Thermally-Driven Interface Engineering of  $PMo_{12}/BiOBr$  Heterojunctions for Enhanced Artificial Photosynthesis of  $CO_2$  in water vapor

Yan Shi, [a] Shiqin Liu, [a] Hui Chen, [a] Zaihui Fu, [b] Youji Li, [a] Senpei Tang\*[a]

<sup>a</sup> Hunan Province Key Laboratory of Mineral Cleaner Production And Green Functional Materials, College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, Hunan, PR China

<sup>b</sup> College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Hunan, PR China

### **Experimental section**

#### Reagent

All materials and reagents employed in this investigation analytical grade, comprising bismuth nitrate pentahydrate (Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O, 99%), potassium bromide (KBr, 99%), phosphomic heteropoly acid (H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub>), ethanol (CH<sub>3</sub>CH<sub>2</sub>OH, 99.0%), and tetrabutylammonium hexafluorophosphate (TBAPF<sub>6</sub>, 98%). Deionized water served as the aqueous medium throughout all experimental procedures.

#### Characterization

Crystal structure characterization was performed using a Bruker D8 Advance X-ray diffractometer (XRD) with Cu-K $_{\alpha}$  radiation ( $\lambda$ =1.5406 Å) in the 20 range of 10°–80°. UV-vis diffuse reflectance spectra (DRS) were recorded on a Shimadzu UV-1900i spectrophotometer (200-800 nm wavelength range). Morphological analysis was conducted using a Zeiss Gemini 300 field-emission scanning electron microscope (SEM). Elemental composition and chemical states were determined by Thermo Scientific K-Alpha X-ray photoelectron spectroscopy (XPS). Fourier transform infrared (FT-IR) spectra were acquired using a Vertex 70 spectrometer (4000-400 cm<sup>-1</sup>).

<sup>\*</sup> Corresponding author E-mail address: ChemTangJSU@163.com (Senpei Tang)

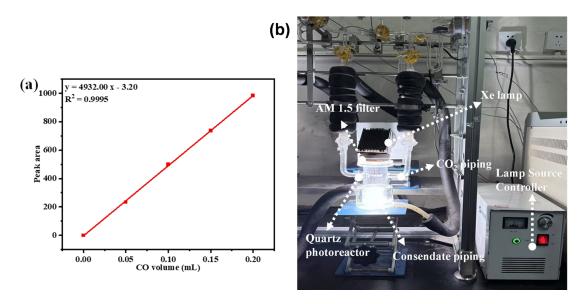
#### **Catalyst synthesis**

Synthesis of BiOBr: Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O (4 mmol) was dissolved in 50 mL deionized water with stirring for 0.5 h. A KBr solution (4 mmol in 20 mL H<sub>2</sub>O) was then added dropwise to the solution with continued stirring for 0.5 h. The mixture was transferred to a 100 mL Teflon-lined autoclave and hydrothermally treated at 160 °C for 12 h. After cooling to room temperature, the product was washed with deionized water and ethanol three times, then dried at 60 °C for 24 h to obtain BiOBr (denoted as BOB).

Synthesis of t<sub>n</sub>-PM/BOB<sub>x</sub> composites: As shown in Fig. S1, H<sub>3</sub>PM<sub>12</sub>O<sub>40</sub> (PM, 0.1 g) and BOB (0.1 g) were homogeneously ground in an agate mortar for 15 min at 120 rpm rotational frequency. The homogenized mixture was transferred to a alumina combustion boat and calcined in a tube furnace with continuous gas flow (200 mL/min) using a precisely controlled thermal protocol: ramping from room temperature to 200 °C at 5 °C/min, followed by 2 h isothermal annealing. Post-calcination, the system was cooled to 30 °C at 10 °C/min, yielding a green solid denoted as t<sub>n</sub>-PM/BOB<sub>x</sub>, where the subscript "n" represents calcination temperatures (25, 100, 150, 200, 220, 250, 300 °C), and "x" indicates the mass ratio of BOB in the composite (0.16, 0.25, 0.5, 0.75, 0.8).



Fig. S1 Schematic diagram of synthesis process of t<sub>n</sub>-PM/BOB<sub>x</sub>.


# Evaluation of photocatalytic CO<sub>2</sub> reduction performance

A catalyst (10 mg) was dispersed in 1 mL deionized water via sonication. The suspension was deposited onto a circular glass substrate (2 cm diameter) using a spin-coating method, followed by ambient drying for 12 h to form a uniform catalytic film. This film was then suspended in a gas-tight quartz reactor containing 5 mL deionized water, ensuring physical separation between the film and aqueous phase (Fig. S2a). Prior to illumination, the reactor was evacuated to remove residual air and purged with

high-purity CO<sub>2</sub> (99.999 %). The total volume of the reactor with gas pipelines is 550 mL. The CO<sub>2</sub> partial pressure in the reactor was maintained within the range of 2.0-18.4 kPa (2-18 vol%), with a stable flow velocity of 20 mL·min<sup>-1</sup>. Temperature control was maintained at 25±5 °C using a recirculating chiller system. Photocatalytic reactions were driven by a 300 W xenon lamp equipped with an AM 1.5G filter (light intensity: 117.22 mW·cm<sup>-2</sup>). Reaction products were automatically sampled at 30-min intervals through an online gas chromatograph (GC9790plus, FULI INSTRUCMENTS, China) equipped with a FID. Quantification was performed using pre-calibrated standard curves as detailed in Fig. S2b.

## Characterization of photochemical properties

The catalyst (10 mg) was ultrasonically dispersed in 2 mL ethanol containing 30 μL Nafion solution (5 wt%) to form a homogeneous suspension, followed by immersion of a 1×2 cm FTO glass substrate into the mixture. Uniform catalyst loading was achieved via centrifugation at 8000 rpm, and the coated substrate was air-dried to form a catalytic film. Photoelectrochemical measurements were conducted in a three-electrode system (Pt counter electrode, Ag/AgCl reference electrode) using 0.25 mmol·L<sup>-1</sup> tetrabutylammonium hexafluorophosphate as electrolyte under illumination from a 300 W xenon lamp. Transient photocurrent (PTC) was recorded over 200 s with 20 s light chopping intervals, while electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analyses were performed in frequency ranges of 0.01 Hz–100 kHz and potential windows of OCP ±1 V, respectively, utilizing a CHI 660I electrochemical workstation.



**Fig. S2**. (a) CO quantification standard curve derived from gas chromatography analysis and (b) Photos of the photocatalytic CO<sub>2</sub> reduction reactor

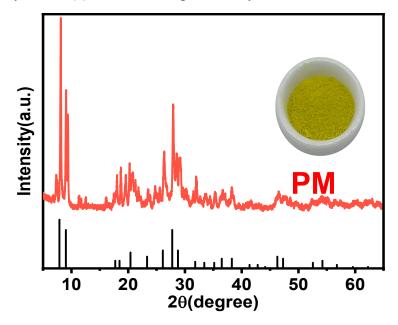
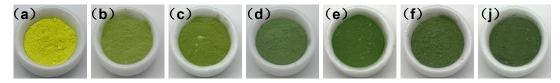




Fig. S3 The XRD pattern of PM, and inset is photograph of yellow PM powder.



**Fig. S4** Color change diagram of catalyst  $t_n$ -PM/BOB<sub>0.5</sub> (n= 25, 100, 150, 200, 220, 250, 300 °C) at different temperatures

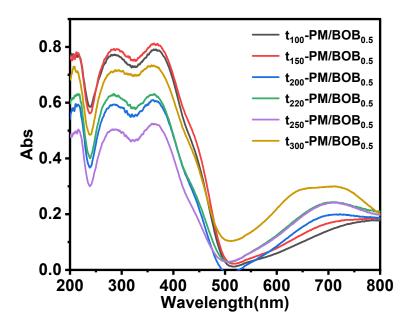
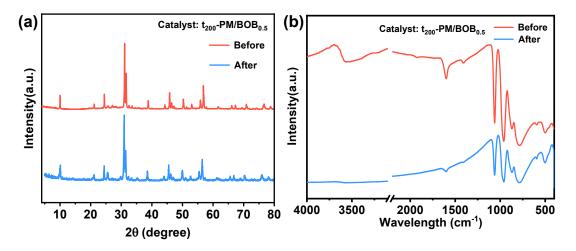




Fig. S5 UV-vis DRS spectra of  $t_n$ -PM/BOB<sub>0.5</sub> composites synthesized at different calcination temperatures



**Fig.S6** Comparison of (a) XRD and (b) IR patterns of composite materials before and after photocatalytic CO<sub>2</sub> reduction reactions

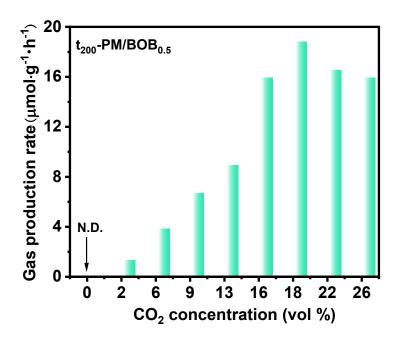



Fig. S7 The photocatalytic performance of  $t_{200}$ -PM/BOB<sub>0.5</sub> under varying CO<sub>2</sub>

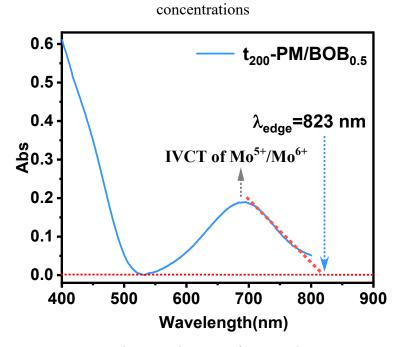



Fig. S8 The UV-vis DRS of  $t_{200}$ -PM/BOB $_{0.5}$ 

Table 1 Comparison of PCR performance with comparable materials under solid-gas mode

| Light source                | Photocatalyst                           | СО                                  | Refs.                           |
|-----------------------------|-----------------------------------------|-------------------------------------|---------------------------------|
|                             |                                         | $\mu mol \cdot g^{-1} \cdot h^{-1}$ |                                 |
| A 300 W Xe lamp<br>(AM 1.5) | t <sub>200</sub> -PM/BOB <sub>0.5</sub> | 18.82                               | This work                       |
| A 300 W Xe lamp             | 8% P-BiOBr                              | 9.13                                | Journal of Molecular Structure, |

|                                  |                                                         |       | 2024, 1307: 138041                           |
|----------------------------------|---------------------------------------------------------|-------|----------------------------------------------|
|                                  |                                                         |       | Separation and Purification                  |
| 300 W Xe lamp                    | BiOBr/NH <sub>2</sub> -UiO-66                           | 9.2   | Technology, 2024, 344:                       |
| 200 337 37 1                     |                                                         |       | 127289.                                      |
| 300 W Xe lamp (AM 1.5G filter)   | $\mathrm{Bi_4O_5Cl_2}$                                  | 14.6  | ACS Catalysis, 2022, 12(7): 3965-3973.       |
| 300 W Xe lamp                    |                                                         |       | Separation and Purification                  |
| (420 nm cut-off                  | BiOBr/CdS-5%                                            | 4.5   | Technology, 2022, 298:                       |
| filter)                          | BioBireus 370                                           | 5     | 121603.                                      |
| ,                                |                                                         |       | Applied Catalysis B:                         |
| 300 W Xe lamp                    | NiTMCPP/BiOBr-2                                         | 2.8   | Environment and Energy,                      |
|                                  |                                                         |       | 2025, 365: 124904.                           |
| $300~W~Xe~lamp~(\lambda$         | Ni <sub>2</sub> P/NiO/CN                                | 1.51  | J. Mater. Chem. A., 2022,10,                 |
| > 420 nm)                        | M <sub>2</sub> F/MO/CN                                  | 1.51  | 15752-15765                                  |
|                                  |                                                         |       | Angewandte Chemie                            |
| 300 W Xe lamp                    | $WO_{3-x}/In_2S_3-550$                                  | 10    | International Edition, 2025,                 |
|                                  |                                                         |       | 64(2): e202414672.                           |
| 300 W Xe lamp                    | LaPO <sub>4</sub> /g-C <sub>3</sub> N <sub>4</sub>      | 14.43 | Appl. Catal. B-Environ., 201                 |
|                                  |                                                         |       | (2017) 629–635.                              |
| 300 W Xe lamp                    | 5 wt% g-C <sub>3</sub> N <sub>4</sub> /CeO <sub>2</sub> | 7.61  | Journal of Rare Earths, 2024,                |
| •                                | 2 3 . 2                                                 |       | 1002-0721                                    |
| 300 W Xe lamp                    | Cu/CN-0.25                                              | 11.21 | ACS Nano 2020., 14,                          |
| (AM1.5)                          |                                                         |       | 8584–8593<br>Sep. Purif. Technol. 2023, 321, |
| A 300 W Xe lamp                  | SiW <sub>12</sub> -BiOBr                                | 21    | 124228                                       |
| A 300 W Xe lamp                  |                                                         |       | Chem. Eng. J. 2022, 442,                     |
| (full spectrum)                  | $\{CuI_8\} - \{PMo_8V_6O_{42}\}$                        | 20.06 | 136157                                       |
| A 300 W Xe lamp                  | C'M D' MO                                               | 16.2  | Sep. Purif. Technol. 2023, 321,              |
| (200 mW·cm <sup>-2</sup> )       | $SiW_{12}$ - $Bi_2WO_6$                                 |       | 124228                                       |
| A 300 W Xe lamp                  |                                                         |       | JACS Au. 2021, 1, 8, 1288–                   |
| $(\lambda = 300-1100 \text{nm},$ | $\{M_3L_8\}\text{-}\{PMo_9V_7O_{44}\}$                  | 15.5  | 1295                                         |
| 200 mW⋅cm <sup>-2</sup> )        |                                                         |       |                                              |
| A 300 W Xe lamp                  | Au@NENU-10                                              | 12.8  | Adv. Mater. Interfaces, 2018,                |
| (λ>400 nm)                       | <u> </u>                                                |       | 5, 1801062.                                  |
| 200W Hg-Xe                       | Za CalDH-/C!W                                           | 0.05  | Nanoscale Adv., 2024,6, 1241-                |
| lamp with guidance fiber         | Zn–Cr LDHs/SiW <sub>12</sub>                            | 0.05  | 1245                                         |
| guidance moei                    |                                                         |       |                                              |