Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary information

Content

General Information for the Synthesis	2
General method i	2
General method ii	2
General method iii	2
Analytical Equipment	13
NMR, HRMS, HPLC spectra	17

General Information for the Synthesis

General method i

In a 100 mL dry flask containing phenols (1 eq.), TEA (2 eq.) and THF were added, and the mixture was stirred at 0 °C under the argon atmosphere. Then, thionyl chloride (1.5 eq.) was added to the reaction mixture, which was vigorously stirred at room temperature for 6 h. The reaction mixture was diluted by H₂O and extracted with DCM. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum to provide the crude product. The solution of crude product in diphenyl ether was transferred to a microwave reaction tube, sealed, and heated in a microwave reactor at 220 °C for 120 min. The reaction mixture was purified using silica gel chromatography to obtain corresponding intermediate dimethylcarbamothioates.

General method ii

To a solution of intermediate dimethylcarbamothioates (1 eq.) in acetonitrile were added an appropriate amount of water and SelectfluormTM (4.5 eq.), and the mixture was stirred at 90 °C for 60 min. The solvent was diluted by DCM, then filtered and collected the filtrate. The filtrate dried over anhydrous Na₂SO₄, and concentrated under vacuum to provide the crude product, which was directly subjected to flash column chromatography eluted to give corresponding pure compound sulfonyl fluorides.

General method iii

To a stirred solution of intermediate dimethylcarbamothioates (1 eq.) and corresponding 1-indanones (1.5 eq.) in EtOH was slowly added 20% NaOH aqueous solution at room temperature for 60 min. The reaction mixture was diluted by appropriate H_2O and added 1 M/L HCl aqueous solution to adjust pH to 3-5. Then the mixture was extracted with DCM. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum to provide the crude product. The crude product was purified by silica gel column chromatography to give corresponding intermediate *S*-(2-methoxy-4-((1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)phenyl) dimethylcarbamothioates.

Intermediate **B1-B6** and **34** were synthesized according to the procedure described for General method iii.

S-(4-((6-fluoro-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)-2-methoxyphenyl) dimethylcarbamothioate (**B1**)

Yellow solid; yield 90%; m. p.: 109.6~111.4 °C; UV $\lambda_{max}(CH_2Cl_2/nm)$ 330; IR ν_{max}/cm^{-1} 1623(C=C); ¹H NMR (300 MHz, CDCl₃) δ 7.66 (s, 1H), 7.58-7.55 (m, 1H), 7.54-7.51 (m, 1H), 7.37-7.29 (m, 3H), 7.17 (d, J = 0.99 Hz, 1H), 4.02 (s, 2H), 3.95 (s, 3H), 3.14 (s, 3H), 3.04 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.06, 164.56, 163.56, 161.12, 160.23, 146.47, 139.35 (d, J = 7.4 Hz), 138.23, 136.95, 133.43, 129.20, 129.12, 123.08, 119.17, 114.52, 110.04, 109.82, 56.54, 36.99, 31.85; ¹⁹F NMR (300 MHz, CDCl₃) δ -113.71 (s, 1F); LCMS (ESI) calcd. for C₂₀H₂₀FNO₃S [M+H]⁺: 372.1, found: 371.9.

S-(2-methoxy-4-((6-methyl-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)phenyl) dimethylcarbamothioate (**B2**)

Yellow solid; yield 89%; m. p.: 190.1~191.4 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 7.59 (d, J = 7.5 Hz, 1H), 7.57 (s, 1H), 7.56 (s, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.47-7.46 (m, 1H), 7.42-7.40 (m, 1H), 7.39-7.38 (m, 1H), 4.13 (s, 2H), 3.89 (s, 3H), 3.06 (s, 3H), 2.92 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.77, 158.18, 149.28, 145.38, 141.44, 138.46, 138.21, 131.36, 129.79, 127.24, 123.50, 122.42, 119.87, 119.64, 116.20, 106.59, 57.64, 31.34; LCMS (ESI) calcd. for C₂₁H₂₂NO₃S [M+H]⁺: 368.1, found: 367.9. *S*-(2-methoxy-4-((6-methoxy-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)phenyl) dimethylcarbamothioate (**B3**)

Yellow solid; yield 61%; m. p.: 186.1~187.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.34 (d, *J* = 2.5 Hz, 1H), 7.32-7.29 (m, 1H), 7.20 (dd, *J* = 2.5, 8.4 Hz, 1H), 7.18 (s, 1H), 3.96 (s, 2H), 3.94 (s, 3H), 3.87 (s, 3H), 3.14 (s, 3H), 3.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.13, 165.74, 160.07, 159.68, 142.38, 139.14, 138.45, 138.14, 136.62, 133.23, 126.98, 124.11, 122.68, 118.85, 113.65, 105.85, 56.22, 55.68, 37.06, 31.69; LCMS (ESI) calcd. for C₂₁H₂₂NO₄S [M+H]⁺: 384.1, found: 383.9.

S-(2-methoxy-4-((1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)phenyl) dimethylcarbamothioate (**B4**)

Yellow solid; yield 98%; m. p.: 163.1~164.2 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 7.82 (d, J = 7.6 Hz, 1H), 7.76-7.73 (m, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 1.5 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.50-7.48 (m, 1H), 7.42 (dd, J = 8.0, 1.5 Hz, 1H), 4.21 (s, 2H), 3.90 (s, 3H), 3.08 (s, 3H), 2.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.18, 165.74, 160.09, 149.54, 138.43, 138.15, 137.92, 135.79, 134.81, 133.36, 127.79, 126.25, 124.50, 122.65, 118.91, 113.70, 56.23, 37.06, 32.36; LCMS (ESI) calcd. for C₂₀H₂₀NO₃S [M+H]⁺: 354.1, found: 353.9.

S-(4-((6-hydroxy-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)-2-methoxyphenyl) dimethylcarbamothioate (**B5**)

Yellow solid; yield 71%; m. p.: 277.0~278.4 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.87 (s, 1H), 7.52 (s, 1H), 7.46 (m, 2H), 7.41 (s, 1H), 7.15 (dd, *J*=2.4, 8.2 Hz, 1H), 7.11 (d, *J*=2.4 Hz, 1H), 4.03 (s, 2H), 3.89 (s, 3H), 3.70 (s, 3H), 2.93 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.70, 164.69, 160.21, 157.74, 141.18, 138.88, 138.39, 138.18, 137.59, 132.30, 127.79, 124.06, 122.91, 118.79, 114.23, 108.76, 56.46, 36.98, 31.58; LCMS (ESI) calcd. for C₂₀H₂₀NO₄S [M+H]⁺: 370.1, found: 369.9. (*E*)-S-(4-((6-amino-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)-2-

methoxyphenyl) dimethylcarbamothioate (B6)

Yellow solid; yield 80%; m. p.: 201.3~202.6 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 7.57 (d, J = 8.8 Hz, 1H), 7.54 (s, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.44 (s, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 6.3 Hz, 2H), 4.09 (s, 2H), 3.88 (s, 3H), 3.07 (s, 3H), 2.91 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 193.53, 164.62, 160.25, 138.56, 138.33, 138.25, 137.30, 132.68, 127.93, 126.61, 123.05, 118.92, 114.38, 112.49, 56.54, 37.01, 31.82. LCMS (ESI) calcd. for C₂₀H₂₀NO₄S [M+H]⁺: 369.1, found: 368.9. Tert-butyl (*E*)-(2-(4-((dimethylcarbamoyl)thio)-3-methoxybenzylidene)-3-oxo-2, 3dihydro-1*H*-inden-5-yl)carbamate (**34**)

Yellow solid; yield 93%; m. p.: 243.9~244.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.53 (s, 1H), 7.99 (s, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.54 (s, 1H), 7.52-7.47 (m, 2H), 7.39 (s, 1H), 7.34 (d, J = 7.7 Hz, 1H), 4.06 (s, 2H), 4.06 (s, 3H), 3.08 (s, 3H), 2.95 (s, 3H), 1.52 (s, 9H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.61, 164.77, 160.19, 153.24, 143.85, 139.88, 138.32, 138.11, 137.09, 132.54, 126.90, 125.98, 122.91, 118.95, 114.06, 112.47, 79.63, 79.30, 78.97, 56.41, 36.99, 31.78, 28.61; LCMS (ESI) calcd. for C₂₅H₂₉N₂O₅S [M+H]⁺: 469.2, found: 468.8.

Compounds C1-C5 and 35 were synthesized according to the procedure described for General method ii.

4-((6-fluoro-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)-2-methoxybenzenesulfonyl fluoride (**C1**)

White solid; yield 60%; m. p.: 260.1~265.5 °C; UV $\lambda_{max}(CH_2Cl_2/nm)310$; IR v_{max}/cm^{-1} 1414, 1206 (SO₂); ¹H NMR(300 MHz, CDCl₃) δ 7.94 (d, J = 8.3 Hz, 1H), 7.57 (s, 1H), 7.52-7.47 (m, 2H), 7.35-7.28 (m, 2H), 7.21 (s, 1H), 4.02 (s, 3H), 3.97 (s, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 192.92, 158.18, 146.65, 146.63, 144.85, 140.35, 138.98 (d, J = 7.5 Hz), 131.39, 129.27, 129.19, 123.46 (d, J = 24 Hz), 122.56, 116.51, 110.28, 110.06, 57.70, 31.73; ¹⁹F NMR (300 MHz, CDCl₃) δ 59.21 (s, 1F), -112.90 (s, 1F); HRMS (ESI) calcd. for C₁₇H₁₃F₂O₄S [M+H]⁺: 351.0497, found: 351.0487.

2-methoxy-4-((6-methyl-1-oxo-1, 3-dihydro-2H-inden-2-ylidene)methyl)benzenesulfonyl fluoride (C2)

White solid; yield 57%; m. p.: 261.6~262.7°C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.01 (d, J = 8.3 Hz, 1H), 7.79 (s, 1H), 7.64 (s, 1H), 7.62-7.60 (m, 2H), 7.59 (s, 1H), 5.76 (s, 1H), 4.18 (s, 2H), 4.10 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.78, 160.26, 147.97, 138.38, 138.26, 137.81, 137.19, 136.67, 132.56, 126.91, 124.10, 123.14 (d, J = 20 Hz), 114.37, 56.55, 55.40, 37.01, 31.97, 21.19; ¹⁹F NMR (400 MHz, DMSO- d_6) δ 59.94 (s, 1F); HRMS (ESI) calcd. for C₁₈H₁₆FO₄S [M+H]⁺: 347.0748, found: 347.0748.

2-methoxy-4-((6-methoxy-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)benzenesulfonyl fluoride (**C3**)

White solid; yield 67%; m. p.: 227.6~228.0°C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.00 (d, J =8.4 Hz, 1H), 7.78 (s, 1H), 7.63-7.59 (m, 3H), 7.33 (dd, J =2.2, 8.4 Hz, 1H), 7.28 (d, J =2.2 Hz, 1H), 4.14 (s, 2H), 4.09 (s, 3H), 3.85 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.44, 159.79, 158.18, 145.10, 143.39, 140.85, 138.52, 131.39, 130.68, 128.10, 124.65, 122.52, 116.39, 106.26, 57.68, 56.07, 31.49; ¹⁹F NMR (400 MHz, DMSO- d_6) δ 59.95 (s, 1F); HRMS (ESI) calcd. for C₁₈H₁₆FO₅S [M+H]⁺: 363.0697, found: 363.0697.

2-methoxy-4-((1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)benzenesulfonyl fluoride (**C4**)

Yellow solid; yield 60%; m. p.: 232.3~233.5°C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.02 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.80 (s, 1H), 7.78-7.75 (m, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.65-7.63 (m, 2H), 7.52 (t, J = 7.6 Hz, 1H), 4.25 (s, 2H), 4.11 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.65, 158.19, 150.73, 145.08, 140.14, 137.25, 136.03, 131.40, 130.76, 128.43, 127.25, 124.53(d, J = 24 Hz), 122.54, 116.41, 68.06, 57.70, 32.20; ¹⁹F NMR (400 MHz, DMSO- d_6) δ 59.94 (s, 1F); HRMS (ESI) calcd. for C₁₇H₁₄FO₄S [M+H]⁺: 333.0591, found: 333.0583.

4-((6-hydroxy-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)-2-methoxybenzenesulfonyl fluoride (**C5**)

Yellow solid; yield 21%; m. p.: 246.8~247.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.92 (s, 1H), 7.98 (d, J =8.3 Hz, 1H), 7.75-7.73 (m, 1H), 7.60-7.57 (m, 1H), 7.48 (d, J =8.3 Hz, 1H), 7.26 (d, J =8.2 Hz, 1H), 7.17 (dd, J =2.2, 8.2 Hz, 1H), 7.10 (d, J =2.2 Hz, 1H), 4.09 (s, 3H), 4.07 (s, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.50, 158.14, 157.80, 145.12, 144.87, 141.44, 141.00, 138.49, 131.34, 130.51, 127.96, 124.57, 122.42, 116.36, 108.79, 57.62, 31.42; ¹⁹F NMR (400 MHz, DMSO- d_6) δ 59.95 (s, 1F); HRMS (ESI) calcd. for C₁₇H₁₄FO₅S [M+H]⁺: 349.0540, found: 349.0527.

Tert-butyl (*E*)-(2-(4-(fluorosulfonyl)-3-methoxybenzylidene)-3-oxo-2, 3-dihydro-1*H*-inden-5-yl)carbamate (**35**)

White solid; yield 14.1%; m. p.: 231.2~232.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 9.66 (s, 1H), 8.05-7.96 (m, 2H), 7.78-7.70 (m, 2H), 7.63-7.54 (m, 2H), 4.10 (s, 3H), 3.65 (s, 1H), 1.50 (s, 9H), 1.23 (s, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 193.59, 158.20, 153.31, 145.14, 144.35, 140.71, 139.99, 137.74, 131.39, 130.63, 127.32, 126.47, 122.57, 116.31, 112.39, 57.68, 31.61, 29.49, 28.59; ¹⁹F NMR (400 MHz, DMSO- d_6) δ 59.93 (s, 1F); LCMS (ESI) calcd. for C₂₂H₂₃FNO₆S [M+H]⁺: 448.1, found: 447.8.

Compound tert-butyl (3-oxo-2, 3-dihydro-1*H*-inden-5-yl)carbamate (33)

200 mg (1.36 mmol) 6-amino-2,3-dihydro-1*H*-inden-1-one were dissolved in 5 mL dichloromethane, stirred for 10 min in ice bath, then 327 mg (1.49 mmol) of di-tertbutyl dicarbonate are added and stirred for a further 16 h at RT. The mixture was added to water, extracted with dichloromethane, the combined organic phases were washed with sat. sodium chloride solution and the solvents removed on a rotary evaporator. The crude product was purified by silica gel column chromatography. Yield 208 mg (61.9% of theory) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.61 (s, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 6.75 (s, 1H), 3.10-3.06 (m, 2H), 2.71-2.68 (m, 2H), 1.52 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 206.73, 152.78, 149.67, 138.04, 127.03, 125.84, 112.84, 77.07, 36.76, 28.32, 25.27. LCMS (ESI) calcd. for C₁₄H₁₈NO₃ [M+H]⁺: 248.1, found: 247.8.

Compound (*E*)-4-((6-amino-1-oxo-1, 3-dihydro-2*H*-inden-2-ylidene)methyl)-2-methoxybenzenesulfonyl fluoride (C6)

A suspension of **35** (46 mg, 0.11 mmol) in DCM (6 ml) was cooled down to 0°C before adding slowly TFA (30 mg, 0.76 mmol) and stirred at RT for 1 h. The reaction mixture was diluted with DCM. An aqueous solution of 1M/L NaOH was added, followed by an extraction with DCM. Then the combined organic layer was dried over Na₂SO₄, filtered and concentrated at reduced pressure. The crude product was purified by silica gel column chromatography. Yield 33 mg (86.8% of theory) as a yellow solid. m. p.: 241.7~242.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.74 (s, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.52 (s, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 6.99 (dd, *J* = 2.1, 8.2 Hz, 1H), 6.92 (d, *J* = 1.9 Hz, 1H), 5.44 (s, 2H), 4.09 (s, 3H), 4.01 (s, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 193.78, 158.18, 149.28, 145.38, 141.44, 138.46, 138.21, 131.36, 129.79, 127.24, 123.50, 122.42, 119.75 (d, *J* = 23 Hz), 116.20, 106.58, 57.63,

31.34. ¹⁹F NMR (400 MHz, DMSO- d_6) δ 59.97 (s, 1F); HRMS (ESI) calcd. for C₁₇H₁₅ FNO₄S [M+H]⁺ 348.0700, found: 348.0722.

Intermediate A and compounds $3\sim19$ were synthesized according to the procedure described for General method i.

S-(4-formyl-2-methoxyphenyl) dimethylcarbamothioate (A)

White solid; yield 73%; m. p.: 187.1~194.4 °C; UV $\lambda_{max}(CH_2Cl_2/nm)$ 233; IR v_{max}/cm^{-1} 1665(C=O); ¹H NMR (300 MHz, CDCl_3;) δ 9.99 (s, 1H), 7.69 (d, 1H, *J*= 7.6 Hz), 7.48-7.45 (m, 2H), 3.94 (s, 3H), 3.14 (s, 3H), 3.03 (s, 3H); LCMS (ESI) calcd. for $C_{11}H_{14}NO_3S$ [M+H]⁺: 240.1, found: 239.90.This compound was known.¹

S-(4-fluorophenyl) dimethylcarbamothioate (1)

Colorless oil; yield 86%. UV λ_{max} (CH₂Cl₂/nm) 242; IR v_{max} /cm⁻¹ 1671(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.42 (m, 2H), 7.11-7.03 (m, 2H), 3.05 (s, 6H); ¹⁹F NMR (300 MHz, CDCl₃) δ -111.83 (s, 1F); LCMS (ESI) calcd. for C₉H₁₁FNOS [M+H]⁺: 200.1, found: 200.0. This compound was known.²

S-(4-fluorophenyl) ethyl(methyl)carbamothioate (3)

Colorless oil; yield 84%. UV λ_{max} (CH₂Cl₂/nm) 242; IR v_{max} /cm⁻¹ 1667(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.44 (m, 2H), 7.10-7.04 (m, 2H), 3.44 (q, *J*= 7.1 Hz, 2H), 3.01 (s, 3H), 1.26-1.15 (m, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.41, 161.96, 138.38 (d, *J* = 8.7 Hz), 124.82, 116.58, 116.36, 44.47, 34.44, 13.30, 12.78. ¹⁹F NMR (300 MHz, CDCl₃) δ -111.94 (s, 1F); LCMS (ESI) calcd. for C₁₀H₁₃FNOS [M+H]⁺: 214.1, found: 214.0.

S-(4-fluorophenyl) pyrrolidine-1-carbothioate (4)

White solid; yield 85%; m. p.: 66.5~66.7 °C; UV λ_{max} (CH₂Cl₂/nm) 243; IR v_{max} /cm⁻¹ 1652(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.44 (m, 2H), 7.11-7.02 (m, 2H), 3.53-3.45 (m, 4H), 2.00-1.89 (m, 4H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.36, 162.64, 161.91, 138.07 (d, *J* = 8.7 Hz), 124.78, 124.75, 116.61, 116.39, 47.80, 46.22, 25.67, 24.53. ¹⁹F NMR (300 MHz, CDCl₃) δ -112.05 (s, 1F); LCMS (ESI) calcd. for C₁₁H₁₃FNOS [M+H]⁺: 226.1, found: 225.9.

S-(4-fluorophenyl) piperidine-1-carbothioate (5)

White solid; yield 86%; m. p.: 74.3~76.9 °C; UV λ_{max} (CH₂Cl₂/nm) 244; IR v_{max} /cm⁻¹ 1656(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.44 (m, 2H), 7.10-7.04 (m, 2H), 3.55-3.51 (m, 4H), 1.70-1.60 (m, 6H); ¹⁹F NMR (300 MHz, CDCl₃) δ -111.97 (s, 1F); LCMS (ESI) calcd. for C₁₂H₁₅FNOS [M+H]⁺: 240.1, found: 239.9. This compound was known.³

S-(4-fluorophenyl) morpholine-4-carbothioate (6)

White solid; yield 83%; m. p.: 79.1~73.3 °C; UV λ_{max} (CH₂Cl₂/nm) 241; IR v_{max} /cm⁻¹ 1664(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.43 (m, 2H), 7.13-7.05 (m, 2H), 3.75-3.71 (m, 4H), 3.61-3.58 (m, 4H); ¹⁹F NMR (300 MHz, CDCl₃) δ -111.32 (s, 1F); LCMS (ESI) calcd. for C₁₁H₁₃FNO₂S [M+H]⁺: 242.1, found: 241.90. This compound was known.³

S-(p-tolyl) dimethylcarbamothioate (7)

White solid; yield 85%; m. p.: 36.0~38.2°C; UV λ_{max} (CH₂Cl₂/nm) 244; IR v_{max} /cm⁻¹ 1670(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.19 (d, *J*=7.9

Hz, 2H), 3.05 (s, 6H), 2.36 (s, 3H); LCMS (ESI) calcd. for $C_{10}H_{14}NOS [M+H]^+$: 196.1, found:196.0. This compound was known.²

S-(m-tolyl) dimethylcarbamothioate (8)

Colorless oil; yield 76%; UV λ_{max} (CH₂Cl₂/nm) 245; IR v_{max} /cm⁻¹ 1670(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.32 (m, 1H), 7.30-7.26 (m, 2H), 7.20-7.18 (m, 1H), 3.05-3.04 (m, 6H), 2.35 (s, 3H).; ¹³C NMR (101 MHz, DMSO- d_6) δ 165.53, 138.74, 136.37, 132.96, 130.24, 129.20, 128.76, 36.94, 21.21. LCMS (ESI) calcd. for C₁₀H₁₄NOS [M+H]⁺: 196.1, found:196.0.

S-(*o*-tolyl) dimethylcarbamothioate (9)

Colorless oil; yield 76%; UV λ_{max} (CH₂Cl₂/nm) 242; IR v_{max} /cm⁻¹ 1669(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J*= 7.4 Hz, 1H), 7.34-7.29 (m, 2H), 7.22-7.16 (m, 1H), 3.07 (s, 6H), 2.41 (s, 3H); LCMS (ESI) calcd. for C₁₀H₁₄NOS [M+H]⁺: 196.1, found:196.0. This compound was known.²

S-(4-isopropylphenyl) dimethylcarbamothioate (10)

Yellow oil; yield 88%; UV λ_{max} (CH₂Cl₂/nm) 245; IR v_{max} /cm⁻¹ 1671(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.41 (m, 1H), 7.40-7.39 (m, 1H), 7.26-7.23(m, 2H), 3.05 (s, 6H), 2.94-2.89 (m, 1H), 1.26 (s, 3H), 1.23 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 165.73, 150.01, 135.97, 127.43, 125.94, 36.92, 33.69, 24.19. LCMS (ESI) calcd. for C₁₂H₁₈NOS [M+H]⁺: 224.1, found: 224.0.

S-(4-(tert-butyl)phenyl) dimethylcarbamothioate (11)

White solid; yield 77%; m. p.: $68.1 \sim 70.0^{\circ}$ C; UV λ_{max} (CH₂Cl₂/nm) 242; IR v_{max} /cm⁻¹ 1662 (C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.41 (s, 4H), 3.06 (s, 6H), 1.32 (s, 9H); LCMS (ESI) calcd. for C₁₃H₂₀NOS [M+H]⁺: 238.1, found: 238.0. This compound was known.²

S-(4-chlorophenyl) dimethylcarbamothioate (12)

White solid; yield 79%; m.p. 76.5~79.7°C; UV λ_{max} (CH₂Cl₂/nm) 244; IR v_{max} /cm⁻¹ 1664(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.32 (m, 4H), 3.05 (s, 6H); LCMS (ESI) calcd. for C₉H₁₁ClNOS [M(³⁵Cl)+H]⁺: 216.0, found: 215.9. This compound was known.²

S-(3-chlorophenyl) dimethylcarbamothioate (13)

White solid; yield 78%; m.p. 46.0~48.3°C; UV λ_{max} (CH₂Cl₂/nm) 250; IR v_{max} /cm⁻¹ 1672(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.50 (m, 1H), 7.40-7.35 (m, 2H), 7.34-7.31 (m, 1H), 3.06 (s, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.63, 135.10, 134.33, 133.51, 131.35, 130.99, 129.58, 37.01.LCMS (ESI) calcd. for C₉H₁₁ClNOS [M(³⁵Cl)+H]⁺: 216.0, found: 215.9.

S-(2-chlorophenyl) dimethylcarbamothioate (14)

Colorless oil; yield 86%; UV λ_{max} (CH₂Cl₂/nm) 244; IR v_{max} /cm⁻¹ 1674 (C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.60 (dd, *J*= 7.5, 1.9 Hz, 1H), 7.50 (dd, *J*=1.5, 8.0, Hz, 1H), 7.38-7.31(m, 1H), 7.31-7.24 (m, 1H), 3.12 (s, 3H), 3.04 (s, 3H); LCMS (ESI) calcd. for C₉H₁₁ClNOS [M(³⁵Cl)+H]⁺: 216.0, found: 215.9. This compound was known.³ *S*-(2,4-dichlorophenyl) dimethylcarbamothioate (**15**)

White solid; yield 86%; m.p. 65.7~66.9°C; UV λ_{max} (CH₂Cl₂/nm) 246; IR v_{max} /cm⁻¹ 1667(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.52 (m, 2H), 7.52-7.50 (m, 1H), 7.28-7.24(m, 1H), 3.12 (s, 3H), 3.04 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_{δ}) δ 163.42, 140.17, 139.85, 135.89, 129.93, 128.29, 127.76, 37.07.LCMS (ESI) calcd. for C₉H₁₀Cl₂NOS [M(³⁵Cl, ³⁵Cl)+H]⁺: 250.0, found: 249.90.

S-(4-cyanophenyl) dimethylcarbamothioate (16)

White solid; yield 75%; m.p. 101.0~102.4 °C; UV $\lambda_{max}(CH_2Cl_2/nm)$ 244; IR v_{max}/cm^{-1} 1672(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.67-7.60 (m, 4H), 3.10 (s, 3H), 3.05 (s, 3H); LCMS (ESI) calcd. for C₁₃H₂₀NOS [M+H]⁺: 207.1, found: 207.0. This compound was known.⁴

S-(4-nitrophenyl) dimethylcarbamothioate (17)

Pale yellow solid; yield 81%; m.p. 117.0~118.4 °C; UV λ_{max} (CH₂Cl₂/nm) 305; IR v_{max} /cm⁻¹ 1675 (C=O); ¹H NMR (300 MHz, CDCl₃) δ 8.24-8.20 (m, 2H), 7.70-7.66 (m, 2H), 3.12 (s, 3H), 3.06 (s, 3H); LCMS (ESI) calcd. for C₉H₁₁N₂O₃ [M+H]⁺: 227.0, found: 227.0. This compound was known.⁵

S-(4-methoxyphenyl) dimethylcarbamothioate (18)

White solid; yield 80%; m.p. 92.1~94.2 °C; UV λ_{max} (CH₂Cl₂/nm) 243; IR v_{max} /cm⁻¹1670(C=O); ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.37 (m, 2H), 6.94-6.89 (m, 2H), 3.82 (s, 3H), 3.05 (s, 6H); LCMS (ESI) calcd. for C₁₀H₁₄NO₂S [M+H]⁺: 212.1, found: 212.0. This compound was known.²

Methyl 4-((dimethylcarbamoyl)thio)benzoate (19)

Pale yellow solid; yield 78%; m.p. 92.2~94.7 °C; UV λ_{max} (CH₂Cl₂/nm) 244; IR v_{max} /cm⁻¹ 1667(C=O); ¹H NMR (300 MHz, CDCl₃) δ 8.05-8.02 (m, 2H), 7.59-7.56 (m, 2H), 3.92 (s, 3H), 3.10 (s, 3H), 3.04 (s, 3H); LCMS (ESI) calcd. for C₁₁H₁₄NO₃S [M+H]⁺: 240.1, found: 239.90. This compound was known.⁵

Compounds 2 and 20~32 were synthesized according to the procedure described for General method ii.

4-Fluorobenzenesulfonyl fluoride (2)

Colorless oil; yield 68%; UV $\lambda_{max}(CH_2Cl_2/nm)$ 232; IR v_{max}/cm^{-1} 1417, 1214 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.10-8.03 (m, 2H), 7.35-7.29 (m, 2H); ¹⁹F-NMR (300MHz, CDCl₃) δ 66.79 (s, 1F), -99.32 (s, 1F); LCMS (ESI) calcd. for C₆H₅F₂O₂S [M+H]⁺: 179.0, found: 179.1. This compound was known.⁶ 4-Methylbenzenesulfonyl fluoride (**20**)

White solid; yield 68%; m.p. 40.1~42.0 °C; UV λ_{max} (CH₂Cl₂/nm) 236; IR v_{max} /cm⁻¹ 1409,1216 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.92-7.89 (m, 2H), 7.45-7.41 (m, 2H), 2.50 (s, 3H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.30 (s, 1F); LCMS (ESI) calcd. for C₇H₈FO₂S [M+H]⁺: 175.0, found: 174.9. This compound was known.⁶ 3-Methylbenzenesulfonyl fluoride (**21**)

Colorless oil; yield 79%; UV $\lambda_{max}(CH_2Cl_2/nm)$ 231; IR v_{max}/cm^{-1} 1461, 1261 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.82 -7.81 (m, 2H),7.60-7.57 (m, 2H), 7.54-7.49 (m, 1H), 2.48 (s,3H); ¹⁹F NMR (300 MHz, CDCl₃) δ 65.83 (s, 1F); LCMS (ESI) calcd. for C₇H₈FO₂S [M+H]⁺: 175.0, found: 174.9. This compound was known.⁷ 2-Methylbenzenesulfonyl fluoride (**22**)

Colorless oil; yield 79%; UV $\lambda_{max}(CH_2Cl_2/nm)$ 228; IR v_{max}/cm^{-1} 1402, 1212 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J*= 7.7 Hz, 1H), 7.66-7.60 (m, 1H), 7.45-7.38 (m, 2H), 2.70 (s, 3H); ¹⁹F NMR (300 MHz, CDCl₃) δ 60.26 (s, 1F); LCMS (ESI) calcd. for C₇H₈FO₂S [M+H]⁺: 175.0, found: 174.9. This compound was known.⁷ 4-Isopropylbenzenesulfonyl fluoride (**23**)

Colorless oil; yield 79%; UV λ_{max} (CH₂Cl₂/nm) 238; IR v_{max} /cm⁻¹ 1408, 1214 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.92 (m, 2H), 7.50-7.46 (m, 2H), 3.02-2.97 (m, 1H), 1.31 (s, 3H), 1.29 (s, 3H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.26 (s, 1F); LCMS (ESI) calcd. for C₉H₁₂FO₂S [M+H]⁺: 203.1, found: 202.9. This compound was known.⁸

4-(Tert-butyl)benzenesulfonyl fluoride (24)

White solid; yield 77%; m.p. 63.9~65.7 °C; UV λ_{max} (CH₂Cl₂/nm) 240; IR v_{max} /cm⁻¹ 1400, 1214 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.92 (m, 2H), 7.66-7.62 (m, 2H), 1.37 (s, 9H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.13 (s, 1F); LCMS (ESI) calcd. for C₁₀H₁₄FO₂S [M+H]⁺: 217.1, found: 216.8. This compound was known.⁷ 4-Chlorobenzenesulfonyl fluoride (**25**)

White solid; yield 90%; m.p. 47.5~49.1 °C; UV λ_{max} (CH₂Cl₂/nm) 239; IR v_{max} /cm⁻¹ 1413, 1214 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.99-7.95 (m, 2H), 7.65-7.61 (m, 2H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.55 (s, 1F); LCMS (ESI) calcd. for C₆H₅ClFOS [M(³⁵Cl)-O+H]⁺ 179.0, found: 179.0. This compound was known.⁶

3-Chlorobenzenesulfonyl fluoride (26)

Colorless oil; yield 57%; UV $\lambda_{max}(CH_2Cl_2/nm)$ 233; IR v_{max}/cm^{-1} 1416, 1214 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.02-7.99 (m, 1H), 7.94-7.90 (m, 1H), 7.78-7.74 (m, 1H), 7.63-7.57 (m, 1H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.13 (s, 1F); LCMS (ESI) calcd. for C₆H₅ClFOS [M(³⁵Cl)-O+H]⁺ 179.0, found: 178.8. This compound was known.⁷

2-Chlorobenzenesulfonyl fluoride (27)

White solid; yield 68%; m.p. 36.4~38.1 °C; UV λ_{max} (CH₂Cl₂/nm) 230; IR v_{max} /cm⁻¹ 1411, 1216 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.12 (dd, *J*= 8.0, 1.4 Hz, 1H), 7.70 (td, *J*= 8.0, 1.4 Hz, 1H), 7.67-7.63 (m, 1H), 7.55-7.48 (m, 1H); ¹⁹F NMR (300 MHz, CDCl₃) δ 58.88 (s, 1F); LCMS (ESI) calcd. for C₆H₅ClFOS [M(³⁵Cl)-O+H]⁺ 179.0, found: 179.0. This compound was known.⁹

2,4-Dichlorobenzenesulfonyl fluoride (28)

White solid; yield 89%; m.p. 55.8~58.4 °C; UV λ_{max} (CH₂Cl₂/nm) 240; IR v_{max} /cm⁻¹ 1409, 1209 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, *J*= 8.6 Hz, 1H), 7.66 (d, *J*= 2.0 Hz, 1H), 7.50 (dt, *J*= 8.6, 2.0 Hz, 1H); ¹⁹F NMR (300 MHz, CDCl₃) δ 59.62 (s, 1F); LCMS (ESI) calcd. for C₆H₅ClFOS [M(³⁵Cl)-Cl-O+2H]⁺ 179.0, found: 179.0. This compound was known.¹⁰

4-Cyanobenzenesulfonyl fluoride (29)

White solid; yield 73%; m.p. 55.8~58.4 °C; UV λ_{max} (CH₂Cl₂/nm) 239; IR v_{max} /cm⁻¹ 1413, 1214 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.18-8.15 (m, 2H), 7.97-7.94 (m,

2H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.02 (s, 1F); LCMS (ESI) calcd. for C₇H₅NOS [M-F-O+H]⁺151.0, found: 151.0. This compound was known.⁷
4-Nitrobenzenesulfonyl fluoride (**30**)

White solid; yield 79%; m.p. 76.7~77.7 °C; UV λ_{max} (CH₂Cl₂/nm) 245; IR v_{max} /cm⁻¹ 1419, 1216 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.50 (d, *J*= 8.9 Hz, 2H), 8.26 (d, *J*= 8.9 Hz, 2H); ¹⁹F NMR (300 MHz, CDCl₃) δ 66.25 (s, 1F); LCMS (ESI) calcd. for C₆H₄NO₂S [M-F-2O]⁺ 154.0, found: 154.0. This compound was known.⁶ 4-Methoxybenzenesulfonyl fluoride (**31**)

Colorless oil; yield 72%; UV $\lambda_{max}(CH_2Cl_2/nm)$ 247; IR v_{max}/cm^{-1} 1404, 1212 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J*= 9.0 Hz, 2H), 7.07 (d, *J*= 9.0 Hz, 2H), 3.92 (s, 3H); ¹⁹F NMR (300 MHz, CDCl₃) δ 67.32 (s, 1F); LCMS (ESI) calcd. for C₇H₆FO₃S [M-H]⁻: 189.0, found: 188.9. This compound was known.⁶ Methyl 4-(fluorosulfonyl)benzoate (**32**)

White solid; yield 81%; m.p. 82.2~84.3 °C; UV λ_{max} (CH₂Cl₂/nm) 239; IR v_{max} /cm⁻¹ 1411, 1212 (SO₂); ¹H NMR (300 MHz, CDCl₃) δ 8.30-8.27 (m, 2H), 8.12-8.09 (m, 2H), 4.00 (s, 3H); ¹⁹F NMR (300 MHz, CDCl₃) δ 65.80 (s, 1F); LCMS (ESI) calcd. for C₈H₈FO₄S [M+H]⁺: 219.0, found: 219.0. This compound was known.¹⁰

Analytical Equipment

Melting points were measured using a Stuart automatic melting point SMP40 apparatus or a Shanghai ShenGuang WRR apparatus. Fourier Transform InfraRed (FTIR) spectra were measured using an Agilent Cary 630 FTIR or a Bruker TENSOR II FTIR. All solvents were used after appropriate distillation or purification. ¹H NMR and ¹³C NMR spectra were recorded with Bruker Advance 300/400/500 MHz

spectrometer (Bruker Company, Germany) in the indicated sol vents (CDCl₃ or DMSO- d_6 , tetramethylsilane (TMS) as internal stan dard): the values of the chemical shifts are expressed in δ values (ppm) and the coupling constants (*J*) in hertz. High-resolution mass spectra (HRMS) were measured with an Aglilent Technologies 6538 UHD Accurate-Mass Q-TOF MS spectrometer using ESI.

LC-MS analyses were conducted using a Waters Acquity UPLC system with photo diode array (PDA) and evaporating light scattering detector (ELSD) or using the ESI mass spectra which were performed by Zichao Ding on an Agilent Technologies 6120 Quadrupole LC-MS. When a 2 min gradient was used, the sample was eluted on an Acquity UPLC BEH C18, 1.7μ m, 2.1×50 mm, with a flow rate of 1 ml/min using 10-100% 0.1% trifluoroacetic acid in MeCN. Analytical purity of compounds was determined using Waters XTerra RP18, 5 µm (4.6 × 150 mm) column at 1 ml/min using either 0.1% aq. and MeCN or 0.1% aq. trifluoroacetic acid and MeCN with a gradient of 10-100% over 20 min. When a 12 min gradient was used, the sample was eluted on ZORBAX Eclipse XDB-C18, 3.5 µm, 4.6 x 100 mm, with a flow rate of 1 ml/min using 30-70% 0.1% trifluoroacetic acid in MeCN.

Compound C1 was dissolved into MeCN and evaporated slowly under 4 °C to give colourless needle crystals. The grown crystals were collected and identified as No. **250116b**. A specimen of **250116b**, approximate dimensions 0.030 mm x 0.040 mm x 0.200 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker D8 VENTURE DUO PHOTON III system equipped with a Incoatec Ius 3.0 Microfocus sealed tube (Cu K α , $\lambda = 1.54178$ Å) and a Helios MX Multilayer Optic monochromator. The structure was solved and refined using the Bruker SHELXTL Software Package. Data was shown in Table S1 and S2.

Table 1. Sample and	l crystal data	for 250116b.
---------------------	----------------	--------------

Identification code	250116b
Chemical formula	$C_{17}H_{12}F_2O_4S$
Formula weight	350.33 g/mol
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal size	0.030 x 0.040 x 0.200 mm

Crystal system	monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	$a = 6.8190(8) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 14.7869(15) \text{ Å} \beta = 91.279(6)^{\circ}$
	$c = 14.7647(15) \text{ Å} \gamma = 90^{\circ}$
Volume	1488.4(3) Å ³
Z	4
Density (calculated)	1.563 g/cm ³
Absorption coefficient	2.343 mm ⁻¹
F(000)	720

\mathbf{I}	T	able	2.	Data	collection	and	structure	refinemer	ıt for	· 250116b
--------------	---	------	----	------	------------	-----	-----------	-----------	--------	-----------

Diffractometer	Bruker D8 VENTURE DUO PHOTON III		
Radiation source	Incoatec Ius 3.0 Microfocus sealed tube (Cu K α , λ = 1.54178 Å)		
Theta range for data collection	4.23 to 66.96°		
Index ranges	-8<=h<=8, -17<=k<=17, -17<=l<=14		
Reflections collected	16460		
Independent reflections	2595 [R(int) = 0.0725]		
Coverage of independent reflections	97.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9330 and 0.6520		
Structure solution technique	direct methods		
Structure solution program	XT, VERSION 2018/2		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2019/1 (Sheldrick, 2019)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	2595 / 0 / 218		
Goodness-of-fit on F ²	1.076		
Final R indices	2316 data; I> $2\sigma(I)$ R1 = 0.1209, wR2 = 0.3603		
	all data $R1 = 0.1261$, $wR2 = 0.3626$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.1940P) ² +11.1720P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole 1.518 and -0.564 eÅ-3			

R.M.S. deviation from 0.157 eÅ⁻³

Figure S1 Free energy changes of the possible reaction pathways. Calculations were performed in the framework of the density functional theory with the B3LYP method. The 6-311g (d, p) basis set is used for C, H, O, N, F and S atoms. The optimal structure was calculated using PCM solvent model in water and acetonitrile solution (1:1). The sum of Gibbs free energy (Δ G) and Electronic Energy (Δ E) are used in reaction.

Figure S2 X-ray crystal structure of compound **C1**. The stereochemistry reflects the E geometry of the double bond.

^{10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200} fl (ppm)

150 100 50 0 -50 -100 -150 -200 -250 -300 -350 fl (ppm)

8.05 8.05 7.66 7.61 7.44 7.44 7.39 -2.70

7.99 7.98 7.98 7.95 7.95 7.95 7.95

^{150 100 50 0 -50 -100 -150 -200 -250 -300 -350} fl (ppm)

8.07 8.04 7.67 7.52 7.51 7.51 7.48 7.48 7.48

150 100 50 0 -50 -100 -150 -200 -250 -300 -350 fl (ppm)

-193.77 -158.18 -158.18 -158.18 -158.18 -158.18 -133.46 -133.46 -106.59 -106.59 -106.59

3.96 3.94 3.87 3.14 3.03

0.5 12.5 11.5 10.5 7.5 6.5 5.5 f1 (ppm) 4.5 3.5 2.5 1.5 9.5 8.5

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak #	Retention time [min]	Туре	Peak width [min]	Peak area [mAU*s]	Peak height [mAU]	Peak area %
1	19.137	BB	0.1250	245. 13756	27.23357	3.9725
2	20.183	BV R	0.1214	5925. 67725	678.72198	96.0275

Total amount :

 $6170.\ 81480 \quad 705.\ 95556$

-2.41 -2.41 -2.41 -2.41

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak	Retention time	Туре	Peak width	Peak area	Peak height	Peak area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.369	BB	0.0852	5.93756	1.06267	0.2352
2	20.802	BV R	0.1313	2450.38867	254.77086	97.0786
3	20. 989	VV E	0.0987	37.94141	5.62358	1.5031
4	21.603	BV R	0.1462	29.86185	2.89859	1.1831

Total amount :

2524.12949 264.35569

4.14

Peak #	Retention time [min]	Туре	Peak width [min]	Peak area [mAU*s]	Peak height [mAU]	Peak area %
1	19.207	BB	0.1455	140.46809	12.85713	2.5325
2	20.135	BV R	0.1454	5382.36816	497.23108	97.0406
3	20.604	VB E	0.0793	23.67564	4.36094	0.4269

Total amount :

5546.51190 514.44915

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm)

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak ^F #	Retention time [min]	Туре	Peak width [min]	Peak area [mAU*s]	Peak height [mAU]	Peak area %
-						
1	19.766	BV R	0.1316	1.82192e4	1923.03247	95.6119
2	20.177	VV E	0.1545	582.54578	54.60762	3.0571
3	20.526	VB E	0.0914	253.62495	41.41702	1.3310

Total amount:

1.90554e4 2019.05710

-9.92 -9.92 -9.92 -9.92 -9.92 -9.12 -9.12 -9.12 -1.15 -7

-193.50 -193.50 -193.50 -193.50 -193.50 -143.87 -143.87 -143.87 -143.87 -143.87 -143.67 -143.77 -57.62 -57.

290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 Counts vs. 质荷比 (m/z)

Signal 2: DAD1 B, Sig=254,4 Ref=off

Р	eak #	Retention time [min]	Туре	Peak width [min]	Peak area [mAU*s]	Peak height [mAU]	Peak area %
	59	30.275	VB	0.1684	7127.85156	552.82898	10.5808
	60	32.555	BV	1.0609	2449.64893	27.19567	3.6363
	61	32.678	VV	0.1159	145.06548	15.97883	0.2153
	62	32.818	VB	0.1852	58.10279	3.95993	0.0862
	63	34.916	BV	0.0648	5.22159	1.11146	7.751e-3

Total amount :

6.73659e4 4611.16629

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak Retention	Peak	Peak	Peak	Peak
time Type	width	area	height	area
# [min]	[min]	[mAU*s]	[mAU]	%
 1 15.124 BV R 2 18.734 VB	0. 0978 0. 0911	4886. 37354 14. 74926	 790. 93787 2. 42044	99. 6991 0. 3009

Total amount :

 $4901.\ 12280 \quad 793.\ 35830$

-193.61

230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 fl (ppm)

References

- 1. A. J. Perkowski, C. L. Cruz and D. A. Nicewicz, *Journal of the American Chemical Society*, 2015, **137**, 15684-15687.
- 2. J. Chen, J. Mao, Y. He, D. Shi, B. Zou and G. Zhang, *Tetrahedron*, 2015, 71, 9496-9500.
- 3. Y. q. Yuan, S. Guo and J. Xiang, *Synlett*, 2013, **24**, 443 448.
- C. N. Njiojob, E. A. Owens, L. Narayana, H. Hyun, H. S. Choi and M. Henary, *Journal of Medicinal Chemistry*, 2015, 58, 2845-2854.
- 5. M. E. Matter, L. Čamdžić and E. E. Stache, *Angewandte Chemie International Edition*, 2023, **62**, e202308648.
- L. Matesic, N. A. Wyatt, B. H. Fraser, M. P. Roberts, T. Q. Pham and I. Greguric, *The Journal of Organic Chemistry*, 2013, 78, 11262-11270.
- 7. J. K. Park, J. Oh and S. Lee, Organic Chemistry Frontiers, 2022, 9, 3407-3413.
- 8. Y. Ma, Q. Pan, C. Ou, Y. Cai, X. Ma and C. Liu, *Organic & Biomolecular Chemistry*, 2023, **21**, 7597-7601.
- 9. X. Wu and B. Gao, *Organic Letters*, 2023, **25**, 8722-8726.
- 10. T. T. Bui, V. H. Tran and H.-K. Kim, Advanced Synthesis & Catalysis, 2022, 364, 341-347.