Supporting Information for Publication

Selective Synthesis of gem-Dihalopiperidines and 4-Halo-1,2,3,6-Tetrahydropyridines from Halogen Substituted Homoallylic Benzenesulfonamides and Aldehydes

Surjya Kumar Bora and Anil K. Saikia*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India E-mail: <u>asaikia@iitg.ac.in</u>

Table of Contents:

1.	¹ H, ¹³ C{ ¹ H} and ¹⁹ F spectra of all new compounds	S2-S43
2.	X-ray crystallographic data of compound 3ac, 3cj and 4aa	S44-S50

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3aa:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3ab:

¹⁹F (470 MHz, C₆F₆/CDCl₃) spectrum of 3ab:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3ac:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3ad:

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3ae:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3af:

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3ag:

¹⁹F (470 MHz, C₆F₆/CDCl₃) spectrum of 3ag:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3ah:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3ai:

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3aj:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3al:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3am:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3an:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 3ao:

1H (400 MHz, CDCl₃) and $^{13}C\{^1H\}$ (125 MHz, CDCl₃) spectra of 3ap:

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3aq:

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3ar:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 3as:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3at:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 3au:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 3dj:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 3ed:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 4aa:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 4ac:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 4ad:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 4ai:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 4aj:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 4ao:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 4aq:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 4db:

¹⁹F (470 MHz, C₆F₆/CDCl₃) spectrum of 4db:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 4de:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 4dj:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 5a:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 5b:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 5c:

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 6a:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (100 MHz, CDCl₃) spectra of 6b:

¹H (500 MHz, CDCl₃) and ¹³C{¹H} (125 MHz, CDCl₃) spectra of 6c:

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (150 MHz, CDCl₃) spectra of 7:

Single crystal X-ray diffraction:

Single crystals of compound **3ac**, **3dj** and **4aa** were obtained by slow evaporation of hexane and ethyl acetate solution (9:1). The Bruker SMART APEX-II CCD diffractometer was used to collect the intensity data. The instrument is equipped with a fine focus 1.75 kW sealed tube Mo K α radiation ($\lambda = 0.71073$ Å) at 293(3) K, with increasing ω (width of 0.3° per frame) at a scan speed of 3 s/frame. The data acquisition was done with the SMART software. The SAINT and XPREP software were implemented for data integration and reduction.¹ Multiscan empirical absorption corrections were employed to the data using the program SADABS.² Structures were solved by direct methods using SHELXS- 2016 and refined with full-matrix least-squares on F2 using SHELXL- 2016/6.³ Structural illustrations have been drawn with ORTEP-3 for Windows.⁴ The detailed data collection and structure refinement are summarized in Table 1-3. CCDC- 2429152 (for **3ac**), 2431627 (for **3dj**) and CCDC- 2429151 (for **4aa**) contained supplementary crystallographic data for this paper.

Ref. 1) SMART; SAINT; XPREP; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1995.

2) G. M. Sheldrick, SADABS: Software for Empirical Absorption Correction University of Gottingen, Institut fur Anorganiche Chemieder Universitat: Gottingen, Germany, 1999.

3) G. M. Sheldrick, SHELXS-2014, Program for the crystal structure solution; University of Göttingen: Göttingen, Germany, 2014.

4) L. J. Farrugia, XRDIFF: simulation of X-ray diffraction patterns, *J. Appl. Crystallogr.* 1997, **30**, 565.

	CCDC 2429152
Formula	$C_{18}H_{18}Br_2ClNO_2S$
Formula weight	507.66
T/K	293(2)
Crystal system	monoclinic
Space group	P21/c
• <i>a</i> /Å	11.4025(12)
• <i>b</i> /Å	15.3012(15)
• <i>c</i> /Å	11.8426(12)
• α/°	90
• β/°	112.487(4)
• γ/°	90
• $V/Å^3$	1909.1(3)
• Z	4
Abs. Coeff./mm ⁻¹	4.507
Abs. Correction	'none'
GOF on F^2	1.058
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0299$ wR2 = 0.0688
R indices [all data]	R1 = 0.0406
	wR2 = 0.0726

 Table S1: The crystal parameters of compound 3ac

Figure S1: ORTEP diagram of compound 3ac with 30% probability:

	CCDC 2431627
Formula	C ₁₉ H ₂₁ BrClNO ₂ S
Formula weight	442.79
T/K	295.00
Crystal system	monoclinic
Space group	Cc
• <i>a</i> /Å	20.319(4)
• <i>b</i> /Å	10.440(2)
• <i>c</i> /Å	9.3782(19)
• α/°	90
• β/°	100.424(6)
• γ/°	90
• $V/Å^3$	1956.6(7)
• Z	4
Abs. Coeff./mm ⁻¹	2.356
Abs. Correction	'none'
GOF on F^2	1.025
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0534$ wR2 = 0.1373
R indices [all data]	<i>R1</i> = 0.0649
	wR2 = 0.1460

Table S2: The crystal parameters of compound 3dj

Figure S2: ORTEP diagram of compound 3dj with 30% probability:

	CCDC 2429151
Formula	C ₁₈ H ₁₈ BrNO ₂ S
Formula weight	392.30
T/K	295(2)
Crystal system	monoclinic
Space group	P21/c
• <i>a</i> /Å	11.378(2)
• <i>b</i> /Å	8.0513(15)
• <i>c</i> /Å	19.674(4)
• α/°	90
• β/°	106.635(5)
• <i>γ</i> /°	90
• <i>V</i> /Å ³	1726.9(5)
• Z	4
Abs. Coeff./mm ⁻¹	2.510
Abs. Correction	'none'
GOF on F^2	1.023
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0493$ wR2 = 0.1183
R indices [all data]	R1 = 0.0863
	wR2 = 0.1373

 Table S3: The crystal parameters of compound 4aa

Figure S3: ORTEP diagram of compound 4aa with 30% probability