Efficient Schiff Base Ligand for Selective Cd(II) and Pb(II) Removal from Water

Amal E. Mubark^{*1}, Sabreen M. El-Gamasy², Ahmed M. Masoud¹, Adel A. El-Zahhar³, Majed M. Alghamdi³, Mohamed H. Taha¹, Taha F. Hassanein⁴

¹ Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt
 2Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, 00123 Egypt
 ³Department of Chemistry, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia
 ⁴Chemistry Department, Faculty of Science, Helwan University, 11795, Helwan, Cairo, Egypt
 *Corresponding author: amal mubark2014@yahoo.com

1. Sorbent characterization

The synthesized Schiff base ligand, 2-((E)-(4-aminophenylimino)methyl)benzoic acid, was characterized to evaluate its structural, morphological, and surface properties. X-ray diffraction (XRD) analysis, performed using a PANalytical X'PERT Pro diffractometer (Netherlands), assessed the crystallinity and phase composition. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of key functional groups (-C=N, -COOH, -NH₂) essential for metal adsorption, using a PerkinElmer Spectrum One spectrometer (USA). The surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) with a JEOL-JSM 6360 microscope (Japan). Thermal stability and decomposition behavior were investigated through thermogravimetric analysis (TGA) using a TGA Q50 analyzer (TA Instruments, USA) under a nitrogen atmosphere. N2 adsorption-desorption isotherms, analyzed using the BET and BJH methods, determined surface area and pore structure with a NOVA 3200 apparatus (USA). The zeta potential and particle size distribution, measured via a Zetasizer Nano ZS (UK), provided insights into colloidal stability and hydrodynamic diameter. The ligand's molecular structure was further confirmed through ¹H-NMR spectroscopy using a Bruker Avance III 400 MHz spectrometer (Germany) with DMSO-d₆ as the solvent. Finally, mass spectrometry (MS) verified molecular weight and purity using a Q-TOF mass spectrometer (USA).

Figure S1: Effect of ligand dose on distribution coefficient (logKd) for Cd(II) and Pb(II) from synthetic aqueous solutions (pH 5.9; time of 240 min; original concentration: 100 mg/L; and room temperature).

Figure S2: Separation factor (*R_i*) for Cd(II) and Pb(II) adsorption from synthetic aqueous solutions across various initial concentrations.

Figure S3: Desorption efficiency of Cd(II) and Pb(II) from loaded ligand using different eluents (shaking: 240 min; room temperature; and ligand dosage: 1.0 g/L).

Kinetics	Equations				
Pseudo-first-order	$q_t = q_1 (1 - e^{-kt})$				
Pseudo-second-order	$q_t = \frac{1}{\left(1 \mid k_2 q_2^2\right) + \left(t \mid q_2\right)}$				
Intra-particle diffusion model (IPD)	$q_t = K_{id} t^{0.5} + C_i$				
Isotherms	Equations				
Langmuir model $q_e = \frac{q_m k_L C_e}{1 + k_L C_e}$					
Freundlich model	$q_e = K_F C_e^{1/n_F}$				
Temkin model	$q_e = \frac{RT}{b_T} \ln K_T C_e$				
Sips model	$q_{e} = \frac{q_{S}(k_{S}C_{e})^{mS}}{1 + (k_{S}C_{e})^{mS}}$				
Thermodynamics	Equations				
$\log K_C = -\frac{\Delta H^o}{2.303 R} X \frac{1}{T} + C$					
$-\Delta G^o =$	$-\Delta G^o = 2.303 RT \log K_C$				
$\Delta G^{o} =$	$= \Delta H^0 - T \Delta S^0$				
	n				
Coordination coefficient (^{<i>R</i>²})	$p^{2} = 1 - \frac{\sum_{1}^{n} (q_{exp} - q_{pred})^{2}}{\sum_{1}^{n} (q_{exp} - q_{exp}^{-})^{2}}$				

 Table S1: Kinetic, isotherm, and thermodynamics equations for Cd(II), and Pb(II) adsorption process

 [1-9].

Average relative error (ARE) $ARE = \frac{100}{n} \sum_{1}^{n} \frac{|q_{exp} - q_{pred}|}{q_{exp}}$

qe (mg g⁻¹) is the equilibrium concentration of Cd(II) species, and qt (mg g⁻¹) is the adsorbed amount of Cd(II) species ions after time t (min), Ce (mg L⁻¹) is equilibrium concentration of Cd(II) species. k₁ (min⁻¹) and k₂ (min⁻¹) are the rate constants for the pseudo first and second order, respectively. K_{id} (mg/g. min^{0.5}) is a rate constant, and C is the thickness of the boundary layer. q_m and q_s are the maximum sorption capacity (mg. g⁻¹) of Langmuir and Sips models. k_L (L. mg⁻¹), K_F (L/ mg), K_T (L min⁻¹), and K_s (L/ mg) are represent the constants of Langmuir, Freundlich, Temkin, and Sips models. n refer to the sorption intensity, b_T is Temkin constant that refers to the adsorption heat, mS is Sips constant. q_s is the theoretical isotherm saturation capacity (mg/g). K_C is a non-dimensional equilibrium constant and it equals K_d X 1000 X ρ [4-5]; T is the temperature (K), **R** is the universal gas constant (8.314 J mol ⁻¹. K⁻¹), ρ is solution density g/ L, and C is a constant. R^2 and x^2 are the coordination and Chi-square coefficients respectively, the number of test points is n, the experimental equilibrium capacity is q_{exp} (mg g⁻¹), while the predicted capacity is q_{pred} (mg g⁻¹).

References:

- Hu, Q., Pang, S. and Wang, D., 2022. In-depth insights into mathematical characteristics, selection criteria and common mistakes of adsorption kinetic models: A critical review. *Separation & Purification Reviews*, 51(3), pp.281-299.
- González-López, M.E., Laureano-Anzaldo, C.M., Pérez-Fonseca, A.A., Arellano, M. and Robledo-Ortíz, J.R., 2022. A critical overview of adsorption models linearization: methodological and statistical inconsistencies. *Separation & Purification Reviews*, 51(3), pp.358-372.
- 3) Tho, P.T., Van, H.T., Nguyen, L.H., Hoang, T.K., Tran, T.N.H., Nguyen, T.T., Nguyen, T.B.H., Le Sy, H., Tran, Q.B., Sadeghzadeh, S.M. and Asadpour, R., 2021. Enhanced simultaneous adsorption of As (iii), Cd (ii), Pb (ii) and Cr (vi) ions from aqueous solution using cassava root husk-derived biochar loaded with ZnO nanoparticles. *RSC advances*, 11(31), pp.18881-18897.
- Sharma, R., Sarswat, A., Pittman, C.U. and Mohan, D., 2017. Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. *RSC advances*, 7(14), pp.8606-8624.
- Chen, X., Hossain, M.F., Duan, C., Lu, J., Tsang, Y.F., Islam, M.S. and Zhou, Y., 2022. Isotherm models for adsorption of heavy metals from water-a review. *Chemosphere*, 307, p.135545.
- Majd, M.M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A. and Sillanpää, M., 2022. Adsorption isotherm models: A comprehensive and systematic review (2010– 2020). *Science of The Total Environment*, *812*, p.151334.

- 7) Taha, M.H., 2021. Sorption of U (VI), Mn (II), Cu (II), Zn (II), and Cd (II) from multicomponent phosphoric acid solutions using MARATHON C resin. Environmental Science and Pollution Research, 28(10), pp.12475-12489.
- 8) Ebelegi, A.N., Ayawei, N. and Wankasi, D., 2020. Interpretation of adsorption thermodynamics and kinetics. *Open Journal of Physical Chemistry*, *10*(3), pp.166-182.

		Cd(II)	Pb(II)
Weber and Morris model	k_i (mg/g min ^{1/2})	1.68	2.23
	С	14.2	12.0
	R ²	0.96	0.96

 Table S2: The values of Morris-Weber model parameters.

	Cd(II)		Pb(II)	
Cycle	Adsorption Capacity (mg/g)	Desorption Efficiency (%)	Adsorption Capacity (mg/g)	Desorption Efficiency (%)
1	51.9	95.1	62.1	97.1
2	51.2	94.3	61.5	95.8
3	50.4	92.8	60.2	93.2
4	48.8	89.2	58.4	89.9
5	47.5	86.1	56.7	86.9

Table S3: Sorption capacity (mg/g), and desorption efficiency (%) for Cd(II) and Pb(II) recovery for *five successive cycles.*

Element	Concentra	E 0/	
	Initial	Final	E, %
Pb	92	35	62.0
Cd	88	43	51.1
Cr	70	54	22.9
Y	85	65	23.5
Si	230	197	14.3
Cl-	600	580	3.3
K	690	675	2.2
Na	280	250	10.7

Table S4: The chemical analysis of the real waste raffinate solution before and after the adsorption process.