SUPPORTING INFORMATION

Multicomponent Hosomi-Sakurai Reaction on Chiral, Bio-based, Alcohols

Chiara Lambruschini,*^a Asunción Barbero,^b Alberto Cherubin,^a Lisa Moni,^a Lorenzo Palio,^a Renata Riva^a and Luca Banfi^{*a}

^a Department of Chemistry and Industrial Chemistry, Università di Genova, via Dodecaneso, 31, 16146 GENOVA, Italy. E-mail: chiara.lambruschini@unige.it; luca.banfi@unige.it

^b Department of Organic Chemistry, University of Valladolid, Paseo de Belen, 7, Valladolid, 47011, Spain

Table of contents

Summary

XPERIMENTAL PROCEDURES	. 2
PTIMIZATION PROCEDURES	16
NALYSIS OF D.R. ratios	19
ETERMINATION OF CONFIGURATION	30
OPY OF NMR SPECTRA	34
EFERENCES	34

EXPERIMENTAL PROCEDURES

General methods

NMR spectra were taken at rt in CDCl₃ at 300 or 400 MHz (¹H), and 75 or 100 MHz (¹³C), using, as internal standard, TMS (¹H NMR: 0.000 ppm) or the central peak of CDCl₃ (¹³C: 77.02 ppm). Chemical shifts are reported in ppm (δ scale). Peak assignments were made with the aid of gCOSY, and gHSQC experiments. I.R. were recorded with the ATR methodology. TLC analyses were carried out on silica gel plates and viewed at UV (254 nm) and developed with Hanessian stain (dipping into a solution of (NH₄)₄MoO₄·4 H₂O (21 g) and Ce(SO₄)₂·4 H₂O (1 g) in H₂SO₄ (31 ml) and H₂O (469 ml) and warming) or with KMnO₄. R_f were measured after an elution of 7-9 cm. Column chromatographies were done with the "flash" methodology using 220-400 mesh silica. Petroleum ether (40-60 °C) is abbreviated as PE. In extractive work-up, aqueous solutions were always reextracted three times with the appropriate organic solvent. Organic extracts were always dried over Na₂SO₄ and filtered, before evaporation of the solvent under reduced pressure. All reactions using dry solvents were carried out under a nitrogen or argon atmosphere.

Preparation of trimethylsilyl ethers¹

To a solution of alcohol (3.00 mmol) in dry CH_2Cl_2 (10 mL) iodine (60.0 μ mol, 2 mol%) and hexamethyldisilazane (2.40 mmol) were added at rt. The initially colorless solution turned brown and the color faded over 10 min. Then, solid $Na_2S_2O_3 \bullet 5H_2O$ (968 mg, 3.90 mmol) was added and the reaction mixture turned colorless. The mixture was stirred for 30 min and then filtered quickly through a silica plug (1 cm) washing with CH_2Cl_2 (30 mL). The solvent was removed, and the silyl ether was used as such without further purification.

Synthesis of aldehyde 4²

A two-neck flask under Ar containing dry CH_2Cl_2 (2.4 mL) and dry DMSO (150 µL, 2.10 mmol) was cooled to -78 °C. Then oxalyl chloride (1.43 M in CH_2Cl_2 , 1.2 mL, 1.76 mmol) was added dropwise. After 10 min, a solution of ((*2R*,5*S*)-5-((4-methoxyphenoxy)methyl)tetrahydrofuran-2-yl)methanol² (200 mg, 0.839 mmol) in dry CH_2Cl_2 (5 mL) was added dropwise and, after further 15 min, Et₃N (550 µL, 3.94 mmol) was slowly added. The mixture was stirred at -78 °C for 1 h and at -60 °C for 1.5 h. After quenching with 5% aqueous (NH₄)H₂PO₄ (10 mL), 2N HCl was added until pH = 4. The reaction mixture was extracted with 10:1 Et₂O/CH₂Cl₂ (3×15 mL), and the organic layer was washed with brine and dried over Na₂SO₄. After filtration and evaporation of the solvent, the crude was purified by chromatography (PE/EtOAc 6:4) to give the desired product as colorless oil (188 mg, 95%). The aldehyde was suddenly dissolved in dry toluene in order to obtain a 0.2 M solution, and treated with freshly activated 3 Å molecular sieves in rods (200 mg). The resulting suspension was kept under Ar overnight to further dry the aldehyde. This solution was used for all multiconponent Hosomi-Sakurai

reactions. **R**_f 0.47 (PE/EtOAc 1:1). **GC-MS** (column HP-1, 12 m, \emptyset = 0.2 mm; flow: 1.0 ml/min (He); initial temp.: 70°C for 2 min, then increase of 20°C/min): t_R = 9.04 min, *m/z* (%): 236 (29) [M]⁺, 207 (12), 163 (43), 137 (17), 135 (7.5), 125 (14), 124 (100), 123 (30), 113 (24), 109 (42), 107 (8.2), 105 (5.3), 95 (15), 92 (12), 85 (13), 83 (39). Other data were in accordance with the literature.²

General procedure for the Hosomi-Sakurai MCR with aldehyde 4

In a flame-dried two-neck flask under Ar containing CaCO₃ (0.40 mmol) freshly prepared aldehyde **4** (0.40 mmol, 0.2 M solution in dry toluene) and the silyl ether (0.80 mmol) were added in short sequence. The solution was cooled at -40 °C (or 0 °C) and TMSOTf (0.12 mmol, 0.3 M solution in dry CH₂Cl₂) was added. After 1 h, AllyITMS (0.80 mmol) was added and the reaction mixture was stirred at -40 °C for 24 h. After quenching with aqueous saturated NaHCO₃ (10 mL), the mixture was extracted with Et₂O (3×15 mL) and the organic layer was washed with brine and evaporated to dryness. The crude product was purified by chromatography to give the desired products.

General procedure for the Hosomi-Sakurai MCR with aldehyde 9

A solution of 6-bromopiperonal (0.40 mmol) in dry CH₂Cl₂ (2 mL) under Ar was cooled at -78 °C, then the TMS ether (0.60 mmol), AllyITMS (0.60 mmol) and TMSOTf (0.12 mmol, 0.3 M solution in dry CH₂Cl₂) were added in this order. The mixture was stirred until completion (see Table 4 of the manuscript

for reaction times) and then quenched with aqueous saturated NaHCO₃ (10 mL). After extraction with Et₂O (3×15 mL) and washing of the organic layers with brine, evaporation and chromatography gave the desired products.

(2R,5S)-2-(1-(Cyclohexyloxy)but-3-en-1-yl)-5-((4-methoxyphenoxy)methyl)tetrahydrofuran 11a

Following the general procedure, CaCO₃ (0.40 mmol, 40 mg), **4** (0.40 mmol, 2.0 mL, 0.2 M in dry toluene), (cyclohexyloxy)trimethylsilane **13b** (0.80 mmol, 138 mg, 160 μ L), TMSOTf (0.12 mmol, 400 μ L, 0.3 M in dry CH₂Cl₂) and AllyITMS (0.80 mmol, 140 μ L) were reacted at -40 °C for 24 h. After workup, the crude was purified by chromatography (PE/Et₂O 9:1 to 8:2) to give *anti*-**11a** (minor, *R*_f 0.37, PE/Et₂O 8:2) and *syn*-**11a** (major, *R*_f 0.27) in 70% overall yield (102 mg) (d.r. 36:64 by HPLC).

Anti-**11a** (minor). Colorless oil. **R**_f 0.37 (PE/Et₂O 8:2). [**α**]_D = +1.67 (c 1.1, CHCl₃). ¹**H NMR** (300 MHz, CDCl₃) δ 6.95 – 6.74 (4 H, m, aromatic CH), 5.86 (1 H, ddt, *J* 17.2, 10.1, 7.1, CH=CH₂), 5.15 – 4.96 (2 H, m, CH=CH₂), 4.34 – 4.17 (1 H, m, CHCH₂OPMP), 4.02 – 3.81 (3 H, m, CH₂OPMP + CHCHOCy), 3.76 (3 H, s, OCH₃), 3.55 (1 H, td, *J* 6.0, 4.9, CHCH₂CH=CH₂), 3.46 – 3.31 (1 H, m, CH of Cy), 2.25 (2 H, ddt, *J* 7.2, 6.0, 1.2, CHCH₂CH=CH₂), 2.08 – 1.79 (6 H, m, 2×CH₂ THF part + Cy), 1.74 – 1.64 (2 H, m, Cy), 1.55 – 1.45 (1 H, m, Cy), 1.32 – 1.04 (5 H, m, Cy). ¹³C NMR (75 MHz, CDCl₃) δ 154.0 (C-O), 153.3 (C-O), 135.4 (CH=CH₂), 116.8 (CH=CH₂), 115.6 (aromatic CH), 114.7 (aromatic CH), 82.2 (CHCHOCy), 77.6 (CHCH₂OPMP), 77.44 (CHCH₂CH=CH₂), 77.38 (CH of Cy), 71.4 (CH₂OPMP), 55.9 (OCH₃), 37.4 (CHCH₂CH=CH₂), 33.4 (CH₂), 33.1 (CH₂), 28.4 (CH₂), 26.1 (CH₂), 25.9 (CH₂), 24.51 (CH₂), 24.50 (CH₂). **IR** v_{max} (cm⁻¹) 3074, 2930, 2855, 1734, 1640, 1592, 1507, 1464, 1451, 1359, 1340, 1288, 1229, 1180, 1153, 1080, 1041, 996, 911, 888, 822, 746, 713, 647. HRMS (ESI+): calcd. for C₂₂H₃₃O₄⁺ [M+H]⁺ 361.2372, found 361.2382.

Syn-**11a** (major). Colorless oil. *R*_f 0.27 (PE/Et₂O 8:2). [α]_D = +2.12 (1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 6.93 – 6.77 (4 H, m, aromatic CH), 5.89 (1 H, ddt, *J* 17.2, 10.1, 7.1, CH=CH₂), 5.14 – 4.96 (2 H, m, CH=CH₂), 4.34 – 4.19 (1 H, m, CHCH₂OPMP), 4.05 – 3.91 (2 H, m, CHCHOCy + part A of ABX CH₂OPMP), 3.86 (1 H, dd, *J_{AB}* 9.6, *J_{BX}* 5.3, part B of ABX of CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.42 (1 H, dt, *J* 7.6, 4.9, CHCH₂CH=CH₂), 3.38 – 3.27 (1 H, m, CH of Cy), 2.42 – 2.26 (1 H, m, part A of CH₂CH=CH₂), 2.26 – 2.09 (1 H, m, part B of CH₂CH=CH₂), 2.08 – 1.77 (6 H, m, 2×CH₂ THF part + Cy), 1.76 – 1.62 (2 H, m, Cy), 1.60 – 1.45 (1 H, m, Cy), 1.35 – 1.07 (5 H, m, Cy). ¹³C NMR (75 MHz, CDCl₃) δ 153.9 (C-O), 153.3 (C-O.), 135.8 (CH=CH₂), 116.6 (CH=CH₂), 115.7 (aromatic CH), 81.6 (CHCHOCy), 78.8 (CHCH₂CH=CH₂), 77.6 (CHCH₂OPMP), 77.4 (CH of Cy), 71.3 (CH₂OPMP), 55.8 (OCH₃), 36.0 (CH₂CH=CH₂), 33.2 (CH₂), 28.6 (CH₂), 26.9 (CH₂), 25.9 (CH₂), 24.5 (CH₂), 24.5 (CH₂). **IR** v_{max} (cm⁻¹) 3074, 2930, 2855, 1734, 1640, 1592, 1507, 1464, 1452, 1358, 1288, 1229, 1180, 1079, 1041, 911, 888, 822, 746, 718, 639, 746, 713, 647. HRMS (ESI+): calcd. for C₂₂H₃₃O₄⁺ [M+H]+ 361. 361.2372, found 361.2369.

(2R,5S)-2-(1-(((1R,2S,5R)-2-IsopropyI-5-methylcyclohexyI)oxy)but-3-en-1-yI)-5-((4-methoxyphenoxy)methyI)tetrahydrofuran 11b

Following the general procedure, CaCO₃ (0.50 mmol, 50 mg), **4** (0.50 mmol, 2.5 mL, 0.2 M in dry toluene), (–)-menthol TMS ether **14b** (1.00 mmol, 228 mg, 263 μ L), TMSOTf (0.15 mmol, 500 μ L, 0.3 M in dry CH₂Cl₂) and AllyITMS (1.00 mmol, 160 μ L) were reacted at –40 °C for 48 h. After workup, the

crude was purified by chromatography (PE/Et₂O 9:1) to give *anti*-**11b** (minor, R_f 0.35, PE/Et₂O 9:1) and *syn*-**11b** (major, R_f 0.30) in 65% overall yield (135 mg) (d.r. 8:92 by HPLC).

Anti-**11b** (minor). Colorless oil. *R*_f 0.35 (PE/Et₂O 9:1). [**α**]_D = -47.9 (c 0.31, CHCl₃). ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 6.92 – 6.75 (4 H, m, aromatic CH), 5.87 (1 H, ddt, *J* 17.2, 10.1, 7.1, CH=CH₂), 5.14 – 4.95 (2 H, m, CH=CH₂), 4.18 (1 H, quintuplet, *J* 6.8, CHCH₂OPMP), 3.97 (1 H, dd, *J* 9.6, 5.9, part A of ABX CH₂OPMP), 3.95 – 3.88 (1 H, m, CHCHOR), 3.86 (1 H, dd, *J* 9.6, 5.1, part B of ABX CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.61 (1 H, q, *J* 5.5, CHCH₂CH=CH₂), 3.22 (1 H, td, *J* 10.3, 4.2, CH-O menthol), 2.48 – 2.19 (3 H, m, CH₂CH=CH₂ + CH menthol), 2.09 – 1.57 (8 H, m, CH₂), 1.35 – 1.23

(1 H, m, CH menthol), 1.23 – 1.11 (1 H, m, CH menthol), 0.94 – 0.82 (8 H, m, 2×CH₃ menthol + CH₂), 0.76 (3 H, d, *J* 6.9, CH₃ menthol). ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 154.0 (C-O), 153.3 (C-O), 135.5 (CH=CH₂), 116.7 (CH=CH₂), 115.6 (aromatic CH), 114.7 (aromatic CH), 81.9 (CHCHOR), 78.8 (CH-O menthol), 77.6 (CHCH₂CH=CH₂), 77.5 (CHCH₂OPMP), 71.3 (CH₂OPMP), 55.9 (OCH₃), 49.3 (CH menthol), 42.6 (CH₂ menthol), 38.0 (CH₂CH=CH₂), 34.6 (CH₂ menthol), 31.7 (CH menthol), 28.4 (CH₂ THF), 25.7 (CH₂ THF), 24.8 (CH menthol), 23.0 (CH₂ menthol), 22.6 (CH₃), 21.6 (CH₃), 16.6 (CH₃). HRMS (ESI+): calcd. for C₂₆H₄₁O₄⁺ [M+H]⁺ 417.29994, found 417.3007.

Syn-**11b** (major). White solid. **M.p.** 31.9–33.1 °C (PE/Et₂O). *R*_f 0.30 (PE/Et₂O 9:1). [α]_D = -84.0 (c 0.43, CHCl₃). ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 6.89 – 6.78 (4 H, m, aromatic CH), 5.89 (1 H, ddt, *J* 17.0, 10.1, 7.1, *CH*=CH₂), 5.15 – 4.97 (2 H, m, CH=CH₂), 4.35 – 4.21 (1 H, m, *CH*CH₂OPMP), 4.04 (1 H, td, *J* 6.8, 5.3, *CH*CHOR), 3.95 (1 H, dd, *J* 9.5, 5.3, part A of ABX *CH*₂OPMP), 3.84 (1 H, dd, *J* 9.5, 5.5, part B of ABX *CH*₂OPMP), 3.76 (3 H, s, OCH₃), 3.44 (1 H, q, *J* 5.3, *CH*CH₂CH=CH₂), 3.13 (1 H, td, *J* 10.4, 4.1, CH-O menthol), 2.51 – 2.39 (1 H, m. part A of *CH*₂CH=CH₂), 2.38 – 2.27 (1 H, m, CH menthol), 2.25 – 2.14 (1 H, m, part B of *CH*₂CH=CH₂), 2.12 – 1.59 (7 H, m, CH₂), 1.36 – 1.13 (2 H, m, CH menthol), 1.03 – 0.79 (9 H, m, 2×CH₃ menthol + CH₂), 0.74 (3 H, d, *J* 6.9, CH₃ menthol). ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 153.9 (C-O), 153.4 (C-O), 135.5 (*C*H=CH₂), 116.8 (CH=*C*H₂), 115.6 (aromatic CH), 114.7 (aromatic CH), 80.9 (*C*HCHOR), 77.9 (*C*HCH₂OPMP), 77.7 (*C*HCH₂CH=CH₂), 76.9 (CH-O menthol), 71.4 (*C*H₂OPMP), 55.9 (OCH₃), 48.8 (CH menthol), 41.3 (CH₂ menthol), 35.4 (*C*H₂CH=CH₂), 34.7 (CH₂ menthol), 31.7 (CH menthol), 28.9 (CH₂ THF), 27.1 (CH₂ THF), 24.9 (CH menthol), 23.2 (CH₂ menthol), 22.6 (CH₃), 21.5 (CH₃), 16.2 (CH₃). **IR** v_{max} (cm⁻¹) 3075, 2952, 2920, 2868, 1733, 1640, 1592, 1507, 1455, 1385, 1369, 1332, 1288, 1230, 1180, 1080, 1065, 1043, 999, 912, 885, 822, 790, 747, 718, 639. **HRMS** (ESI+): calcd. for C₂₆H₄₁O₄⁺ [M+H]⁺ 417.29994, found 417.2998.

(2R,5S)-2-(1-(((1S,2R,5S)-2-IsopropyI-5-methylcyclohexyI)oxy)but-3-en-1-yI)-5-((4-methoxyphenoxy)methyI)tetrahydrofuran 11c

Following the general procedure, CaCO₃ (0.50 mmol, 50 mg), **4** (0.50 mmol, 2.5 mL, 0.2 M in dry toluene), (+)menthol TMS ether *ent-14b* (1.0 mmol, 263 μ L), TMSOTf (0.15 mmol, 500 μ L, 0.3 M in dry CH₂Cl₂) and AllyITMS (1.0 mmol, 160 μ L) were reacted at –40 °C for 48 h. After workup, the crude was purified by chromatography (PE/Et₂O 95:5 to 9:1) to give *syn-***11c** (minor, *R*_f 0.32, PE/Et₂O 9:1) and *anti-***11c** (major, *R*_f 0.25) in 70% overall yield (123 mg) (d.r. 43:57 by HPLC).

Syn-**11c** (minor). White foam. *R*_f 0.32 (PE/Et₂O 9:1). [**α**]_D = +83.0 (c 1.4, CHCl₃). ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 6.91 – 6.77 (4 H, m, aromatic CH), 5.90 (1 H, ddt, *J* 17.1, 10.1, 7.0, CH=CH₂), 5.13 – 4.96 (2 H, m, CH=CH₂), 4.28 –

4.17 (1 H, m, CHCH₂OPMP), 4.04 (1 H, td, J 6.9, 5.4, CHCHOR), 3.95 (1 H, dd, J 9.6, 5.4, part A of ABX CH₂OPMP), 3.88 (1 H, dd, J 9.6, 4.9, part B of ABX

CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.53 (1 H, ddd, J 8.1, 5.3, 4.0, CHCH₂CH=CH₂), 3.21 (1 H, td, J 10.4, 4.2, CH-O menthol), 2.42 – 2.22 (2 H, m, part A of CH₂CH=CH₂, CH menthol), 2.20 – 2.06 (1 H, m, part B of CH₂CH=CH₂), 2.06 – 1.69 (5 H, m, 2×CH₂ THF, part A of CH₂ menthol), 1.68 – 1.56 (2 H, m, 2×part A of CH₂ menthol), 1.36 – 1.09 (2 H, m, 2×CH menthol), 1.03 – 0.77 (9 H, m, 3×part A of CH₂ menthol, 3× CH₃ menthol), 0.76 (3 H, d, J 6.9, CH₃ menthol). ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 154.0 (C-O), 153.3 (C-O), 136.1 (CH=CH₂), 116.4 (CH=CH₂), 115.6 (aromatic CH), 114.7 (aromatic CH), 81.1 (CHCHOR), 78.0 (CHCH₂CH=CH₂), 77.9 (CH-O menthol), 77.6 (CHCH₂OPMP), 71.2 (CH₂OPMP), 55.9 (OCH₃), 48.9 (CH menthol), 41.9 (CH₂ menthol), 35.3 (CH₂CH₂CH₂CH₂CH₂), 34.7 (CH₂ menthol), 31.7 (CH menthol), 28.6 (CH₂ THF), 26.3 (CH₂ THF), 24.9 (CH menthol), 23.1 (CH₂ menthol), 22.6 (CH₃), 21.6 (CH₃), 16.1 (CH₃). IR v_{max} (cm⁻¹) 3085, 3020, 2957, 2922, 2867, 2845, 1730, 1643, 1593, 1513, 1456, 1385, 1372, 1330, 1317, 1298, 1229, 1178, 1148, 1121, 1094, 1069, 1032, 1021, 998, 974, 921, 886, 871, 836, 809, 751, 706, 646. **HRMS** (ESI+): calcd. for C₂₆H₄₁O₄⁺ [M+H]⁺ 417.29994, found 417.2997. Anti-11c (major). Colorless oil. $R_f 0.25$ (PE/Et₂O 9:1). $[\alpha]_D = +69.9$ (c 1.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 6.91 – 6.74 (4 H, m, aromatic CH), 5.85 (1 H, ddt, J 17.3, 10.2, 7.1, CH=CH₂), 5.13 – 4.96 (2 H, m, CH=CH₂), 4.26 (1 H, quintuplet, J 6.2, CHCH₂OPMP), 4.02 – 3.92 (2 H, m, part A of ABX CH₂OPMP, CHCHOR), 3.84 (1 H, dd, J 9.5, 5.1, part B of ABX CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.56 (1 H, dt, J 6.8, 4.6, CHCH₂CH=CH₂), 3.14 (1 H, td, J 10.4, 4.1, CH-O menthol), 2.45 – 2.16 (3 H, m, CH₂CH=CH₂ + CH menthol), 2.16 – 2.06 (1 H, m, part A CH₂ menthol), 2.05 – 1.73 (4 H, m 2×CH₂ THF), 1.67 – 1.56 (2 H, m, 2×part A of CH₂ menthol), 1.32 – 1.24 (1 H, m, CH menthol), 1.19 – 1.10 (1 H, m, CH menthol), 0.93 – 0.83 (7 H, m, 2×CH₃ menthol, part B of CH₂ menthol), 0.83 – 0.65 (5 H, m CH₃ menthol, 2×part B of CH₂ menthol). ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 153.9 (C-O), 153.3 (C-O), 135.0 (CH=CH₂), 117.0 (CH=CH₂), 115.6 (aromatic CH), 114.7 (aromatic CH), 81.1 (CHCHOR), 77.7 (CHCH₂OPMP), 76.5 (CH-O menthol), 76.3 (CHCH₂CH=CH₂), 71.5 (CH₂OPMP), 55.9 (OCH₃), 48.9 (CH menthol), 41.2 (CH₂ menthol), 36.1 (CH₂CH=CH₂), 34.7 (CH₂ menthol), 31.6 (CH menthol), 28.5 (CH₂ THF), 26.2 (CH₂ THF), 25.0 (CH menthol), 23.2 (CH₂ menthol), 22.5 (CH₃), 21.5 (CH₃), 16.2 (CH₃). **IR** v_{max} (cm⁻¹) 3085, 3020, 2957, 2922, 2867, 2845, 1730, 1643, 1593, 1513, 1456, 1385, 1372, 1330, 1317, 1298, 1229, 1178, 1148, 1121, 1094, 1069, 1032, 1021, 998, 974, 921, 886, 871, 836, 809, 751, 706, 646. HRMS (ESI+): calcd. for C₂₆H₄₁O₄⁺ [M+H]⁺ 417.29994, found 417.3003.

(2R,5S)-2-(1-(Allyloxy)but-3-en-1-yl)-5-((4-methoxyphenoxy)methyl)tetrahydrofuran 11d

Following the general procedure, CaCO₃ (0.34 mmol, 34 mg), aldehyde **4** (0.34 mmol, 1.7 mL, 0.2 M in dry toluene), (allyloxy)trimethylsilane **15b** (0.68 mmol, 115 μ L), TMSOTf (0.10 mmol, 340 μ L, 0.3 M in dry CH₂Cl₂) and AllyITMS (0.68 mmol, 118 μ L) were reacted at 0 °C for 24 h. After workup, the crude was purified by chromatography (PE/Et₂O 85:15) to give *anti*-**11d** (major, *R*_f 0.38, PE/Et₂O 8:2) and *syn*-**11d** (minor, *R*_f 0.25) in 55% overall yield (59 mg) (d.r. 52:48 by ¹H NMR).

Anti-11d (major). Colorless oil. **R**_f 0.38 (PE/Et₂O 8:2). [α]_D = +9.20 (c 1.22, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 6.92 – 6.75 (4 H, m, aromatic CH), 6.00 – 5.72 (2 H, m, 2×CH=CH₂), 5.23 (1 H, dq, *J* 17.2, 1.7, CH=CHH), 5.16 – 5.00 (3 H, m, CH=CH*H* + CH=C*H*₂), 4.26 (1 H, quintuplet, *J* 6.2, CHCH₂OPMP), 4.15 – 4.06 (2 H, m, OCH₂CH=CH₂), 4.03 – 3.96 (1 H, m, CHCHOR), 3.93 (1 H, dd, *J* 9.6, 5.8, part A of ABX CH₂OPMP), 3.88 (1 H, dd, *J* 9.6, 5.0, part B of ABX CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.52 (1 H, td, *J* 6.1, 4.4, CHCH₂CH=CH₂), 2.39 – 2.18 (2 H, m, CHCH₂CH=CH₂), 2.06 – 1.75 (4 H, m, 2×CH₂ THF part). ¹³C NMR (75 MHz, CDCl₃) δ 153.9 (C-O), 153.2 (C-O), 135.5 (CH=CH₂), 135.0 (CH=CH₂), 117.0 (CH=CH₂), 116.6 (CH=CH₂), 115.5 (aromatic CH), 114.7 (aromatic

CH), 82.0 (CHCHOR), 79.8 (CHCH₂CH=CH₂), 77.7 (CHCH₂OPMP), 72.2 (OCH₂CH=CH₂), 71.2 (CH₂OPMP), 55.8 (OCH₃), 36.6 (CHCH₂CH=CH₂), 28.4 (CH₂), 25.8 (CH₂). **HRMS** (ESI+): calcd. for C₁₉H₂₇O₄⁺ [M+H]⁺ 319.19039, found 319.1921.

Syn-11d (minor). Colorless oil. R_f 0.25 (PE/Et₂O 8:2). [α]_D = -0.923 (0.93, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 6.91 - 6.77 (4 H, m, aromatic CH), 6.01 - 5.79 (2 H, m, 2×CH=CH₂), 5.24 (1 H, dq, *J* 17.2, 1.6, CH=CHH), 5.18 - 4.99 (3 H, m, CH=CH*H* + CH=CH₂), 4.35 - 4.21 (1 H, m, CHCH₂OPMP), 4.17 - 4.06 (2 H, m, OCH₂CH=CH₂), 4.06 - 3.99 (1 H, m, CHCHOR), 3.96 (1 H, dd, *J* 9.6, 5.2, part A of ABX CH₂OPMP), 3.87 (1 H, dd, *J* 9.6, 5.3, part B of ABX CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.37 (1 H, ddd, *J* 7.2, 5.8, 4.7, CHCH₂CH=CH₂), 2.45 - 2.28 (1 H, m, part A of CHCH₂CH=CH₂), 2.31 - 2.14 (1 H, m, part A of CHCH₂CH=CH₂), 2.08 - 1.70 (4 H, m, 2×CH₂ THF part). ¹³C NMR (75 MHz, CDCl₃) δ 153.9 (C-O), 153.2 (C-O), 135.5 (CH=CH₂), 135.3 (CH=CH₂), 116.9 (CH=CH₂), 116.7 (CH=CH₂), 115.6 (aromatic CH), 114.7 (aromatic CH), 81.9 (CHCHOR), 81.0 (CHCH₂CH=CH₂), 77.6 (CHCH₂OPMP), 71.8 (OCH₂CH=CH₂), 71.2 (CH₂OPMP), 55.8 (OCH₃), 35.6 (CHCH₂CH=CH₂), 28.5 (CH₂), 27.3 (CH₂). HRMS (ESI+): calcd. for calcd. for C₁₉H₂₇O₄⁺ [M+H]⁺ 319.19039, found 319.1902.

(2S,5R)-2-((4-Methoxyphenoxy)methyl)-5-(1-(((R)-1-phenylbut-3-en-2-yl)oxy)but-3-en-1-yl)tetrahydrofuran 11e

Following the general procedure, CaCO₃ (0.50 mmol, 50 mg), aldehyde **4** (0.50 mmol, 2.5 mL, 0.2 M in dry toluene), (*R*)-1-phenylbut-3-en-2-ol TMS ether **16b** (1.00 mmol, 220 mg, 250 μ L), TMSOTf (0.15 mmol, 500 μ L, 0.3 M in dry CH₂Cl₂) and AllylTMS (1.00 mmol, 172 μ L) were reacted at –40 °C for 48 h. After workup, the crude was purified by chromatography (PE/Et₂O 9:1) to give *anti*-**11e** (minor, *R*_f 0.26, PE/Et₂O 9:1) and *syn*-**11e** (major, *R*_f 0.21) in 66% overall yield (d.r. 43:57 by HPLC).

Anti-**11e** (minor). Colorless oil. *R*_f 0.26 (PE/Et₂O 9:1). [**α**]_D = -10.3 (c 0.51, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ.22 – 7.13 (5 H, m, aromatic CH of Ph), 6.90 – 6.78 (4 H, m, aromatic CH of PMP), 5.79 (1 H, ddt, *J* 17.1, 10.2, 7.1, *CH*=CH₂), 5.66 (1 H, ddd, *J* 17.1, 10.4, 8.1, *CH*=CH₂), 5.12 – 4.96 (4 H, m, 2×CH=C*H*₂), 4.25 – 4.17 (1 H, m, PhCH₂C*H*), 4.16 – 4.08 (1 H, m, *CHC*H₂OPMP), 3.89 (1 H, td, *J* 7.4, 3.3, *CHC*HOR), 3.83 – 3.74 (5 H, m, *CH*₂OPMP + OCH₃), 3.69 (1 H, td, *J* 6.4, 3.4, *CHC*H₂CH=CH₂), 2.92 (1 H, dd, *J* 13.4, 6.8, part A of PhC*H*₂), 2.68 (1 H, dd, *J* 13.4, 6.6, part B of PhC*H*₂), 2.28 – 2.09 (2 H, m, *CH*₂CH=CH₂), 1.91 – 1.67 (3 H, m, CH₂ THF + part A of CH₂ THF), 1.50 – 1.43 (1 H, m, part B of CH₂ THF). ¹³C **NMR** (101 MHz, CDCl₃, 25 °C) δ 154.0 (C-O), 153.3 (C-O), 139.4 (*C*H=CH₂), 138.6 (C quat. of Ph), 135.4 (*C*H=CH₂), 130.0 (2×CH of Ph), 128.1 (2×CH of Ph), 126.1 (CH of Ph), 117.4 (CH=CH₂), 116.7 (CH=CH₂), 115.7 (2×CH of PMP), 37.8 (CH₂CH=CH₂), 28.1 (CH₂ THF), 24.7 (CH₂ THF). **HRMS** (ESI+): calcd. for C₂₆H₃₃O₄⁺ [M+H]⁺ 409.23734, found 409.2374.

Syn-**11e** (major). Colorless oil. *R*_f 0.26 (PE/Et₂O 9:1). [**α**]_D = +13.1 (c 1.02, CHCl₃). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.25 – 7.13 (5 H, m, aromatic CH of Ph), 6.88 – 6.76 (4 H, m, aromatic CH of PMP), 5.83 (1 H, ddt, *J* 17.1, 10.2, 7.0, *CH*=CH₂), 5.68 (1 H, ddd, *J* 17.2, 10.3, 7.9, *CH*=CH₂), 5.12 – 4.93 (4 H, m, 2×CH=CH₂), 4.23 – 4.10 (2 H, m, *CH*CH₂OPMP + PhCH₂CH), 3.91 (1 H, dd, *J* 9.6, 5.6, part A of *CH*₂OPMP), 3.87 – 3.82 (2 H, m, part B of *CH*₂OPMP + CHCHOR), 3.76 (3 H, s, OCH₃), 3.43 (1 H, ddd, *J* 8.0, 5.6, 4.3, *CH*CH₂CH=CH₂), 2.94 (1 H, dd, *J* 13.5, 7.0, part A of PhCH₂), 2.73 (1 H, dd, *J* 13.5, 6.5, part B of PhCH₂), 2.33 – 2.23 (1 H, m, part A of *CH*₂CH=CH₂), 2.18 – 2.09 (1 H, m, part B of *CH*₂CH=CH₂), 1.97 – 1.86 (1 H, m, part A of of CH₂ THF), 1.73 – 1.58 (3 H, m, part B of of CH₂ THF + CH₂ THF). ¹³C NMR (101 MHz, CDCl₃, 25 °C) δ 154.0 (C-O), 153.3 (C-O), 139.3 (*C*H=CH₂), 138.7 (C quat. of Ph), 135.8

(*C*H=CH₂), 129.9 (2×CH of Ph), 128.1 (2×CH of Ph), 126.1 (CH of Ph), 117.0 (CH=*C*H₂), 116.5 (CH=*C*H₂), 115.6 (2×CH of PMP), 114.7 (2×CH of PMP), 82.2 (*C*HCH₂OPMP or PhCH₂C*H*), 81.5 (*C*HCHOR), 78.4 (*C*HCH₂CH=CH₂), 77.6 (*C*HCH₂OPMP or PhCH₂C*H*), 71.3 (*C*H₂OPMP), 55.9 (OCH₃), 42.6 (CH₂Ph), 35.7 (*C*H₂CH=CH₂), 28.4 (CH₂ THF), 26.6 (CH₂ THF). **HRMS** (ESI+): calcd. for C₂₆H₃₃O₄⁺ [M+H]⁺ 409.23734, found 409.2369.

(2S,5R)-2-((4-Methoxyphenoxy)methyl)-5-(1-(((S)-1-phenylbut-3-en-2-yl)oxy)but-3-en-1-yl)tetrahydrofuran 11f

Following the general procedure, CaCO₃ (0.36 mmol, 36 mg), aldehyde **4** (0.36 mmol, 1.8 mL, 0.2 M in dry toluene), (*S*)-1-phenylbut-3-en-2-ol TMS ether *ent*-16b (0.72 mmol, 159 mg, 180 μ L), TMSOTf (0.108 mmol, 360 μ L, 0.3 M in dry CH₂Cl₂) and AllyITMS (0.72 mmol, 125 μ L) were reacted at -40 °C for 48 h. After workup, the crude was purified by chromatography (PE/Et₂O 9:1) to give *anti*-11f (major, *R*_f 0.41, PE/Et₂O 8:2) and *syn*-11f (minor, *R*_f 0.34) in 57% overall yield (83 mg) (d.r. 68:32 by HPLC).

Anti-**11f** (major). Colorless oil. **R**_f 0.41 (PE/Et₂O 8:2). [**α**]_D = -16.9 (c 1.61, CHCl₃). ¹**H** NMR (300 MHz, CDCl₃, 25 °C) δ (300 MHz, Chloroform-*d*) 7.23 – 7.09 (5 H, m, aromatic CH of Ph), 6.90 – 6.76 (4 H, m, aromatic CH of PMP), 5.89 – 5.57 (2 H, m, 2×CH=CH₂), 5.15 – 4.94 (4 H, m, 2×CH=CH₂), 4.26 – 4.16 (1 H, m, PhCH₂CH), 4.16 – 4.05 (1 H, m, CHCH₂OPMP), 3.89 (1 H, td, *J* 7.3, 3.2, CHCHOR), 3.83 – 3.74 (5 H, m, CH₂OPMP + OCH₃), 3.70 (1 H, td, *J* 6.4, 3.1, CHCH₂CH=CH₂), 2.92 (1 H, dd, *J* 13.4, 6.8, part A of PhCH₂), 2.68 (1 H, dd, *J* 13.4, 6.6, part B of PhCH₂), 2.30 – 2.08 (2 H, m, CH₂CH=CH₂), 1.95 – 1.65 (3 H, m, CH₂ THF + part A of CH₂ THF), 1.50 – 1.36 (1 H, m, part B of CH₂ THF). ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 153.9 (C-O), 153.2 (C-O), 139.3 (CH=CH₂), 138.6 (C quat. of Ph), 135.3 (CH=CH₂), 130.0 (2×CH of Ph), 128.1 (2×CH of Ph), 126.1 (CH of Ph), 117.5 (CH=CH₂), 116.7 (CH=CH₂), 115.6 (2×CH of PMP), 114.7 (2×CH of PMP), 82.7 (PhCH₂CH), 82.7 (CHCHOR), 77.4 (CHCH₂OPMP), 76.1 (CHCH₂CH=CH₂), 71.3 (CH₂OPMP), 55.8 (OCH₃), 42.8 (CH₂Ph), 37.8 (CH₂CH=CH₂), 28.1 (CH₂ THF). HRMS (ESI+): calcd. for C₂₆H₃₃O₄⁺ [M+H]⁺ 409.23734, found 409.2383.

Syn-**11f** (minor). Colorless oil. *R*_f 0.34 (PE/Et₂O 8:2). [*α*]_D = -26.0 (c 0.66, CHCl₃). ¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.25 – 7.14 (5 H, m, aromatic CH of Ph), 6.89 – 6.78 (4 H, m, aromatic CH of PMP), 5.78 – 5.53 (2 H, m, 2×CH=CH₂), 5.13 – 5.02 (2 H, m, CH=CH₂), 5.02 – 4.88 (2 H, m, CH=CH₂), 4.34 – 4.20 (1 H, m, CHCH₂OPMP), 4.08 – 3.96 (2 H, m, PhCH₂CH + CHCHOR), 3.95 (1 H, dd, *J* 9.5, 5.5, part A of CH₂OPMP), 3.83 (1 H, dd, *J* 9.5, 5.4, part B of CH₂OPMP), 3.76 (3 H, s, OCH₃), 3.40 (1 H, q, *J* 5.3, CHCH₂CH=CH₂), 2.92 (1 H, dd, *J* 13.5, 7.1, part A of PhCH₂), 2.72 (1 H, dd, *J* 13.5, 6.2, part B of PhCH₂), 2.35 – 2.19 (1 H, m, part A of CH₂CH=CH₂), 2.12 – 1.93 (2 H, m, part B of CH₂CH=CH₂ + part A of of CH₂ THF), 1.93 – 1.69 (3 H, m, part B of of CH₂ THF + CH₂ THF). ¹³C NMR (75 MHz, CDCl₃, 25 °C) δ 153.9 (C-O), 153.3 (C-O), 139.1 (C quat. of Ph), 138.6 (CH=CH₂), 135.3 (CH=CH₂), 129.9 (2×CH of Ph), 128.1 (2×CH of Ph), 126.2 (CH of Ph), 117.1 (CH=CH₂), 116.7 (CH=CH₂), 115.6 (2×CH of PMP), 114.7 (2×CH of PMP), 81.2 and 81.1 (CHCHOR and PhCH₂CH), 78.3 (CHCH₂CH=CH₂), 77.7 (CHCH₂OPMP), 71.3 (CH₂OPMP), 55.9 (OCH₃), 42.6 (CH₂Ph), 35.0 (CH₂CH=CH₂), 28.7 (CH₂ THF), 27.0 (CH₂ THF). **HRMS** (ESI+): calcd. for C₂₆H₃₃O₄⁺ [M+H]⁺ 409.23734, found 409.2389.

(2S,5R)-2-((4-Methoxyphenoxy)methyl)-5-((R)-1-(((1R,2R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)but-3-en-1-yl)tetrahydrofuran 11g

Following the general procedure, CaCO₃ (0.40 mmol, 40 mg), aldehyde **4** (0.40 mmol, 2.0 mL, 0.2 M in dry toluene), (1*R*)-endo-(+)-fenchyl alcohol TMS ether **17b** (0.80 mmol, 181 mg, 215 μ L), TMSOTf (0.12 mmol, 400 μ L, 0.3 M in dry CH₂Cl₂) and AllyITMS (0.80 mmol, 140 μ L) were reacted at -40 °C for 48 h. After workup, the crude was purified by chromatography (PE/Et₂O 20:1) to give a mixture of *syn* and *anti* products in 66% overall yield. In this case, due to the high d.r., we were not able to obtain a pure sample of *anti*-**11g**, and thus we report only the full characterization of *syn*-**11g** and

some selected ¹HNMR peaks of *anti*-**11g**. The diastereomeric ratio was determined on the crude by ¹H NMR and was 90:10 (*syn:anti*). *Syn*-**11g** (major). Colorless oil. *R*_f 0.26 (PE/Et₂O 9:1). [α]_D = -10.3 (c 0.51, CHCl₃). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.88 – 6.79 (4 H, m), 5.89 (1 H, ddt, *J* 17.2, 10.2, 7.2, *CH*=CH₂), 5.08 (1 H, dq, *J* 17.2, 1.4, CH=C*H*H), 5.04 – 4.98 (1 H, m, CH=C*H*H), 4.27 (1 H, pent, *J* 6.0, *CH*CH₂OPMP), 4.14 (1 H, td, *J* 6.9, 4.3, *CH*-CH₂CH=CH₂), 3.96 (1 H, dd, *J* 9.5, 5.7, *CH*HOPMP), 3.87 (1 H, dd, *J* 9.5, 5.3, *CH*HOPMP), 3.77 (3 H, s, OCH₃), 3.37 (1 H, dt, *J* 6.7, 5.2, *CH*CHOR), 3.10 (1 H, d, *J* 1.8, *H*-2), 2.45 (1 H, dtt, *J* 6.8, 0.4, *CH*H-CH=CH₂), 2.27 – 2.17 (1 H, m, mc = 2.22, *CH*H-CH=CH₂), 2.07 – 1.81 (4 H, m), 1.80 – 1.71 (1 H, m), 1.70 – 1.62 (1 H, m), 1.62 – 1.59 (1 H, m), 1.47 – 1.41 (1 H, m), 1.36 (1 H, tdd, *J* 12.3, 5.8, 4.0), 1.09 (3 H, s), 1.07 – 1.01 (1 H, m), 1.00 (3 H, s), 0.99 – 0.89 (1 H, m), 0.85 (3 H, s). ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 153.8 (C-O), 153.2 (C-O), 139.3 (*C*H=CH₂), 135.6 (*C*H=CH₂), 117.5 (*C*H=*C*H₂), 116.6 (*C*H=*C*H₂), 115.4 (2×CH of PMP), 114.5 (2×CH of PMP), 90.67 (*C*-2), 80.8 (*C*HCHOR), 80.1(*C*HCH₂CH=CH₂), 77.6(*C*HCH₂OPMP), 71.2 (*C*H₂OPMP), 55.7 (OCH₃), 49.6 (*C*-1), 48.4 (*C*-4), 41.4 (*C*-7), 39.6 (*C*-3), 35.8 (*C*H₂CH=CH₂) 31.0 (*C*H₃), 28.7 (CH₂ THF), 26.4, 26.2, 26.1 (*C*-5, *C*-6, *C*H₂ THF), 21.9, 20.3 (*C*H₃). **HRMS** (ESI+): calcd. for C₂₆H₃₉O₄ [M+H]⁺ 415.28429, found 415.2855.

Anti-**11g** (minor). Colorless oil. *R*_f 0.21 (PE/Et₂O 9:1). ¹**H NMR** (400 MHz, Chloroform-*d*)(selected peaks) δ 5.83 (1 H, ddt, *J* 17.2, 10.2, 7.2, CH=CH₂), 4.22 (1 H, pent, *J* 6.0, CH-CH₂CH=CH₂), 4.07 (1 H, td, *J* 6.9, 4.3, CHCH₂OPMP), 3.16 (1 H, d, *J* 1.6, *H*-2).

racemic 5-Bromo-6-(1-(cyclohexyloxy)but-3-en-1-yl)benzo[d][1,3]dioxole 12a

m, Cy). ¹³C NMR (101 MHz, CDCl₃) δ 147.8 (C-O), 147.5 (C-O), 136.3 (C quat.), 135.2 (*C*H=CH₂), 116.9 (CH=CH₂), 112.8 (C-Br), 112.3 (aromatic CH), 107.8 (aromatic CH), 101.8 (OCH₂O), 77.0 (*C*HCH₂CH=CH₂), 75.6 (CH of Cy), 41.9 (*C*H₂CH=CH₂), 33.6 (CH₂ Cy), 31.7 (CH₂ Cy), 25.9 (CH₂ Cy), 24.4 (CH₂ Cy), 24.2 (CH₂ Cy). **HRMS** (ESI+): calcd. for C₁₇H₂₂BrO₃⁺ [M+H]⁺ 353.07468, found 353.0745 (only the lighter isotope is reported).

5-Bromo-6-(1-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)but-3-en-1-yl)benzo[d][1,3]dioxole 12b

Following the general procedure, 6-bromopiperonal 9 (0.445 mmol, 102 mg), (–)-menthol TMS ether 14b (0.667 mmol, 153 mg, 173 μL), AllyITMS (0.667 mmol, 106 μL), TMSOTf (0.133 mmol, 445 μL, 0.3 M in dry CH₂Cl₂) were reacted in dry CH₂Cl₂ (2.2 mL) at -78 °C for 4 h. After workup, the crude was purified by chromatography (PE/CH₂Cl₂ 8:2) to give **12b** in 87% yield (159 mg) as colorless oil (inseparable epimers, d.r. 55:45 by ¹H NMR). **R**_f 0.46 (PE/CH₂Cl₂ 8:2). ¹H NMR (400 MHz, CDCl₃, **mixture of epimers**) δ 7.01 (1 H, s, aromatic CH epimer A), 6.95 (1 H, s, aromatic CH epimer B), 6.94 (1 H, s, aromatic CH epimer B), 6.93 (1 H, s, aromatic CH epimer A), 6.01 – 5.93 (4 H, m, 2×OCH₂O epimer A+B), 5.86 – 5.72 (2 H, m, 2×CH=CH₂) epimer A+B), 5.07 – 4.97 (4 H, m, 2×CH=CH₂ epimer A+B), 4.94 (1 H, dd, J 7.3, 6.2, CHCH₂CH=CH₂ epimer B), 4.72 (1 H, dd, J 7.1, 5.3, CHCH₂CH=CH₂ epimer A), 3.18 (1 H, td, J 10.5, 4.2, CH-O menthol epimer A), 2.89 (1 H, td, J 10.4, 4.1, CH-O menthol epimer B), 2.52 – 2.18 (7 H, m, 2×CH₂CH=CH₂ epimer A+B, 2×CH menthol epimer A+B, part A of CH₂ menthol epimer A,), 1.70 – 1.53 (5 H, m, 2×CH₂ menthol epimer A+B, 3× part A of CH₂ menthol epimer A+B,), 1.35 – 1.14 (4 H, m, 4×CH menthol epimer A+B), 1.00 – 0.63 (19 H, m, 5×CH₃ epimer A+B, 4×part B of CH₂ menthol epimer A+B,), 0.36 (3 H, d, J 6.9, CH₃ epimer B). ¹³C NMR (101 MHz, CDCl₃, mixture of epimers) δ 147.8 (C-O), 147.6(C-O), 147.5(C-O), 147.3(C-O), 137.2 (C guat.), 135.3 (C guat.), 134.73 (CH=CH₂), 134.68 (CH=CH₂), 117.3 (CH=CH₂), 117.1 (CH=CH₂), 113.9 (C-Br), 112.0 (aromatic CH epimer A), 112.0 (C-Br), 112.0 (aromatic CH epimer B), 108.6 (aromatic CH epimer A), 108.5 (aromatic CH epimer B), 101.8 (OCH₂O epimer B), 101.7 (OCH₂O epimer A), 80.1 (CH-O menthol epimer A), 79.5 (CHCH₂CH=CH₂ epimer A), 75.4 (CHCH₂CH=CH₂ epimer B), 75.3 (CH-O menthol epimer B), 49.2 (CH menthol), 48.5 (CH menthol), 42.2 (CH₂ menthol), 42.0 (2×CH₂CH=CH₂), 40.5 (CH₂ menthol), 34.6 (CH₂ menthol), 34.5 (CH₂ menthol), 31.7 (CH menthol), 31.6 (CH menthol), 25.2 (CH menthol), 25.0 (CH menthol), 23.1 (CH₂ menthol), 22.8 (CH₂ menthol), 22.6 (CH₃), 22.5 (CH₃), 21.5 (CH₃), 21.4 (CH₃), 16.2 (CH₃ epimer

A), 15.4 (CH₃ epimer B). HRMS (ESI+): calcd. for $C_{21}H_{30}BrO_3^+$ [M+H]⁺ 409.13728, found 409.1382(only the lighter isotope is reported).

racemic 6-(1-(Allyloxy)but-3-en-1-yl)-5-bromobenzo[d][1,3]dioxole 12c

Following the general procedure, 6-bromopiperonal 9 (0.438 mmol, 100 mg), (allyloxy)trimethylsilane 15b (0.657 mmol, 110 μ L), AllyITMS (0.657 mmol, 104 μ L), TMSOTF (0.131 mmol, 438 μ L, 0.3 M in dry CH₂Cl₂) were reacted in dry CH₂Cl₂ (2.2 mL) at – 78 °C for 2 h. After workup, the crude was purified by chromatography (PE/CH₂Cl₂ 65:35) to give **12c** in 82% yield (111 mg) as colorless oil. **R**_f 0.28 (PE/CH₂Cl₂ 6:4). ¹H NMR (400 MHz, CDCl₃) δ 6.96 (2 H, s, aromatic CH), 5.99 (1 H, d, J 1.4, part A of AB of OCH₂O), 5.97 (1 H, d, J 1.4, part B of AB of OCH₂O), 5.94 – 5.79 (2 H, m, 2×CH=CH₂), 5.31 – 5.21 (1 H, m, CH=CHH), 5.20 – 5.14

(1 H, m, CH=CHH), 5.11 – 5.01 (2 H, m, CH=CH₂), 4.73 (1 H, dd, J 7.0, 5.7, CHCH₂CH=CH₂), 3.91 (1 H, ddt, J 12.8, 5.1, 1.5, part A of OCH₂CH=CH₂), 3.77 (1 H, ddt, J 12.8, 6.0, 1.4, part A of OCH₂CH=CH₂), 2.51 – 2.33 (2 H, m, CHCH₂CH=CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 148.0 (C-O), 147.7 (C-O), 134.7 (C quat.), 134.6 (2×CH=CH₂), 117.2 (2×CH=CH₂), 113.3 (C-Br), 112.5 (aromatic CH), 107.6 (aromatic CH), 101.8 (OCH₂O), 79.3 (CHCH₂CH=CH₂), 69.9 $(OCH_2CH=CH_2)$, 41.4 (CHCH_2CH=CH_2). HRMS (ESI+): calcd. for C₁₄H₁₆BrO₃⁺ [M+H]⁺ 311.02773, found 311.0288 (only the lighter isotope is reported).

5-Bromo-6-(1-(((S)-1-phenylbut-3-en-2-yl)oxy)but-3-en-1-yl)benzo[d][1,3]dioxole 12d

Following the general procedure, 6-bromopiperonal 9 (0.441 mmol, 101 mg), (S)-1-phenylbut-3-en-2-ol TMS ether ent-16b (0.661 mmol, 146 mg, 166 μL), AllyITMS (0.661 mmol, 114 μL), TMSOTf (0.132 mmol, 440 μL, 0.3 M in dry CH₂Cl₂) were reacted in dry CH₂Cl₂ (2.2 mL) at -78 °C for 1 h. After workup, the crude was purified by chromatography (PE/Et₂O 50:1) to give **12d** in 89% yield as colorless oil (nearly inseparable epimers, 157 mg), d.r. 18:82 by ¹H NMR). *R*_f 0.22 (major), 0.26 (minor) (PE/Et₂O 100:2) ¹H NMR (400 MHz, CDCl₃, measured on enriched major epimer) δ 7.31 – 7.26 (2 H, m, aromatic CH of Ph), 7.24 – 7.18 (3 H, m, aromatic CH of Ph), 6.96 (1 H, s, aromatic CH of piperonyl), 6.91 (1 H, s, aromatic CH of piperonyl), 5.97 (1 H, d, J 1.0, part A of AB of OCH₂O), 5.95 (1 H, d, J 0.9, part B of AB of OCH₂O), 5.69 – 5.54 (2 H, m, 2×CH=CH₂), 5.06 – 4.91 (4 H, m, 2×CH=CH₂), 4.75 – 4.70 (1 H, m, CHCH₂CH=CH₂), 3.93 (1 H, g, J 6.7, PhCH₂CH), 2.98 (1 H, dd, J 13.5, 6.6, part A of PhCH₂), 2.77 (1 H, dd, J 13.5, 6.5, part B of PhCH₂), 2.35 – 2.28 (2 H, m, CH₂CH=CH₂). ¹³C NMR (101 MHz, CDCl₃, measured on enriched major epimer) δ 147.6 (C-O), 147.5 (C-O), 138.5 (CH=CH₂), 138.3 (C quat.), 135.8 (C quat.), 134.4 (CH=CH₂), 129.9 (2×CH of Ph), 128.2 (2×CH of Ph), 126.3 (CH of Ph), 117.2 (CH=CH₂), 116.2 (CH=CH₂), 112.7 (C-Br), 112.1 (CH of piperonyl), 108.4 (CH of piperonyl), 101.7 (OCH₂O), 81.2 (PhCH₂CH), 78.2 (CHCH₂CH=CH₂), 41.9 (PhCH₂), 41.2 (CH₂CH=CH₂). HRMS (ESI+): calcd. for $C_{21}H_{22}BrO_3^+$ [M+H]⁺ 401.07468, found 401.0741 (only the lighter isotope is reported).

5-Bromo-6-(1-(((1R,2R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)but-3-en-1-yl)benzo[d][1,3]dioxole 12e

Following the general procedure, 6-bromopiperonal 9 (0.480 mmol, 110 mg), (1R)-endo-(+)-fenchyl alcohol TMS ether 17b (0.72 mmol, 194 μL), AllyITMS (0.72 mmol, 124 μL), TMSOTf (0.144 mmol, 480 μL, 0.3 M in dry CH₂Cl₂) were reacted in dry CH₂Cl₂ (2.4 mL) at -78 °C for 1.5 h. After workup, the crude was purified by chromatography (PE/CH₂Cl₂ 9:1) to give **12e** in 60% overall yield as colorless oil, d.r. 52:48 (A:B) by ¹H NMR. *R* f 0.33 and 0.28 (PE/CH₂Cl₂ 9:1). Although the two epimers are difficult to separate, we could obtain fractions enriched in epimer A (faster running) or B (slower running).

Epimer A: ¹H NMR (400 MHz, CDCl₃) δ 6.97 (1 H, s, aromatic CH of piperonyl), 6.93 (1 H, s, aromatic CH of piperonyl), 5.98 (1 H, d, J 1.4, part A of AB of OCH₂O), 5.96 (1 H, d, J 1.4, part B of AB of OCH₂O), 5.86 (1 H, ddt, J 16.4, 10.7, 7.1, CH=CH₂), 5.07-4.94 (2 H, m, CH=CH₂), 4.79 (1 H, dd, J 7.0, 5.3, CH-CH₂C=), 2.95 (1 H, d, J 2.0, H-2), 2.50-2.31 (2 H, m, CH₂C=CH₂), 1.85 (1 H, ddt, J 11.9, 6.5, 3.2, 1 H-5), 1.71-1.61 (1 H, m, 1 H-6), 1.60-1.53 (1 H, m, H-4), 1.43-1.30 (2 H, m), 1.04 (3 H, s, CH₃), 1.05-0.95 (2 H, m), 0.792, 0.786 (2x3 H, 2s, CH₃). ¹³C NMR (101 MHz, CDCl3) δ 147.4 (C-O), 147.3 (C-O), 136.0 (C quat.), 134.7 (CH=CH₂), 117.1 (CH=CH₂), 112.8 (C-Br), 111.9 (CH of piperonyl), 108.4 (CH of piperonyl), 101.6 (OCH₂O), 90.1 (C-2), 79.5 (CHCH₂CH=CH₂), 49.5 (C-1), 48.3 (C-4), 41.6 (C-7), 41.2 (CH₂CH=CH₂), 39.5 (C-3), 30.9 (CH₃), 26.3 (C-6), 26.1 (C-5), 21.7 (CH₃), 20.9 (CH₃). **Epimer B**: ¹H NMR (400 MHz, CDCl₃) δ 6.96 (1 H, s, aromatic CH of piperonyl), 6.93 (1 H, s, aromatic CH of piperonyl), 5.98 (1 H, d, J 0.8, part A of AB of OCH₂O), 5.96 (1 H, d, J 0.8, part B of AB of OCH₂O), 5.82 (1 H, mc, CH=CH₂), 5.05-4.93 (2 H, m, CH=CH₂), 4.75 (1 H, t, J 6.6, CH-CH₂C=), 2.80 (1 H, d, J 1.2, H-2), 2.52-2.30 (2 H, m, CH₂C=CH₂), 1.90-1.60 (m, 1 H-6 and 1 H-5), 1.60-1.53 (1 H, m, H-4), 1.45-1.30 (2 H, m), 1.04 (6 H, s, CH₃), 1.05-0.95 (2 H, m), 0.91 (3 H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 147.5 (x2)(C-O), 135.2 (C quat.), 134.4 (CH=CH₂), 117.0 (CH=CH₂), 113.5 (C-Br), 111.9 (CH of piperonyl), 108.5 (CH of piperonyl), 101.6 (OCH₂O), 89.2(C-2), 78.5 (CHCH₂CH=CH₂), 49.1 (C-1), 48.3 (C-4), 42.1 (C-7), 41.3 (CH₂CH=CH₂), 39.4 (C-3), 31.7 (CH₃), 26.2 (C-6), 25.9 (C-5), 21.4 (CH₃), 20.2 (CH₃). HRMS (on the mixture) (ESI+): calcd. for C₂₁H₂₈BrO₃⁺ [M+H]⁺ 407.12163, found 407.1214 (only the lighter isotope is reported).

5-Bromo-6-(1-(((1R,2R,3R,5S)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-yl)oxy)but-3-en-1-yl)benzo[d][1,3]dioxole 12f

Following the general procedure, 6-bromopiperonal **9** (107 mg, 0.47 mmol), (–) isopinocampheol TMS ether **18b** (0.70 mmol, 159 mg), AllyITMS (0.70 mmol, 111 μ L), TMSOTf (140 μ mol, 466 μ L, 0.3 M in dry CH₂Cl₂) were reacted in dry CH₂Cl₂ (2.3 mL) at –78 °C for 6 h. After workup, the crude was purified by chromatography (PE/CH₂Cl₂ 9:1) to give **12e** (94 mg, 49% overall yield) as colorless oil. Although the two epimers are difficult to separate, we could obtain fractions enriched in epimer **A** (faster running) or **B** (slower running). D.r. 52:48 (A:B) by ¹H NMR. **R**_f 0.27 and 0.20 (PE/CH₂Cl₂ 9:1).

Epimer A: ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (1 H, s, aromatic CH of piperonyl), 6.96 (1 H, s, aromatic CH of piperonyl), 5.99 (1 H, d, *J* 1.5, part A of AB of OCH₂O), 5.97 (1 H, d, *J* 1.5, part B of AB of OCH₂O), 5.92 (1 H, ddt, *J* 17.2, 10.4, 7.0, CH=CH₂), 5.12-5.00 (2 H, m, CH=CH₂), 4.79 (1 H, dd, *J* 7.8, 4.7, CH-CH₂C=), 3.55 (1 H, dt, *J* 9.0, 3.8, H-3), 2.40-2.20 (4 H, m, CH₂CH=CH₂, 1 H-7,1 H-4, 1 H-6), 2.13 (1 H, qdd, *J* 7.2, 4.0, 2.4, H-2), 1.84 (1 H, tt, *J* 5.7, 3.1, H-1 or H-5), 1.81-1.71 (2 H, m, H-1 or H-5 + 1 H-4 or H-6), 1.15-1.10 (1 H, m, H-4 or H-6), 1.18, 0.81 (2 s, 2 x 3 H, CH₃), 1.11 (3 H, d, *J* 7.2, CH₃CH). ¹³C NMR (101 MHz, CDCl3) δ 147.7 (C-O), 147.4 (C-O), 135.9 (C quat.), 135.1 (CH=CH₂), 116.9 (CH=CH₂), 112.7 (C-Br), 112.2 (CH of piperonyl), 107.9 (CH of piperonyl), 101.6 (OCH₂O), 78.1 (CHCH₂CH=CH₂), 76.8 (C-3), 47.8 (C-1 or C-5), 44.5 (C-2), 41.8 (CH₂CH=CH₂), 41.0 (C-1 or C-5), 38.2 (C-6), 36.3 (C-7 or C-4), 32.5 (C-7 or C-4), 27.4 (CH₃), 23.8 (CH₃), 21.9 (CH₃CH). HRMS: (ESI+): calcd. for C₂₁H₂₈BrO₃⁺ [M+H]⁺ 407.12163, found 407.1217 (only the lighter isotope is reported).

Epimer B: ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (1 H, s, aromatic CH of piperonyl), 6.96 (1 H, s, aromatic CH of piperonyl), 5.99 (1 H, d, *J* 1.5, part A of AB of OCH₂O), 5.97 (1 H, d, *J* 1.5, part B of AB of OCH₂O), 5.89 (1 H, ddt, *J* 17.2, 10.2, 7.0, CH=CH₂), 5.11-5.00 (2 H, m, CH=CH₂), 4.79 (1 H, dd, *J* 7.6, 5.5, CH-CH₂C=), 3.41 (1 H, dt, *J* 8.9, 4.3, *H*-3), 2.42-2.28 (4 H, m, CH₂CH=CH₂, 1 *H*-7,1 *H*-4, 1 *H*-6), 2.02 (1 H, qdd, *J* 7.2, 5.2, 2.0, *H*-2), 1.94 (1 H, tt, *J* 5.8, 3.1, *H*-1 or *H*-5), 1.84 (1 H, dt, *J* 13.4, 3.8, *H*-4 or *H*-6), 1.74 (1 H, td, *J* 5.9, 2.1, *H*-1 or *H*-5), 1.18-0.78 (2 s, 2 x 3 H, CH₃), 1.08 (1 H, d, *J* 9.6, *H*-4 or *H*-6), 0.91 (3 H, d, *J* 7.4, CH₃CH). ¹³C NMR (101 MHz, CDCl3) δ 147.7 (C-O), 147.5 (C-O), 135.4 (C quat.), 135.0 (CH=CH₂), 116.9 (CH=CH₂), 113.5 (C-Br), 112.1 (CH of piperonyl), 107.9 (CH of piperonyl), 101.7 (OCH₂O), 76.5 (CHCH₂CH=CH₂), 75.5 (C-3), 47.5 (C-1 or C-5), 44.6 (C-2), 42.0 (CH₂CH=CH₂), 41.6 (C-1 or C-5), 38.4 (C-6), 35.5 (C-7 or C-4), 33.4 (C-7 or C-4), 27.5 (CH₃), 23.7 (CH₃), 20.5 (CH₃CH). **HRMS** (ESI+): calcd. for C₂₁H₂₈BrO₃ [M+H]⁺ 407.1221, found 407.1229 (only the lighter isotope is reported).

(2R)-Phenylbut-3-ene-2-ol 16a and (2S)-phenylbut-3-ene-2-ol ent-16a.

These alcohols are known in both enantiomeric forms.³⁻⁵ However, we prepared them as follows. Freshly distilled phenylacetaldehyde (4.6 mL, 41.6 mmol) was dissolved in dry THF (165 mL) and cooled to -10 °C. Then, vinyl magnesium bromide (50 mL of a 1.0 M solution in MeOH, 50 mmol) was slowly added through a dropping funnel. At the end of addition, the mixture was stirred at 0 °C for 3 h and 35 min. The mixture was quenched with a saturated aqueous NH₄Cl solution (100 mL). After evaporation of most THF at the rotavapor, extraction with Et₂O and evaporation afforded a crude product that was purified by chromatography

(PE/Et₂O 4:1) to give pure **racemic 16a** (5.05 g, 82%).⁶ All analytical data were in agreement with those reported.⁷ A sample of this racemic alcohol (1.03 g, 6.95 mmol) was dissolved in diisopropyl ether (31 mL) in a thermostated bath at 20 °C. 3 Å powdered molecular sieves (0.35 g) were added, followed by vinyl butyrate (4.4 mL, 34.6 mmol) and by Amano PS lipase (0.51 g). The suspension was stirred for 7 h, and then filtered through a celite cake, washing with CH_2Cl_2 . The filtrate was evaporated to dryness and the crude product controlled by ¹H NMR to determine conversion, that was 48.5%. Chromatography (PE/Et₂O from 15:1 to 4:1) afforded first butyrate (*S*)-**25** (666 mg, 44%) (e.e. > 98%), and then alcohol (*R*)-**16a** (388 mg, 38%) (e.e. 97%).

Butyrate (*S*)-**25** (0.56 g, 3.75 mmol) was directly dissolved in MeOH (15 mL) and treated with 1 M KOH in MeOH (5.8 mL, 5.8 mmol). The solution was stirred for 4 h at rt. After addition of saturated aqueous NH₄Cl (final pH = 7), extraction with Et₂O and evaporation gave pure (*S*)-*ent*-**16a** (356 mg, 94%). Enantiomeric excess were measured on alcohols (*R*)-**16a** (recovered from enzymatic resolution) and (*S*)-*ent*-**16a** (obtained from hydrolyisis of butyrate (*S*)-**25**), by HPLC on chiral stationary phase [Daicel ChiralPak AD (250×4.6 mm) with detector DAD (226 nm, 220 nm)]. Eluent: *n*-hexane/*i*PrOH 99:1, Flow: 0.8 mL/min. $R_t = 21.7$ (*R*) and 23.4 (*S*). The e.e. of **25** was deduced from the one of alcohol *ent*-**16a**.

All spectroscopic and polarimetric data were in agreement with those reported before.³⁻⁵

Epimeric mixture of (1*R*,5*S*)-2-((*S*)-1-hydroxypropyl))-6,6-dimethylbicyclo[3.1.1]hept-2-ene 20a and (1*R*,5*S*)-2-((*R*)-1-hydroxypropyl))-6,6-dimethylbicyclo[3.1.1]hept-2-ene 21a

A solution of (–)-myrtenal (1.974 g, 13.14 mmol) in dry Et_2O (130 mL), was cooled to –78 °C and treated with a 3 M EtMgBr solution in Et_2O (7.4 mL, 22.2 mmol). After stirring for 4 h, the mixture was quenched with saturated aqueous NH₄Cl and the phases separated. After washing with brine, the organic extracts were evaporated and chromatographed (PE/Et₂O 9:1) to give the pure mixture of epimers (2.079 g, 88%) as a colorless oil in a 57:43 ratio (**20a** major)(determined by ¹H NMR). With

 PE/Et_2O they coelute ($R_f 0.16$). Using $PE/CH_2Cl_2/Et_2O$ 9:1:1 they were slightly separated. R_f of **20a** 0.31, R_f of **21a** 0.26.

(1*R*,5*S*)-2-((*S*)-1-Hydroxypropyl))-6,6-dimethylbicyclo[3.1.1]hept-2-ene 20a and (1*R*,5*S*)-2-((*R*)-1-acetoxypropyl))-6,6-dimethylbicyclo[3.1.1]hept-2-ene 26.

The 57:43 epimeric mixture of **20a** and **21a** (1.514 g, 8.40 mmol) was dissolved in vinyl acetate (84 mL), and treated with 3Å powder molecular sieves (420 mg) and with Amano AK lipase (605 mg). After stirring for 4 days at rt, the mixture was filtered, washing with CH_2Cl_2 , and the filtrate was evaporated and chromatographed ($PE/CH_2Cl_2/Et_2O$ 9:0.5:0.5 to give acetate (*R*)-**26** (d.r. 95:5) (805 mg, 43%) and alcohol (*S*)-**20a** (859 mg, 57%) (d.r. 97:3). $R_f 0.72$ (**26**) and 0.31 (**20a**) ($PE / CH_2Cl_2 / Et_2O$ 9:1:1).

(*R*)-**26**. **[α]**_D = +57.2 (c 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 5.48-5.44 (1 H, m, CH=C), 5.05 (1 H, t, *J* 6.6, CHOAc), 2.38 (1 H, dt, *J* 8.4, 5.7, *H*-7), 2.35-2.14 (3 H, m, 2 *H*-4 + *H*-1 or *H*-5), 2.12-2.04 (1 H, m, *H*-1 or*H*-5), 2.03 (3 H, s, CH₃C=O), 1.66-1.46 (2 H, m, CH₂CH₃), 1.28 and 0.82 (2 x 3H, (CH₃)₂C), 1.11 (1 H, d, *J* 8.6, *H*-7), 0.88 (3 H, t *J* 7.4, CH₂CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (*C*=O), 146.3 (*C*-2) 119.5 (*C*-3), 77.9 (CHOAc), 42.4 (*C*-1 or *C*-5), 40.8 (*C*-1 or *C*-5), 37.8 (*C*-6), 31.5 (*C*-7), 31.1 (*C*-4), 26.2, 21.3, (CH₃)₂C, 25.4 (CH₂CH₃), 21.2 (CH₃C=O), 9.8 (CH₃CH₂). HRMS (ESI+): calcd. for C₁₄H₂₃O₂⁺ [M+H]⁺ 223.16926, found 223.1701.

(*S*)-**20a**. $[\alpha]_{D} = -48.3$ (c 1.1, CHCl₃). ¹H and ¹³C NMR were identical to those reported by Seebach *et al*.⁸ In particular the ¹H signals most useful in order to recognize the epimers and to determine the d.r. are those of one of the methyl groups of the bridge, which falls at 0.85 for (*S*)-**20a** and at 0.82 for (*R*)-**21a**.

(1R,5S)-2-((R)-1-Hydroxypropyl))-6,6-dimethylbicyclo[3.1.1]hept-2-ene 21a

- A solution of acetate (*R*)-**26** (833 mg, 3.75 mmol) in MeOH (9.4 mL) was treated with a 0.6 M solution of KOH in MeOH (9.4 mL, 5.72 mmol) and stirred at rt for 20 h. A saturated aqueous NH₄Cl solution was added, and most methanol was evaporated. Extraction with Et₂O, washing with brine, evaporation, and chromatography gave pure alcohol **21** (567 mg, 84%) with d.r. 95:5.
- (*R*)-**21a**: $[\alpha]_D = -28.6$ (c 1.0, CHCl₃). ¹H and ¹³C NMR were identical to those reported by Seebach *et al.*⁸

¹H NMR of Prins adduct 30 ((2*R*,4a*S*,7*R*,8a*R*)-2-((2*R*,5*S*)-5-((4-methoxyphenoxy)methyl)tetrahydrofuran-2-yl)-7-methyl-4-methyleneoctahydro-2*H*-chromene

¹H NMR (300 MHz, CDCl₃) δ 6.88-6.78 (4 H, m, aromatic *H* of PMP), 4.73 (1 H, q, *J* 1.2, C*H*=C), 4.62 (1 H, q, *J* 1.2, C*H*=C), 4.30 (1 H, dt, *J* 7.3, 5.4, C*H*-CH₂OPMP), 4.01 (1 H, dd, *J* 9.6, 5.1, C*H*HOPMP), 3.93 (dt, *J* 7.8, 6.0, *H*-2'), 3.85 (1 H, dd, *J* 9.6, 5.7, *H*-5'), 3.76 (3 H, s, OCH₃), 3.37 (1 H, ddd, *J* 10.7, 5.9, 3.3, *H*-2), 2.95 (ddd, *J* 10.8, 9.9, 3.9, *H*-8a), 2.27-1.77 (7 H, m, C*H*₂), 1.77-1.61 (3 H, m, *H*-4a + 2H of C*H*₂), 1.55-1.32 (1 H, m, C*H*-CH₃), 1.30-0.90 (m, 3 H), 0.93 (3 H, d, *J* 6.6, C*H*₃CH). The configuration of C-2

was assigned considering that the J of H-2 clearly indicate that this hydrogen is axial. On the other hand, the *trans* fusion of the bicyclic system makes it rigid and thus H-2 and H-8a must be in a *cis* relationship.

(2R,5S)-2-((2S,6S)-6-Benzyl-2H,3H,6H-dihydropyran-2-yl)-5-((4-methoxyphenoxy)methyl) tetrahydrofuran 31

A solution of *anti*-**11f** (31.4 mg, 76.9 μmol) in dry CH₂Cl₂ (20 mL), was treated under Ar with Grubbs 1st generation catalyst (Benzylidene-*bis*(tricyclohexylphosphine)dichlororuthenium) (8.0 mg, 9.2 μmol). The solution was refluxed for 3h. The solution was evaporated and chromatographed (PE/Et₂O 8:2) to give pure **31** as an oil (28.4 mg, 97%). *R*_f 0.09 (PE/Et₂O 90:10). ¹**H NMR** (300 MHz, CDCl₃) δ 7.32-7.15 (5 H, m, CH of Bn), 6.81 (4 H, s, CH of PMP), 5.81 (1 H, ddt, *J* 9.7, 4.5, 2.6, *H*-4 of DHP), 5.63 (1 H, dq, *J* 9.7, 1.2, *H*-5 of DHP), 4.39-4.29 (1 H, m, *H*-6 of DHP), 4.25 (1 H, quint, *J* 6.1, CH-CH₂OPMP), 3.96 (1 H, q, *J* 5.9, *H*-2 of THF), 3.82-

3.71 (2 H, m, CH_2OPMP), 3.76 (3 H, s, OCH_3), 3.55 (dt, *J* 8.7, 5.2, *H*-2 of DHP), 2.89 (1 H, dd, *J* 13.6, 7.5, *CH*HPh), 2.72 (1 H, dd, *J* 13.6, 7.3, *CH*HPh), 2.10-1.90 (5 H, m), 1.87-1.71 (1 H, m). ¹³**C** NMR (75 MHz, CDCl₃) δ 153.8, 153.1 (*C*-O), 138.5 (quat. Bn), 129.6 (x2)(ortho o meta Bn), 129.5 (*C*H=CH), 128.1 (x2)(ortho o meta Bn), 126.1 (para Bn), 124.8 (*C*H=CH), 115.5, 114.5 (*C* of PMP), 82.1 (*C*-2 of THF), 78.0 (*C*HCH₂OPMP), 76.0 (*C*-6 of DHP), 75.7 (*C*-2 of DHP), 71.2 (*C*H₂OPMP), 55.7 (OCH₃), 42.0 (*C*H₂Ph), 28.1, 27.8, 26.8 (*C*H₂ of DHP and THF). NOESY spectrum shows a nOe between *H*-2 and *H*-6 of the dihydropyran ring, whereas no nOe is observed betwen *H*-2 of DHP and the *CH*₂Ph signals, and no nOe between *H*-6 of DHP and *H*-2 of THF. **HRMS** (ESI+): calcd. for C₂₄H₂₉O₄⁺ [M+H]⁺ 381.20604, found 381.2070.

(2R,5S)-2-((R)-1-Hydroxybut-3-en-1-yl)-5-((4-methoxyphenoxy)methyl) tetrahydrofuran 32

MgBr₂·Et₂O (568 mg, 2.20 mmol) was weighed in a flask, put under argon, and treated with a 0.1 M solution of aldehyde **8** in CH₂Cl₂ (10 mL, 1.0 mmol). The solution was cooled to -78 °C, and treated with allyltributyltin (620 μL, 2.00 mmol). After stirring for 5 h at this temperature, the mixture was quenched with saturated aqueous NH₄Cl. After warming to room temperature, the mixture was extracted with Et₂O (3 times), evaporated, and chromatographed (PE/CH₂Cl₂/Et₂O 5:5:1) to give a product that was not yet completely pure. A second chromatography PE/EtOAc 8:2) finally gave diastereomerically pure **32** as an oil (221 mg, 79%).

R_f 0.27 (PE/EtOAc 80:20). [**α**]_D = -8.0 (c 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 6.89-6.79 (4 H, m, aromatics), 5.89 (1 H, ddt, *J* 17.1, 10.2, 7.0, CH=CH₂), 5.18-5.05 (2 H, m, CH=CH₂), 4.37-4.26 (1 H, m, CH-CH₂OPMP), 4.01 (1 H, dd, *J* 9.9, 4.1, CHHOPMP), 3.97-3.89 (1 H, m (hidden by the signals of CH₂OPMP), *H*-2 of THF), 3.94 (1 H, dd, *J* 9.9, 4.5, CHHOPMP), 3.76 (3 H, s, OCH₃), 3.53 (1 H, dq, *J* 5.7, 6.9, CHOH), 2.62 (1 H, d *J* 5.9, OH), 2.36-2.19 (2 H, m, CH₂CH=CH₂), 2.13-1.79 (4 H, m, H-3 and H-4 of THF). ¹³C NMR (75 MHz, CDCl₃) δ 154.1, 152.9 (aromatic quat.), 134.9 (CH=CH₂), 117.1 (CH=CH₂), 115.5, 114.7 (aromatic CH), 82.3 (C-2 of THF), 77.9 (CH-CH₂OPMP), 73.7 (CH-OH), 70.8 (CH₂OPMP), 55.7 (OCH₃), 38.8 (CH₂CH=CH₂), 28.1, 28.0 (C-3 and C-4 of THF). **HRMS** (ESI+): calcd. for C₁₆H₂₃O₄ [M+H]⁺ 279.15909, found 279.1595.

(2R,5S)-2-((R)-1-(Allyloxy)but-3-en-1-yl)-5-((4-methoxyphenoxy)methyl)tetrahydrofuran syn-11d (from 32)

A solution of **32** (51.1 mg, 184 μ mol) in dry DMF (2 mL), was treated with 60% NaH in mineral oil (11 mg, 275 μ mol), and then, after 5 min, with allyl bromide (24 μ L, 275 μ mol). The mixture was stirred at 50 °C for 8 h. Then it was poured into saturated aqueous NH₄Cl and extracted three times with Et₂O. The organic extracts were washed with brine, evaporated, and chromatographed to give pure *syn*-**11d** (58 mg, 100%), identical to the one obtained by Hosomi-Sakurai reaction and described

above.

OPTIMIZATION PROCEDURES

Protocol for the determination of the NMR yields reported in Table 1 of the manuscript

A sample of the crude (not less than 10 mg) and the internal standard 3,4,5-dimethoxybenzyl alcohol (not less than 10 mg, purity: 99%) were precisely weighted in a vial. Then $CDCl_3$ (750 µL) was added, and the resulting mixture was sonicated for 5 min. The solution was transferred into an NMR tube and a proton spectrum was registered (relaxation delay: 20 s, scans: 16). Using the "Purity calculator" script of the software MestReNova 14.0 the purity of 4-bromopiperonal and the product **12a** in the crude was determined. From those data, the yield of the reaction and the recovery of the starting material were determined. Below are reported ¹H NMR spectra and the calculations as examples.

Protocol for the determination of the yields reported in Table 2 of the manuscript

A calibration using 1,2-dimethoxybenzene as internal standard was carried out. A mother solution of compound *syn*-**11b** (only the major diastereoisomer) in *i*PrOH at 2000 ppm was prepared. A mother solution of the internal standard in hexane at 2000 ppm was prepared. A set of 4 calibration solutions of compound *syn*-**11b** was prepared at the following concentrations: 50 ppm, 100 ppm, 200 ppm, and 400 ppm (hexane was used for the final dilution). Each solution contains 250 ppm of the internal standard. The solutions were analyzed by chiral-HPLC (column Chiralpack AD 250x4.6 mm, eluent hexane/*i*PrOH 99:1, flow 0.8 mL/min, V inj = 20 μ L, T = 25 °C, 226 nm) as triplicate.

Optimization of enzymatic acetylation of 20a + 21a

Enzymes tested (initial ratio 20a : 21a = 57:43)

- Amano AS: no conversion
- Amano AY: no conversion
- Novozym 435: sluggish reaction.
- Amano PS lipase supported on celite¹¹ (40 mg per 100 mg of substrate): after 8 days conversion = 43%. D.r. acetate: 97:3. D.r. alcohol (favouring **20a**) 97:3
- Amano AK lipase (40 mg per 100 mg of substrate): after 5 days conversion 44%%. D.r. acetate 95:5. D.r. alcohol (favouring 20a) 97:3

ANALYSIS OF D.R. ratios

HPLC analysis of d.r. ratio of anti and syn 11a

Conditions: column ChiralPak AD, Flow: 0.8 mL/min Eluent: *n*-hexane/*i*PrOH 99:1 (isocratic)

Note: the peak at 8.328 minutes is 1,2-dimethoxybenzene, used as internal standard

Signal 1: DAD1 A, Sig=220,4 Ref=450,50

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	5.709	PV	0.1578	437.08508	37.81554	2.1861	
2	6.379	VB	0.5082	4962.90723	157.66167	24.8219	
3	8.328	PB	0.3314	1.45941e4	699.57666	72.9920	_
							7

HPLC analysis of d.r. ratio of anti and syn 11b

HPLC analysis of d.r. ratio of anti and syn 11c

¹H NMR analysis of d.r. ratio of *anti* and *syn* 11d (made on crude product)

HPLC analysis of d.r. ratio of *anti* and *syn* 11e

HPLC analysis of d.r. ratio of anti and syn 11f

¹H NMR analysis of d.r. ratio of *anti* and *syn* 11g (made on crude product)

DETERMINATION OF CONFIGURATION

Assignment of configuration to alcohol 20a

Alcohols **20a** and **21a** were already reported by Seebach *et al.*⁸ However, they did not prove the configuration, but assumed it only according to the known preference of their chiral catalyst. Thus, we preferred to corroborate their assignment in this way:

20a was converted into the two diastereomeric Mosher's esters, by reaction with the two enantiomeric acyl chlorides in CH₂Cl₂ in the presence of 4-*N*,*N*-dimethylaminopyridine. Analysis of the NMR spectra afforded the following results. Based on Mosher's rule, the configuration of **20a** was assessed as (*S*). This assignment corresponds to the one proposed by Seebach *et al*.

Peak	Δ (<i>S</i>) ester	δ (<i>R</i>) ester	Δ δ(<i>SR</i>)		
	(ppm)	(ppm)	ppm	Hz (300 MHz)	
CH-O	5,27	5,27	0,00	0	
CH₂ CH₃	1,64	1,70	<mark>-0,06</mark>	-18	
CH₂ CH ₃	0,83	0,90	<mark>-0,07</mark>	-21	
H ₁	2,22	2,18	<mark>0,04</mark>	12	
H ₃	5,59	5,47	<mark>0,12</mark>	36	
H ₄ (they fall together)	2,28	2,23	<mark>0,05</mark>	15	

H₅	2,09	2,06	<mark>0,03</mark>	9
6-CH₃a	1,25	1,23	<mark>0,02</mark>	6
6-CH₃b	0,75	0,68	<mark>0,07</mark>	21
7a	2,41	2,39	<mark>0,02</mark>	6
7b 1,12		1,10	<mark>0,02</mark>	6

Assignment of configuration to alcohol 32

32 was converted into the two diastereomeric Mosher's esters, by reaction with the two enantiomeric acyl chlorides in CH_2Cl_2 in the presence of 4-N,N-dimethylaminopyridine. Analysis of the NMR spectra afforded the following results. Based on Mosher's rule, the configuration was assessed as (R)

aromatic CH para to OMe	6,83	6,81	0,02	6
CH CH₂ OPMP (AB)	3,87	3,92	<mark>-0,05</mark>	-15
	3,72	3,82	<mark>-0,10</mark>	-30
CHCH ₂ OPMP	4,21	4,28	<mark>-0,07</mark>	-21
CH ₂ ring	1,88	2,02	<mark>-0,14</mark>	-42
CH ₂ ring	1,56	1,79	<mark>-0,23</mark>	-69
CHCH ₂ CH=CH ₂	4,10	4,09	0,01	3
CH ₂ CH=CH ₂	2,52	2,38	<mark>0,14</mark>	42
CH ₂ CH=CH ₂	5,80	5,66	<mark>0,14</mark>	42
CH ₂ CH= CH₂	5,14	5,02	<mark>0,13</mark>	38

NMR ANALOGIES

Analogies:

- For *H*-3, the *syn* diastereomers always have a higher difference in the chemical shifts of the two diastereotopic protons.
- For H-2, the chemical shift of *anti* isomer is always higher
- For *H*-1 the chemical shift of *syn* isomer is always higher (with the exception of **11e**)

The configuration of the compounds highlighted in yellow was unambigously established.

R ²	Product	H-1		H-2		Н-3	
		syn	anti	syn	anti	syn	anti
<i>cy</i> -Hex	11a	4.00 (td)	3.92 (m)	3.42 (dt)	3.55 (td)	2.34 and 2.18	2.25
		J = 7.0, 5.3		J = 7.6, 4.9	J = 6.0, 4.9		
(-)-menthyl	11b	4.04 (td)	3.92 (m)	3.44 (q)	3.61 (q)	2.44 and 2.19	2.32 and 2.26
		J = 6.8, 5.3		J = 5.3	J = 5.5		
(+)-menthyl	11c	4.04 (td)	3.96 (m)	3.53 (ddd)	3.56 (dt)	2.34 and 2.12	2.35 and 2.25
		J = 6.9, 5.4		J = 8.0, 5.3, 4.0	J = 6.8, 4.6		
<mark>allyl</mark>	11d	<mark>4.02 (m)</mark>	<mark>3.98 (m)</mark>	<mark>3.37 (ddd)</mark>	<mark>3.52 (td)</mark>	2.35 and 2.22	<mark>2.27</mark>
				<mark>J = 7.2, 5.9, 4.7</mark>	<mark>J = 6.1<i>,</i> 4.4</mark>		
(R)- 16 a	11e	3.84 covered by	3.89 (td)	3.43 (ddd)	3.69 (td)	2.26 and 2.15	2.18
		other signals	J = 7.4, 3.3	J = 8.0, 5.6, 4.3	J = 6.4, 3.4		
<mark>(S)-16a</mark>	11f	<mark>3.99 (m)</mark>	<mark>3.89 (td)</mark>	<mark>3.40 (q)</mark>	<mark>3.70 (td)</mark>	2.27 and 2.06	<mark>2.19</mark>
			<mark>J= 7.3, 3.2</mark>	<mark>J= 5.3</mark>	<mark>J= 6.4, 3.1</mark>		
17a	11g	4.14 (dt)	4.07 (mc)	3.37 (td)	3.56 (quint)	2.45 and 2.22	2.38
		J = 6.9, 4.3		J = 6.4, 5.2	J = 4.0		

COPY OF NMR SPECTRA

syn-11a

syn-11a

anti-**11b**

anti-**11b**

syn-11b

syn-11c

anti-11c

anti-11d

Syn-11d

syn-11e

S54

syn-11g

12a

12b

S63

12c

12c

12d

12f

S79

S81

S82

REFERENCES

- 1. B. Karimi and B. Golshani, J. Org. Chem., 2000, 65, 7228-7230.
- 2. L. Moni, L. Banfi, D. Cartagenova, A. Cavalli, C. Lambruschini, E. Martino, R. V. A. Orru, E. Ruijter, J. M. Saya, J. Sgrignani and R. Riva, *Org. Chem. Front.*, 2020, 7, 380-398.
- 3. S. Purushotham Reddy, B. Chinnababu, V. Shekhar, D. Kumar Reddy, G. V. Bhanuprakash, L. R. Velatoor, J. Venkateswara Rao and Y. Venkateswarlu, *Bioorg Med Chem Lett*, 2012, **22**, 4182-4184.
- 4. Q. Gao, Y. Li, L. Chen, L.-J. Xie, X. Shao, Z. Ke and S. Xu, J. Am. Chem. Soc., 2025, 147, 88-95.
- 5. A. Chojnacka, R. Obara and C. Wawrzeńczyk, *Tetrahedron: Asymm.*, 2007, 18, 101-107.
- 6. A. Ramdular and K. A. Woerpel, Org. Lett., 2020, 22, 4113-4117.
- 7. M. Petsi, M. Orfanidou and A. L. Zografos, *Green Chem.*, 2021, 23, 9172-9178.
- 8. D. Seebach, A. K. Beck, B. Schmidt and Y. M. Wang, *Tetrahedron*, 1994, **50**, 4363-4384.
- 9. G. Keum, C. H. Hwang, S. B. Kang, Y. Kim and E. Lee, J. Am. Chem. Soc., 2005, 127, 10396-10399.
- 10. G. Keum, S. B. Kang, Y. Kim and E. Lee, Org. Lett., 2004, 6, 1895-1897.
- 11. L. Moni, L. Banfi, A. Basso, A. Galatini, M. Spallarossa and R. Riva, J. Org. Chem., 2014, 79, 339-351.