Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Green synthesis of coconut coir-based carbon dots for efficient detection of ferric Ions

Shalni Srivastava¹, Aneesh Ali¹, Kanika¹, Prodipta Samadder², Bhuvnesh Kumar¹, Awdhesh

Kumar Mishra³, Mohammad Rashid Khan⁴, Nemat Ali⁴, Young-Ok Son^{5*}, Rehan Khan^{1*}

¹Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-

81, Mohali-140306, Punjab, India.

² Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City,

Sector-81, Mohali-140306, Punjab, India.

³Department of Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.

⁴Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University,

P.O. Box 2457, Riyadh 11451, Saudi Arabia.

⁵Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life

Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and

Science, Jeju National University, Jeju 63243, Republic of Korea.

*Corresponding authors:

Dr. Young-Ok Son

Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life

Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, South

Korea.

&

E-mail: sounagi@jejunu.ac.kr

Dr. Rehan Khan

Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge

City,

Sector 81, Mohali-140306, Punjab, India.

E-mail: rehankhan@inst.ac.in

Phone No. +91-172-2210075 Ext-7030

SUPPLEMENTARY DATA

Structural Characterisation

1. SEAD Pattern of synthesized CCDs

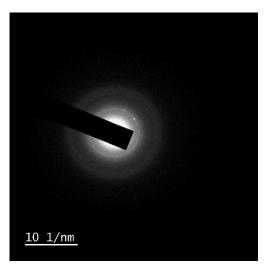


Figure S1. SEAD Pattern of synthesized CCDs

The selected area electron diffraction (SAED) pattern depicts diffused rings, confirming the polycrystalline structure of the synthesized CCDs¹.

Optical Characterisation

2. Photostability studies of CCDs

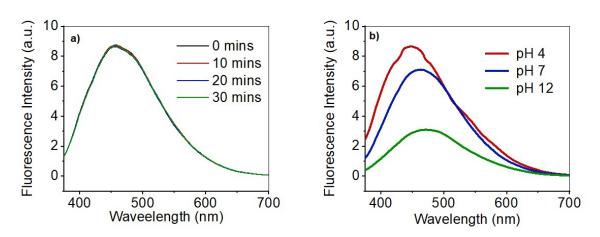


Figure S2. (a) Florescence intensity of CCDs (a) after different irradiation time interval (b) at different pH.

To determine the photostability of synthesized CCDs, fluorescence spectra were recorded at various time intervals and pH levels under an excitation wavelength of 350 nm. It is evident that the CCDs are stable with increasing time interval and are pH responsive. The fluorescence intensity decreases linearly with increasing pH from 4 to 12. This may be due to protonation and deprotonation of surface carboxyl groups, which induce electrostatic charging. While the emission peak consistently remains at 450 nm indicating spectral stability¹. This suggests the

synthesized CCDs can be utilized as fluorescence-based pH sensors for applications in clinical diagnostics such as sensing tumor microenvironments etc.

Method Validation

3. Fluorescence lifetime plot of CCDs incubated with varying Fe(III) concentrations.

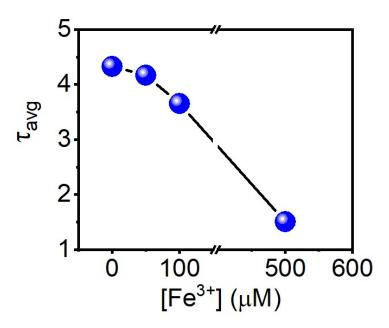


Figure S3. The effects of different concentrations of Fe(III) ions on the fluorescence lifetime of CCDs.

The fluorescence life of 4.33 ns, 4.17 ns, 3.655 ns and 1.51 ns were observed for 0, 50, 100 and 500 μ M concentration of Fe(III) ions respectively.

4. In-Vitro Studies

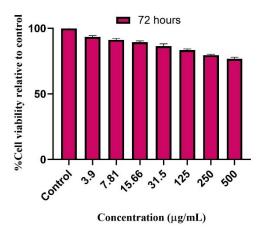


Figure S4. *In-vitro* cytocompatibility of CCDs after 72 h.

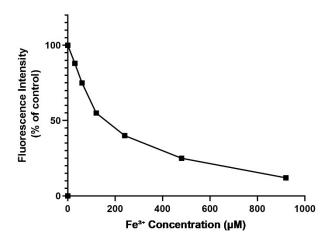


Figure S5. Fluorescence intensity has been quantified vs $Fe^{\scriptscriptstyle 3+}$ increasing concentration (μM)

Reference

1L. A. A. Chunduri, A. Kurdekar, S. Patnaik, B. V. Dev, T. M. Rattan and V. Kamisetti, *mater focus*, 2016, 5, 55–61.