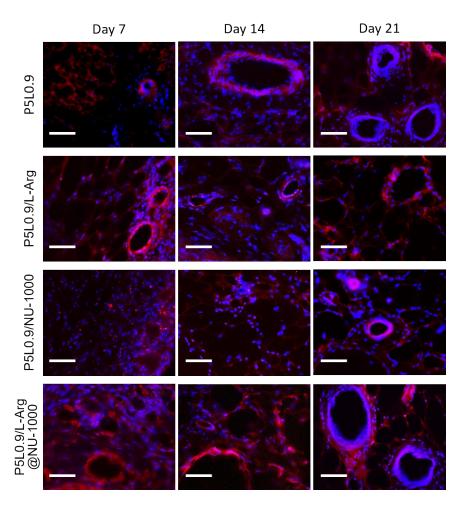


Fig. S2. SEM image of the synthesized NU-1000.


Fig. S3. Wide-angle X-ray diffraction pattern of the synthesized NU-1000.


Fig. S4. Representative images of the hydrogels with surrounding tissue at 7, 14, and 21 days after administration of P5L0.9 hydrogels, L-arginine-loaded P5L0.9 hydrogels, NU-1000-composited P5L0.9 hydrogels, and L-arginine-loaded NU-1000-hybrid P5L0.9 hydrogels.

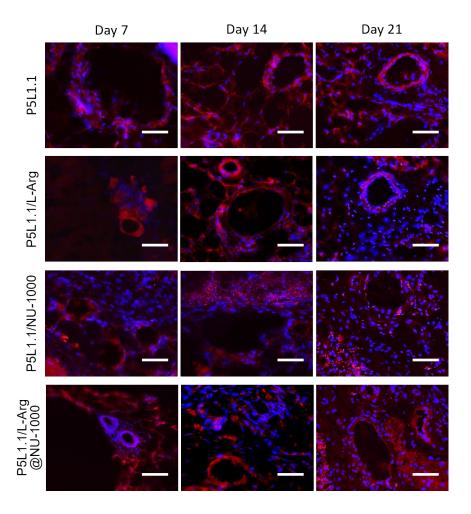

Fig. S5. Representative images of the hydrogels with surrounding tissue at 7, 14, and 21 days after administration of P5L1.1 hydrogels, L-arginine-loaded P5L1.1 hydrogels, NU-1000-composited P5L1.1 hydrogels, and L-arginine-loaded NU-1000-hybrid P5L1.1 hydrogels.


Fig. S6. Representative images of the hydrogels with surrounding tissue at 7, 14, and 21 days after administration of P5L1.3 hydrogels, L-arginine-loaded P5L1.3 hydrogels, NU-1000-composited P5L1.3 hydrogels, and L-arginine-loaded NU-1000-hybrid P5L1.3 hydrogels.

Fig. S7. Representative fluorescence microscopic images of the hydrogels formed in the subcutaneous tissue of mice. At days 7, 14, and 21 after administration of P5L0.9 hydrogels, L-arginine-loaded P5L0.9 hydrogels, NU-1000-composited P5L0.9 hydrogels, and L-arginine-loaded NU-1000-hybrid P5L0.9 hydrogels, these hydrogels were carefully removed from the mice and immunofluorescence staining for CD31 was performed. Blue: DAPI and red: CD31 (Alexa Fluor®567).

Fig. S8. Representative fluorescence microscopic images of the hydrogels formed in the subcutaneous tissue of mice. At days 7, 14, and 21 after administration of P5L1.1 hydrogels, L-arginine-loaded P5L1.1 hydrogels, NU-1000-composited P5L1.1 hydrogels, and L-arginine-loaded NU-1000-hybrid P5L1.1 hydrogels, these hydrogels were carefully removed from the mice and immunofluorescence staining for CD31 was performed. Blue: DAPI and red: CD31 (Alexa Fluor®567).

Fig. S9. Representative fluorescence microscopic images of the hydrogels formed in the subcutaneous tissue of mice. At days 7, 14, and 21 after administration of P5L1.3 hydrogels, L-arginine-loaded P5L1.3 hydrogels, NU-1000-composited P5L1.3 hydrogels, and L-arginine-loaded NU-1000-hybrid P5L1.3 hydrogels, these hydrogels were carefully removed from the mice and immunofluorescence staining for CD31 was performed. Blue: DAPI and red: CD31 (Alexa Fluor®567).