Supporting Information

Beckmann Rearrangement of Ketoximes for Accessing Amides and Lactams Promoted by Perimidine-2-thione Supported Hg(II) Complex: A Mechanistic Perception

Priyanka Velmurugan^a, Poovarasan Kanniyappan^a, Tapas Ghatak^{*a}

^aVellore Institute of Technology, Vellore

^aAdvanced Catalysis Facility,

Department of Chemistry,

School of Advanced Sciences,

Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.

E-mail: tapaschem@gmail.com; tapas.ghatak@vit.ac.in

Table of contents

1. General procedure for the preparation of oxime substrates $(3a - 3z)$	S4
2. General procedure for the synthesis of amides and lactam $(4a - 4z)$	S13
Figure S1: ¹ H and ¹³ C NMR spectrum of $Hg(II)Cl_2(N^{i-Pr}PmT)_2$ complex (1)	S23
Figure S2: ¹ H and ¹³ C NMR spectrum of (E)-1-phenylethan-1-one oxime (3a)	S24
Figure S3: ¹ H and ¹³ C NMR spectrum of (E)-1-(p-tolyl)ethan-1-one oxime (3b)	S25
Figure S4: ¹ H and ¹³ C NMR spectrum of (E)-1-(4-ethylphenyl)ethan-1-one oxime $(3c)$	S26
Figure S5: ¹ H and ¹³ C NMR spectrum of (E)-1-(4-methoxyphenyl)ethan-1-one oxime (3d)	S27
Figure S6: ¹ H and ¹³ C NMR spectrum of (E)-1-(3-methoxyphenyl)ethan-1-one oxime (3e)	S28
Figure S7: ¹ H and ¹³ C NMR spectrum of (E)-1-(2-methoxyphenyl)ethan-1-one oxime (3f)	S29
Figure S8: ¹ H and ¹³ C NMR spectrum of (E)-1-(3,4-dimethoxyphenyl)ethan-1-one oxime (3g)	S30
Figure S9: ¹ H and ¹³ C NMR spectrum of (E)-1-(2,4-dimethoxyphenyl)ethan-1-one oxime (3h)	S31
Figure S10: ¹ H and ¹³ C NMR spectrum of (E)-1-(4-hydroxyphenyl)ethan-1-one oxime (3i)	S32
Figure S11: ¹ H and ¹³ C NMR spectrum of (E)-1-(2-hydroxyphenyl)ethan-1-one oxime (3j)	S33
Figure S12: ¹ H and ¹³ C NMR spectrum of (E)-1-(2,4-dihydroxyphenyl)ethan-1-one oxime (3k)	S34
Figure S13: ¹ H and ¹³ C NMR spectrum of (E)-1-(4-(trifluoromethyl)phenyl)ethan-1-one oxime(3l)	S35
Figure S14: ¹ H and ¹³ C NMR spectrum of (E)-1-(3-chlorophenyl)ethan-1-one oxime (3m)	S36
Figure S15: ¹ H and ¹³ C NMR spectrum of 1-(2-chlorophenyl)ethan-1-one oxime (3n)	S37
Figure S16: ¹ H and ¹³ C NMR spectrum of 1-(2-iodophenyl)ethan-1-one oxime (30)	S38
Figure S17: ¹ H and ¹³ C NMR spectrum of (E)-1-(thiophen-2-yl)ethan-1-one oxime (3p ')	S39
Figure S18: ¹ H and ¹³ C NMR spectrum of (Z)-1-(thiophen-2-yl)ethan-1-one oxime (3p ")	S40
Figure S19: ¹ H and ¹³ C NMR Spectrum of (E)-1-(4-chlorophenyl)propan-1-one oxime (3q)	S41
Figure S20: ¹ H and ¹³ C NMR Spectrum of (E)-1-Phenylbutan-1-one oxime (3r)	S42
Figure S21: ¹ H and ¹³ C NMR Spectrum of 2-Methyl-1-phenylpropan-1-one oxime (3s)	S43
Figure S22: ¹ H and ¹³ C NMR Spectrum of cyclohexanone oxime (3t)	S44
Figure S23: ¹ H and ¹³ C NMR Spectrum of diphenylmethanone oxime (3u)	S45
Figure S24: ¹ H and ¹³ C NMR Spectrum of di-p-tolylmethanone oxime (3v)	S46
Figure S25: ¹ H and ¹³ C NMR Spectrum of bis(4-methoxyphenyl)methanone oxime (3w)	S47
Figure S26: ¹ H and ¹³ C NMR Spectrum of bis(4-chlorophenyl)methanone oxime (3x)	S48
Figure S27: ¹ H and ¹³ C NMR Spectrum of (4-chlorophenyl)(phenyl)methanone oxime (3y)	S49
Figure S28: ¹ H and ¹³ C NMR Spectrum of (E)-1-(4-bromophenyl)ethan-1-one oxime (3z)	S50
Figure S29: ¹ H and ¹³ C NMR spectrum of N-Phenylacetamide (4a)	S51
Figure S30: ¹ H and ¹³ C NMR spectrum of N-p-Tolylacetamide (4b)	S52
Figure S31: ¹ H and ¹³ C NMR spectrum of N-(4-Ethylphenyl)acetamide (4c)	S53
Figure S32: ¹ H and ¹³ C NMR Spectrum of (N-(4-methoxyphenyl)acetamide) (4d)	S54

Figure S33: ¹ H and ¹³ C NMR spectrum of <i>N</i> -(3-Methoxyphenyl)acetamide (4e)	S55
Figure S34: ¹ H and ¹³ C NMR spectrum of N-(2-methoxyphenyl)acetamide (4f)	S56
Figure S35: ¹ H and ¹³ C NMR spectrum of N-(3,4-dimethoxyphenyl)acetamide (4g)	S57
Figure S36: ¹ H and ¹³ C NMR spectrum of N-(2,4-dimethoxyphenyl)acetamide (4h)	S58
Figure S37: ¹ H and ¹³ C NMR spectrum of N-(4-hydroxyphenyl)acetamide (4i)	S59
Figure S38: ¹ H and ¹³ C NMR spectrum of N-(2-Hydroxyphenyl)acetamide (4j)	S60
Figure S39: ¹ H and ¹³ C NMR spectrum of N-(2,4-dihydroxyphenyl)acetamide (4k)	S61
Figure S40: ¹ H and ¹³ C NMR spectrum of N-(4-(trifluoromethyl)phenyl)acetamide (41)	S62
Figure S41: ¹ H and ¹³ C NMR spectrum of N-(3-chlorophenyl)acetamide (4m)	S63
Figure S42: ¹ H and ¹³ C NMR spectrum of N-(2-chlorophenyl)acetamide (4n)	S64
Figure S43: ¹ H and ¹³ C NMR spectrum of N-(2-iodophenyl)acetamide (40)	S65
Figure S44: ¹ H and ¹³ C NMR spectrum of (N-(thiophen-2-yl)acetamide) (4p)	S66
Figure S45: ¹ H and ¹³ C NMR Spectrum of N-(4-chlorophenyl)propionamide (4q)	S67
Figure S46: ¹ H and ¹³ C NMR Spectrum of N-Phenylbutyramide (4r)	S68
Figure S47: ¹ H and ¹³ C NMR Spectrum of N-phenylisobutyramide and N-isopropylbenzamide (4s)	S69
Figure S48: ¹ H and ¹³ C NMR spectrum of Azepan-2-one (4t)	S70
Figure S49: ¹ H and ¹³ C NMR spectrum of N-Phenylbenzamide (4u)	S71
Figure S50: ¹ H and ¹³ C NMR spectrum of (4-methyl- <i>N-p</i> -tolylbenzamide) (4v)	S72
Figure S51: ¹ H and ¹³ C NMR spectrum of (4-methyl- <i>N-p</i> -tolylbenzamide) (4w)	S73
Figure S52: ¹ H and ¹³ C NMR spectrum of 4-chloro-N-(4-chlorophenyl)benzamide (4x)	S74
Figure S53: ¹ H and ¹³ C NMR spectrum of N-(4-chlorophenyl)benzamide and 4-chloro-N-phenylbenzamide (4y)	875
Figure S54: ¹ H and ¹³ C NMR spectrum of N-(4-bromophenyl)acetamide (4z)	S76
Figure S55: FT-IR spectra of complex 1 and ligand N ^{i-Pr} PmT	S77
Scheme S1: The Beckmann rearrangement of (E)-1-phenylethan-1-one O-methyl oxime (3ah) under standar conditions using Hg(II) catalyst (1)	ırd S78

Cautions! Special care should still be taken when using and disposing the waste containing mercury salts.

1. General procedure for the preparation of oxime substrates (3a – 3z)

In a 100 mL round-bottom flask equipped with a condenser, aromatic or aliphatic ketones (1 mmol) were dissolved in the mixture of ethanol: water (v/v; 4:1, 20 mL). Then, hydroxylamine hydrochloride (16 mmol, 1.6 equiv) and AcONa (20 mmol, 2.0 equiv) were added in one portion. The reaction was stirred at 80 °C until the consumption of the starting material was observed by TLC. After that, the reaction was cooled to room temperature, diluted with water (55 mL), extracted with ethyl acetate (80×3), dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by recrystallization or flash column chromatography on silica gel to afford the desired oxime products (3a - 3z).

3a

(E)-1-phenylethan-1-one oxime: **3a** was isolated as a white solid, yield: 87%.¹H NMR (400 MHz, CDCl₃) δ 7.53 (m, 2H), 7.30 (m, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 136.5, 129.3, 128.6, 126.1, 12.5.

3b

(E)-1-(p-tolyl)ethan-1-one oxime: 3b was isolated as a pale-yellow solid, yield: 84%. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 2.36 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 139.3, 133.7, 129.3, 126.0, 21.3, 12.4.

3c

(E)-1-(4-ethylphenyl)ethan-1-one oxime: 3c was isolated as an off-white solid, yield: 76%.
¹H NMR (400 MHz, DMSO) δ 11.09 (s, 1H), 7.56 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 2.61 (q, J = 7.6 Hz, 2H), 2.13 (s, 3H), 1.18 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 153.4, 144.8, 134.8, 128.2, 126.0, 28.3, 15.9, 12.0.

3d

(E)-1-(4-methoxyphenyl)ethan-1-one oxime: 3d was isolated as a white solid, yield: 86%.
¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 7.61 – 7.53 (m, 2H), 7.06 – 6.87 (m, 2H), 3.83 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 155.6, 128.9, 127.5, 114.0, 55.3, 12.5.

(E)-1-(3-methoxyphenyl)ethan-1-one oxime: 3e was isolated as a colourless oil, yield: 93%.
¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.29 (t, J = 7.9 Hz, 1H), 7.19 (m, 2H), 6.94 – 6.90 (m, 1H), 3.82 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 155.8, 138.1, 129.5, 118.7, 115.0, 111.4, 55.3, 12.4.

3f

(E)-1-(2-methoxyphenyl)ethan-1-one oxime: 3f was isolated as a white solid, yield: 79%.
¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.34 – 7.30 (m, 1H), 7.28 (t, J = 2.4 Hz, 1H),
6.94 (d, J = 7.5 Hz, 1H), 6.91 – 6.86 (m, 1H), 3.79 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 156.7, 130.2, 129.4, 126.8, 120.6, 111.2, 55.4, 15.3.

3g

(E)-1-(3,4-dimethoxyphenyl)ethan-1-one oxime: 3g was isolated as a white solid, yield: 96%.¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.16 (d, *J* = 6.0 Hz, 1H), 6.87 (d, *J* = 10.6 Hz, 1H), 3.92 (s, 6H), 2.30 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 155.7, 150.2, 148.9, 129.2, 119.3, 110.7, 108.6, 55.9, 12.3.

3h

(E)-1-(2,4-dimethoxyphenyl)ethan-1-one oxime: 3h was isolated as a white solid, yield:
97%. ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 9.2 Hz, 1H), 6.47 (s, 2H), 3.81 (s, 6H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 158.6, 156.5, 130.1, 119.7, 104.3, 99.0, 55.4, 15.2.

3i

(E)-1-(4-hydroxyphenyl)ethan-1-one oxime: 3i was isolated as a brown solid, yield: 77%. ¹H NMR (400 MHz, DMSO) δ 10.85 (s, 1H), 9.63 (s, 1H), 7.48 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 158.5, 153.0, 128.3, 127.3, 115.6, 11.9.

3j

(E)-1-(2-hydroxyphenyl)ethan-1-one oxime: 3j was isolated as a white solid, yield: 81%.
¹H NMR (400 MHz, CDCl₃) δ 11.59 (s, 1H), 8.22 (s, 1H), 7.35 (m, 1H), 7.18 (m, 1H), 6.90 (m, 1H), 6.86 - 6.80 (m, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 157.4, 130.8, 127.7, 119.4, 118.7, 117.2, 10.8.

3k

(E)-1-(2,4-dihydroxyphenyl)ethan-1-one oxime: 3k was isolated as a pale green solid, yield: 95%. ¹H NMR (400 MHz, DMSO) δ 11.82 (s, 1H), 11.29 (s, 1H), 9.83 (s, 1H), 7.33 (d, J = 8.7 Hz, 1H), 6.37 (d, J = 11.5 Hz, 1H), 6.30 (s, 1H), 2.24 (s, 3H).¹³C NMR (100 MHz, DMSO) δ 159.7, 159.4, 157.9, 129.4, 111.5, 107.3, 103.3, 11.2.

31

(E)-1-(4-(trifluoromethyl)phenyl)ethan-1-one oxime: 3l was isolated as a white solid, yield: 94%. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.76 – 7.68 (m, 2H), 7.68 – 7.59 (m, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 139.8, 131.2 (d, J = 32.6 Hz), 126.4, 125.5 (q, J = 3.7 Hz), 122.6, 12.4.

3m

(E)-1-(3-chlorophenyl)ethan-1-one oxime: 3m was isolated as a white solid, yield: 77%. ¹H
NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.59 (t, J = 1.9 Hz, 1H), 7.49 (dt, J = 7.3, 1.6 Hz, 1H), 7.36 - 7.26 (m, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 138.2, 134.6, 129.8, 129.3, 126.3, 124.3, 12.5.

3n

1-(2-chlorophenyl)ethan-1-one oxime: **3n** was isolated as a white solid, yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 9.02 (s, 1H), 7.39 (d, J = 7.3 Hz, 1H), 7.35 – 7.14 (m, 4H), 2.26 (s, 3H), 2.20 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 156.9, 154.3, 136.7, 134.9, 132.6, 130.9, 130.1, 130.0, 129.8, 129.6, 128.2, 126.9, 21.1, 15.8.

30

1-(2-iodophenyl)ethan-1-one oxime: (1:0.5) **30** was isolated as a white solid, yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 8.98 (s, 1H), 7.77 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.33 – 7.27 (m, 1H), 7.27 – 7.23 (m, 1H), 7.15 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.01 – 6.96 (m, 1H), 6.94 (dd, *J* = 7.6, 1.7 Hz, 1H), 2.16 (s, 3H), 2.11 (s, 2H).¹³C NMR (100 MHz, CDCl₃) δ 159.4, 157.3, 142.6, 141.8, 139.6, 139.1, 130.1, 129.8, 129.5, 128.2, 128.2, 127.4, 95.8, 93.8, 21.2, 16.4.

1-(thiophen-2-yl)ethan-1-one oxime: 3p was isolated as a white solid, yield: 91%. Isomers are separated for characterization. Major isomer (E-isomer, 3p'): White solid. ¹H NMR (400

MHz, CDCl₃) δ 9.04 (s, 1H), 7.28 (m, 1H), 7.25 (m, 1H), 7.03 (m, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.77, 140.11, 127.21, 126.83, 126.59, 12.48. Minor isomer (Z-isomer, **3p**"): White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 5.1, 1.2 Hz, 1H), 7.52 (dd, J = 3.9, 1.2 Hz, 1H), 7.11 (dd, J = 5.1, 3.9 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 132.3, 131.1, 129.9, 125.6, 19.7.

3q

(E)-1-(4-chlorophenyl)propan-1-one oxime: 3q was isolated as a white solid, yield: 90%.
¹H NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 7.41 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H),
2.69 (q, J = 7.6 Hz, 2H), 1.04 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0,
135.3, 133.9, 128.9, 127.7, 19.9, 10.8.

3r

(E)-1-Phenylbutan-1-one oxime: 3r was isolated as a white solid, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.54 – 7.44 (m, 2H), 7.34 – 7.22 (m, 3H), 2.75 – 2.67 (m, 2H), 1.51 (h, J = 7.4 Hz, 2H), 0.88 (t, J = 7.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 159.8, 135.9, 129.2, 128.6, 126.4, 28.3, 19.8, 14.3.

3s

2-Methyl-1-phenylpropan-1-one oxime: **3s** was isolated as a white solid, yield: 96%. ¹H NMR (400 MHz, CDCl₃) δ 9.23 – 8.02 (brs, 1H), 7.38 – 7.15 (m, 5H), 3.58-3.47 (m, 0.4H), 2.80-2.70 (m, 1H), 1.13 (d, *J* = 7.1 Hz, 2H), 1.04 (d, *J* = 6.8 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 164.9, 163.3, 135.8, 133.7, 128.6, 128.5, 128.2, 128.2, 127.8, 127.6, 34.6, 27.7, 20.2, 19.4.

3t

Cyclohexanone oxime: **3t** was isolated as an off-white solid. yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 2.51 (t, *J* = 6.1 Hz, 2H), 2.28 – 2.15 (m, 2H), 1.71 – 1.55 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 32.1, 26.9, 25.8, 25.6, 24.5.

Diphenylmethanone oxime: **3u** was isolated as a white solid, yield: 91%.¹H NMR (400 MHz, CDCl₃) δ 9.05 (s, 1H), 7.43 – 7.37 (m, 5H), 7.36 – 7.34 (m, 2H), 7.32 – 7.27 (m, 1H), 7.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 136.2, 132.8, 129.6, 129.3, 129.2, 128.4, 128.3, 128.0.

3v

Di-p-tolylmethanone oxime: **3v** was isolated as a white solid, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 7.24 (dd, J = 8.2, 4.4 Hz, 4H), 7.16 (d, J = 8.1 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 139.6, 139.1, 133.6, 129.9, 129.3, 129.1, 128.9, 127.9, 21.5, 21.3.

3w

Bis(4-chlorophenyl)methanone oxime: **3w** was isolated as a white solid, yield: 93%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.45 – 7.40 (m, 2H), 7.40 – 7.35 (m, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 3.84 (s, 3H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 160.1, 157.0, 131.2, 129.6, 129.1, 125.0, 113.8, 113.6, 55.4, 55.3.

3x

Bis(4-chlorophenyl)methanone oxime: **3x** was isolated as a white solid, yield: 73%. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 7.2 Hz, 4H), 7.30 (d, J = 8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 136.0, 135.5, 134.3, 130.9, 130.4, 129.2, 128.8, 128.7.

3y

(4-chlorophenyl)(phenyl)methanone oxime: **3**y was isolated as a white solid, yield: 91%. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 2H), 7.37 (dd, *J* = 7.7, 2.6 Hz, 2H), 7.34 (d, *J* = 4.3 Hz, 2H), 7.32 (t, *J* = 2.4 Hz, 3H), 7.29 (d, *J* = 2.4 Hz, 3H), 7.29 – 7.26 (m, 3H), 7.25 (s, 1H), 7.23 (d, *J* = 1.8 Hz, 1H), 7.21 (q, *J* = 1.8 Hz, 1H), 7.18 (d, *J* = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 155.7, 134.7, 134.6, 134.2, 133.6, 131.1, 129.9, 129.9, 128.7, 128.4, 128.2, 128.1, 127.6, 127.5, 127.3, 126.9.

3z

(E)-1-(4-bromophenyl)ethan-1-one oxime: **3z** was isolated as a pale-yellow solid. yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.52 – 7.34 (m, 4H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 135.4, 131.7, 127.6, 123.6, 12.2.

2. General procedures for the synthesis of amides and lactams (4a - 4z)

To an oven-dried round bottom flask charged with a solution of corresponding oximes (1 mmol in 5 mL of Acetonitrile) equipped with a reflux condenser and magnetic stirring bar in

the presence of nitrogen atmosphere, was added complex **1** (0.05 mmol, 5 mol%) After being stirred at 80 °C for 12 h, the reaction mixture was allowed to cool to room temperature. The completion of the reaction was identified by monitoring TLC, and then 5 mL of acetonitrile was added to dissolve the solid formed. The solvent was removed using a rotary evaporator, and the organic material was dissolved in dichloromethane (3×15 mL). The combined organic layer was washed with brine solution, dried over Na₂SO₄, and concentrated to dryness. The residue was purified using flash column chromatography over silica gel (60-120 mesh) with an ethyl acetate-petroleum ether eluent system to afford respective amides or lactams.

4a

N-Phenylacetamide: **4a** was isolated as a white solid, yield: 95%.¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.42 (d, J = 7.7 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.00 (t, J = 7.5 Hz, 1H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 138.0, 128.9, 124.3, 120.1, 24.5.

N-p-Tolylacetamide: **4b** was isolated as a white solid, yield: 91%. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.29 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 2.21 (s, 3H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 135.5, 133.9, 129.4, 120.4, 24.3, 20.9.

N-(4-Ethylphenyl)acetamide: **4c** was isolated as a white solid, yield: 89%. ¹H NMR (400 MHz, DMSO) δ 9.84 (s, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H), 2.53 (q, J =

7.2 Hz, 2H), 2.03 (s, 3H), 1.14 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 168.5, 138.8, 137.5, 128.3, 119.6, 28.1, 24.4, 16.2.

4d

(N-(4-methoxyphenyl)acetamide): 4d was isolated as an off-white solid, yield: 93%.¹H NMR (400 MHz, DMSO) δ 9.85 (s, 1H), 7.56 (d, *J* = 9.0 Hz, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 3.79 (s, 3H), 2.09 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 168.2, 155.5, 133.0, 121.0, 114.2, 55.6, 24.2.

N-(3-Methoxyphenyl)acetamide: 4e was isolated as a white solid, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.18 (t, J = 3.0 Hz, 1H), 7.10 (t, J = 8.2 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.57 (m, 1H), 3.69 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 160.1, 139.2, 129.6, 112.2, 110.0, 105.9, 55.3, 24.6.

4f

N-(2-methoxyphenyl)acetamide: 4f was isolated as a white solid, yield: 81%.¹H NMR (400 MHz, DMSO) δ 9.11 (s, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.06 (m, 1H), 7.01 (m, 1H), 6.88 (td, J = 7.2, 1.8 Hz, 1H), 3.82 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 168.9, 150.0, 127.9, 124.6, 122.4, 120.6, 111.5, 56.0, 24.3.

N-(3,4-dimethoxyphenyl)acetamide: 4g was isolated as a white solid, yield: 96%. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.21 (s, 1H), 6.82 (d, J = 3.4 Hz, 1H), 6.69 (d, J = 6.2 Hz, 1H), 3.74 (d, J = 5.7 Hz, 6H), 2.06 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 168.8, 148.9, 145.8, 131.7, 112.2, 111.3, 105.2, 56.1, 55.8, 24.3.

4h

N-(2,4-dimethoxyphenyl)acetamide: 4h was isolated as a brown solid, yield: 91%.¹H NMR (400 MHz, DMSO) δ 9.02 (s, 1H), 7.68 (d, J = 8.7 Hz, 1H), 6.59 (d, J = 2.7 Hz, 1H), 6.46 (dd, J = 8.7, 2.7 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 2.05 (s, 3H).¹³C NMR (100 MHz, DMSO) δ 168.8, 157.2, 151.9, 124.4, 120.8, 104.4, 99.1, 56.0, 55.7, 23.9.

N-(4-hydroxyphenyl)acetamide/Paracetamol: **4i** was isolated as a reddish-orange solid, yield: 90%. ¹H NMR (400 MHz, DMSO) δ 9.64 (s, 1H), 9.13 (s, 1H), 7.33 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 1.98 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 168.1, 153.6, 131.4, 121.4, 115.5, 24.1.

N-(2-Hydroxyphenyl)acetamide: **4j** was isolated as a brown solid, yield: 78%. ¹H NMR (400 MHz, DMSO) δ 7.66 – 7.63 (m, 1H), 7.62 – 7.59 (m, 1H), 7.37 – 7.32 (m, 1H), 7.31 – 7.28 (m, 1H), 2.59 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.7, 148.4, 126.8, 125.3, 122.9, 119.5, 116.5, 40.4, 40.2, 24.0.

4k

N-(2,4-dihydroxyphenyl)acetamide: 4k was isolated as a reddish brown solid, yield: 71%. ¹H NMR (400 MHz, DMSO) δ 9.68 (s, 1H), 9.28 (s, 2H), 7.26 (d, J = 8.6 Hz, 1H), 6.36 (d, J = 2.7 Hz, 1H), 6.24 (dd, J = 8.6, 2.6 Hz, 1H), 2.08 (s, 3H).¹³C NMR (100 MHz, DMSO) δ 169.4, 155.6, 150.3, 124.8, 118.4, 106.4, 103.8, 23.6.

41

N-(4-(trifluoromethyl)phenyl)acetamide: 4l was isolated as a white solid, yield: 92%. ¹H NMR (400 MHz, DMSO) δ 10.31 (s, 1H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.5, 143.3, 126.5, 119.3, 24.6.

4m

N-(3-Chlorophenyl)acetamide: 4m was isolated as a white solid, yield: 91%. ¹H NMR (400 MHz, DMSO) δ 10.07 (s, 1H), 7.75 (s, 1H), 7.36 (dd, J = 8.2, 1.1 Hz, 1H), 7.24 (t, J = 8.1 Hz, 1H), 7.01 (dd, J = 7.9, 1.1 Hz, 1H), 2.00 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 169.2, 141.6, 133.5, 130.8, 123.2, 118.9, 117.8, 24.5.

N-(2-chlorophenyl)acetamide: 4n was isolated as a white solid, yield: 89%.¹H NMR (400 MHz, DMSO) δ 9.52 (s, 1H), 7.63 (dd, J = 47.6, 8.8 Hz, 1H), 7.41 (d, J = 16.8 Hz, 1H), 7.37 (m, 1H), 7.25 – 7.10 (m, 1H), 2.07 (d, J = 5.1 Hz, 3H).¹³C NMR (100 MHz, DMSO) δ 170.7, 134.7, 129.9, 127.8, 127.2, 126.8, 122.9, 23.5.

40

N-(2-iodophenyl)acetamide: 40 was isolated as a white solid, yield: 79%. ¹H NMR (400 MHz, DMSO) δ 9.48 (s, 1H), 7.92 (d, J = 6.5 Hz, 1H), 7.46 (dd, J = 7.9, 2.1 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.03 (t, J = 6.4 Hz, 1H), 2.11 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 168.9, 140.2, 139.3, 129.1, 128.1, 128.0, 97.1, 23.7.

S18

(N-(thiophen-2-yl)acetamide): 4p was isolated as a pale brown solid, yield: 76%.¹H NMR (400 MHz, DMSO) δ 11.18 (s, 1H), 6.95 (d, *J* = 4.9 Hz, 1H), 6.88 (m, 1H), 6.67 (m, 1H), 2.10 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 166.7, 140.3, 124.3, 117.1, 110.7, 40.6, 40.3, 40.1, 39.9, 39.7, 39.5, 39.3, 23.0.

4q

N-(4-Chlorophenyl)propionamide: **4q** was isolated as a yellow solid, yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.39 (d, *J* = 8.8 Hz, 2H), 7.21 – 7.14 (m, 2H), 2.30 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 136.6, 129.0, 121.2, 30.6, 9.6.

4r

N-Phenylbutyramide: **4r** was isolated as a white solid, yield: 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.9 Hz, 2H), 7.01 (t, *J* = 7.5 Hz, 1H), 2.24 (t, *J* = 7.5 Hz, 2H), 1.66 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 138.0, 129.0, 124.3, 120.2, 39.6, 19.2, 13.8.

N-Phenylisobutyramide and N-Isopropylbenzamide: (1:2.2), **4s** was isolated as a white solid, yield: 83%. ¹H NMR (400 MHz, DMSO) δ 9.79 (s, 1H), 8.20 (s, 0.45H), 7.83 (d, J = 7.0 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.26 (t, J = 7.9 Hz, 2H), 6.99 (t, J = 7.4 Hz, 1H), 4.15-4.05 (m, 0.57H), 2.63-2.52 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.08 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 175.7, 165.9, 139.9, 135.3, 131.4, 129.1, 128.6, 127.7, 123.4, 119.6, 41.5, 35.4, 22.8, 20.0.

Azepan-2-one: 4t was isolated as an off-white solid, yield: 92%. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 1H), 3.16 – 3.12 (m, 2H), 2.39 – 2.33 (m, 2H), 1.69 – 1.66 (m, 2H), 1.62 – 1.57 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 41.8, 35.7, 29.6, 28.7, 22.2.

4u

N-Phenylbenzamide: **4u** was isolated as a white solid, yield: 97%. ¹H NMR (400 MHz, DMSO) δ 10.26 (s, 1H), 7.98 – 7.95 (m, 2H), 7.80 (d, J = 7.3 Hz, 2H), 7.61 – 7.58 (m, 1H), 7.54 (t, J = 7.2 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.11 (t, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO) δ 166.0, 139.7, 135.5, 132.0, 129.1, 128.8, 128.1, 124.1, 120.8.

(4-methyl-*N-p*-tolylbenzamide): 4v was isolated as an off-white solid, yield: 94%. ¹H NMR (400 MHz, DMSO) δ 10.01 (s, 1H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 2.30 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 165.6, 141.9, 137.2, 132.9, 132.6, 129.4, 129.3, 128.1, 120.9, 21.5, 21.0.

4w

4-Methoxy-N-(4-methoxyphenyl)benzamide: 4w was isolated as a pale yellow solid, yield: 95%. ¹H NMR (400 MHz, DMSO) δ 10.03 (s, 1H), 7.99 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 9.0 Hz, 2H), 7.09 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 9.2 Hz, 2H), 3.87 (s, 3H), 3.78 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 165.0, 162.2, 155.9, 132.8, 129.9, 127.5, 122.5, 114.2, 114.0, 55.9, 55.6.

 $4\mathbf{x}$

4-chloro-N-(4-chlorophenyl)benzamide: 4x was isolated as a white solid, yield: 89%. ¹H NMR (400 MHz, DMSO) δ 10.45 (s, 1H), 8.00 (d, *J* = 8.6 Hz, 2H), 7.83 (d, *J* = 8.9 Hz, 2H), 7.61 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 8.9 Hz, 2H). ¹³C NMR (100 MHz, DMSO) δ 165.0, 138.4, 137.1, 133.8, 130.1, 129.0, 128.9, 128.0, 122.4.

N-(4-chlorophenyl)benzamide and 4-chloro-N-phenylbenzamide: (1:1.4), **4y** was isolated as a white solid, yield: 84%. ¹H NMR (400 MHz, CDCl₃+DMSO) δ 9.46 (s, 1H), 9.36 (s, 1H), 7.95 (s, 1H), 7.93 (d, *J* = 2.6 Hz, 2H), 7.91 (s, 1H), 7.75 – 7.71 (m, 3H), 7.57 – 7.50 (m, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.36 (d, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 8.9 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃+DMSO) δ 161.5, 160.4, 133.6, 133.0, 132.5, 130.2, 128.8, 127.0, 124.3, 124.1, 124.0, 123.9, 123.8, 122.8, 122.7, 119.7, 117.0, 115.9.

1-(4-bromophenyl)ethan-1-one: **4z** was isolated as an off-white solid, yield: 99%. ¹H NMR (400 MHz, DMSO) δ 7.87 (d, J = 8.6 Hz, 2H), 7.71 (d, J = 8.6 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 197.6, 136.2, 132.2, 130.6, 127.8, 27.1.

3. NMR Spectra

S23

Figure S2: ¹H and ¹³C NMR Spectrum of (E)-1-phenylethan-1-one oxime (3a).

Figure S4: ¹H and ¹³C NMR Spectrum of (E)-1-(4-ethylphenyl)ethan-1-one oxime (3c).

Figure S5: ¹H and ¹³C NMR Spectrum of (E)-1-(4-methoxyphenyl)ethan-1-one oxime (3d).

Figure S8: ¹H and ¹³C NMR Spectrum of (E)-1-(3,4-dimethoxyphenyl)ethan-1-one oxime (**3g**).

(**3h**).

Figure S11: ¹H and ¹³C NMR Spectrum of (E)-1-(2-hydroxyphenyl)ethan-1-one oxime (**3j**).

S35

Figure S12: ¹H and ¹³C NMR Spectrum of (E)-1-(2,4-dihydroxyphenyl)ethan-1-one oxime (**3k**).

oxime(31).

Figure S14: ¹H and ¹³C NMR Spectrum of (E)-1-(3-chlorophenyl)ethan-1-one oxime (3m).

Figure S15: ¹H and ¹³C NMR Spectrum of 1-(2-chlorophenyl)ethan-1-one oxime (**3n**).

S40

 $\frac{150 \ 145 \ 140 \ 135 \ 130 \ 125 \ 120 \ 115 \ 100 \ 105 \ 100 \ 95 \ 90 \ 85 \ 80 \ 75 \ 70 \ 65 \ 60 \ 55 \ 50 \ 45 \ 40 \ 35 \ 30 \ 25 \ 20 \ 15 \ 10 \ 5 \ 0}{15 \ 10 \ 5 \ 0}$ Figure S18: ¹H and ¹³C NMR Spectrum of (Z)-1-(thiophen-2-yl)ethan-1-one oxime (**3p''**).

Figure S19: ¹H and ¹³C NMR Spectrum of (E)-1-(4-chlorophenyl)propan-1-one oxime (**3q**).

Figure S20: ¹H and ¹³C NMR Spectrum of (E)-1-Phenylbutan-1-one oxime (**3r**).

Figure S21: ¹H and ¹³C NMR Spectrum of 2-Methyl-1-phenylpropan-1-one oxime (3s).

Figure S22: ¹H and ¹³C NMR Spectrum of cyclohexanone oxime (3t).

Figure S24: ¹H and ¹³C NMR Spectrum of di-p-tolylmethanone oxime (**3v**).

160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 **Figure S25:** ¹H and ¹³C NMR Spectrum of bis(4-methoxyphenyl)methanone oxime (**3**w).

Figure S26: ¹H and ¹³C NMR Spectrum of bis(4-chlorophenyl)methanone oxime (3x).

Figure S28: ¹H and ¹³C NMR Spectrum of (E)-1-(4-bromophenyl)ethan-1-one oxime (**3z**).

Figure S29: ¹H and ¹³C NMR Spectrum of N-Phenylacetamide (4a).

Figure S31: ¹H and ¹³C NMR Spectrum of N-(4-Ethylphenyl)acetamide (4c).

Figure S32: ¹H and ¹³C NMR Spectrum of (N-(4-methoxyphenyl)acetamide) (4d).

Figure S33: ¹H and ¹³C NMR Spectrum of *N*-(3-Methoxyphenyl)acetamide (4e).

Figure S34: ¹H and ¹³C NMR Spectrum of N-(2-methoxyphenyl)acetamide (4f).

Figure S35: ¹H and ¹³C NMR Spectrum of N-(3,4-dimethoxyphenyl)acetamide (4g).

S61

Figure S36: ¹H and ¹³C NMR Spectrum of N-(2,4-dimethoxyphenyl)acetamide (4h).

Figure S37: ¹H and ¹³C NMR Spectrum of N-(4-hydroxyphenyl)acetamide (4i).

Figure S38: ¹H and ¹³C NMR Spectrum of N-(2-Hydroxyphenyl)acetamide (4j).

Figure S39: ¹H and ¹³C NMR Spectrum of N-(2,4-dihydroxyphenyl)acetamide (4k).

Figure S40: ¹H and ¹³C NMR Spectrum of N-(4-(trifluoromethyl)phenyl)acetamide (4l).

Figure S41: ¹H and ¹³C NMR Spectrum of N-(3-chlorophenyl)acetamide (4m).

Figure S42: ¹H and ¹³C NMR Spectrum of N-(2-chlorophenyl)acetamide (4n).

Figure S43: ¹H and ¹³C NMR Spectrum of N-(2-iodophenyl)acetamide (40).

Figure S44: ¹H and ¹³C NMR Spectrum of (N-(thiophen-2-yl)acetamide) (4p).

Figure S45: ¹H and ¹³C NMR Spectrum of N-(4-chlorophenyl)propionamide (4q).

Figure S46: ¹H and ¹³C NMR Spectrum of N-Phenylbutyramide (**4r**).

isopropylbenzamide (4s).

Figure S48: ¹H and ¹³C NMR Spectrum of Azepan-2-one (4t).

Figure S49: ¹H and ¹³C NMR Spectrum of N-Phenylbenzamide (4u).

Figure S50: ¹H and ¹³C NMR Spectrum of (4-methyl-*N-p*-tolylbenzamide) (4v).

Figure S51: ¹H and ¹³C NMR Spectrum of (4-methyl-*N-p*-tolylbenzamide) (4w).

Figure S52: ¹H and ¹³C NMR Spectrum of 4-chloro-N-(4-chlorophenyl)benzamide (4x).

Figure S53: ¹H and ¹³C NMR Spectrum of N-(4-chlorophenyl)benzamide and 4-chloro-N-phenylbenzamide (**4**y).

 $\frac{1}{10}$ $\frac{1}{10}$

Figure S55: FT-IR spectra of Hg(II) complex (1) and Ligand $N^{i-Pr}PmT$.

Scheme S1: The Beckmann rearrangement of (E)-1-phenylethan-1-one O-methyl oxime (3ah) under standard conditions using Hg(II) catalyst (1).