Supplementary material

Sodium hexafluorophosphate mediated enhancement of electrical and electrochemical properties of poly (vinyl alcohol)–chitosan solid polymer electrolytes for EDLCs

Vipin Cyriac^a, Ismayil^{a*}, Kuldeep Mishra^b, Ankitha Rao^c, Riyadh Abdekadir Khellouf^d, Saraswati P Masti^e, I. M Noor^{f,g},

 ^bDepartment of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
 ^bSymbiosis Institute of Technology (SIT), Symbiosis International (Deemed university) (SIU), Pune 412115, Maharashtra, India
 ^cDepartment of Electronics and Communication, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
 ^dCentre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
 ^eDepartment of Chemistry, Karnataka University's Karnataka Science College, Dharwad, Karnataka 580001, India
 ^fIonic Materials and Energy Devices Laboratory, Physics Department, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
 ^gPhysics Division, Centre for Foundation Studies in Science of Universiti Putra Malaysia, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

*Corresponding Author e-mail: ismayil.mit@manipal.edu, ismayil.486@gmail.com, Tel: +91 98454 97546

Figure S1: Interaction scheme of dopant with PVA and CS in PVA/CS-NaPF₆

Figure S2: Deconvoluted XRD pattern of PVA/CS-NaPF₆ SPEs

Figure S3: (a) AC conductivity of the PVA/CS-NaPF₆ SPEs at room temperature (JPL Fit is given as red solid line) (b) AC conductivity of optimum conductivity sample PCX40 for various elevated temperatures and (c) tangent loss plot for $PVA/CS-NaPF_6$ SPEs at room temperature.

Figure S4: Variation in (a) ϵ ', (b) ϵ " for PVA/CS-NaPF₆ SPEs, (c) ϵ ' and (d) ϵ " for elevated temperature for optimum conductivity sample PCX40.

Figure S5: SEM images of selected PCX SPEs and EDAX spectra of PCX40 (at bottom right)

Figure S6: AFM 2D and 3D images of PCX0 and PCX40 SPEs

Figure S7: TGA and DTG plots of PVA/CS-NaPF₆ SPEs

Figure S8: Chronoamperometry (CA) plots PVA/CS-NaPF₆ SPEs

Sample	t_{ion}	$\sigma_{i({ m S~cm}^{-1})}$
PCX5	0.971	1.672×10-7
PCX10	0.984	3.767×10-7
PCX15	0.985	7.757×10 ⁻⁷
PCX20	0.986	1.819×10 ⁻⁶
PCX25	0.992	6.110×10 ⁻⁶
PCX30	0.997	1.277×10-5
PCX35	0.996	5.475×10-5
PCX40	0.992	6.881×10 ⁻⁵

Table S1: Values of t_{ion} and σ_{ion} for prepared SPEs obtained from TNM measurements.

 Table S2: Mechanical properties of PVA/CS-NaPF₆ SPEs

Sample	Tensile strength (MPa)	Elongation at break (%)	Young's modulus (MPa)
PCX0	55 ± 2.6	8.1 ± 1.1	$2.1\text{E3}\pm7.0\text{ E2}$
PCX5	32 ± 4.5	27 ± 3.6	$5.1E3 \pm 1.1E2$
PCX10	27 ± 1.8	27 ± 2.7	$3.3E2 \pm 3.7$
PCX15	24 ± 11	27 ± 11	$2.0\text{E2} \pm 25$
PCX20	21 ± 6.2	30 ± 4.6	$1.5\text{E2} \pm 39$
PCX25	13 ± 5.3	24 ± 8.1	70 ± 30
PCX30	13 ± 5.0	37 ± 14	54 ± 9.9
PCX35	6.1 ± 0.89	23 ± 1.4	41 ± 3.9
PCX40	7.3 ± 0.65	31 ± 2.7	29 ± 1.3