Photochemical [2+2] Cycloadditions of Naphthalene Acrylic Acids: Templated and Untemplated Photoreactivity, Selective Homo/Heterodimerizations, and Conformational Analysis

Supporting Information

Merve Temel,^a Gizem Yildiz,^a Kaan Berkay Ceyhan,^a Fahri Alkan,^a Onur Şahin,^b and Yunus Emre Türkmen*,^{a,c}

^aDepartment of Chemistry, Faculty of Science, Bilkent University, Ankara, 06800, Türkiye; ^bDepartment of Occupational Health & Safety, Faculty of Health Sciences, Sinop University, Sinop 57000, Türkiye; ^cUNAM — National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Türkiye

Table of Contents

- S-2 X-ray Crystallographic Analyses of Compounds 6a and 15a
- S-5 Daylight-Mediated Cycloaddition of Diester 6a
- S-7 Irradiation of Crystals of Diester 6a
- S-9 ATR-IR Spectra of **6a** and **15a**
- S-11 UV-vis Spectra of Compounds 6a, 9, 10 and 15a
- S-14 Experimental Set-up for the Photochemical [2+2] Cycloadditions
- S-15 Computational Data
- S-25 References
- S-26 1 H and 13 C{ 1 H} NMR spectra
- S-51 HRMS Data

X-ray Crystallographic Analyses of Compounds 6a and 15a:

Suitable crystals were selected for data collection which were performed on a Bruker diffractometer equipped with a graphite-monochromatic Mo- K_{α} radiation at 293 K. We used the following procedures for our analysis: solved by direct methods; SHELXS-2013 [1]; refined by full-matrix least-squares methods; SHELXL-2013 [2]; data collection: Bruker APEX2 [3]; molecular graphics: MERCURY [4]; solution: WinGX [5]. Details of data collection and crystal structure determinations are given in Table S1.

	6a	15 a
Empirical formula	$C_{36}H_{24}O_4$	$C_{36}H_{24}O_4$
Formula weight	520.55	520.55
Crystal system	Monoclinic	Monoclinic
Space group	P2 ₁	$P2_1/n$
<i>a (</i> Å)	7.9745 (7)	8.8325 (7)
<i>b (</i> Å)	12.9911 (10)	21.7745 (18)
<i>c (</i> Å)	13.0553 (11)	13.8399 (14)
β (°)	104.833 (3)	102.856 (2)
$V(\text{\AA}^3)$	1307.43 (19)	2595.0 (4)
Ζ	2	4
$D_{\rm c}$ (g cm ⁻³)	1.322	1.332
μ (mm ⁻¹)	0.09	0.09
θ range (°)	1.6-28.4	2.5-26.5
Measured refls.	32579	58261
Independent refls.	6499	5346
$R_{ m int}$	0.032	0.063
S	1.03	1.02
R1/wR2	0.041/0.093	0.050/0.112
$\Delta \rho_{max} / \Delta \rho_{min} \left(e {\rm \AA}^{-3} \right)$	0.23/-0.19	0.16/-0.25
CCDC	2426760	2426761

Table S1. Crystal data and refinement parameters for 6a and 15a.

Figure S1. The molecular structure of **6a** showing 40% probability displacement ellipsoids and the atomic numbering.

Figure S2. CH– π interactions in the crystal structure of **6a**.

Figure S3. The molecular structure of **15a** showing 40% probability displacement ellipsoids and the atomic numbering.

Figure S4. CH–O interactions in the crystal structure of 6a.

Daylight-Mediated Cycloaddition of Diester 6a:

Diester **6a** (33.1 mg, 0.063 mmol) was dissolved in 1.0 mL of CDCl₃. A portion of this solution was transferred to an NMR tube, and the tube was placed in front of the window inside the laboratory. Conversion (%) values were determined periodically for 15 days (between the dates 16.01.2024 and 31.01.2024) by ¹H NMR spectroscopy. For the calculation of conversion values, the integration of the signal at 8.61 ppm for **6a**, and that of the signal at 5.68 ppm for **15a** were utilized. At the end of 15 days (360 h), 96% conversion was determined.

Figure S5. Stacked ¹H NMR spectra for the cycloaddition of 6a under daylight in CDCl₃.

Figure S6. Time dependence of the conversion values for the cycloaddition of 6a under daylight.

Irradiation of Crystals of Diester 6a:

Crystals of diester **6a** were gently picked and placed on a quartz microscope slide. Unlike the powder samples, a second slide was not used to squeeze the crystals. For 20 h, crystals were irradiated with 365 nm UV light. Every 4 h, they were turned gently upside down to provide equal light distribution. At the end of the irradiation period, crystals were directly dissolved in CDCl₃ without applying any purification, and conversion values were calculated via ¹H NMR analysis.

a)

b)

Figure S7. Change of the appearance of crystals of 6a over time upon irradiation.

Figure S8. Powder XRD spectra of 15a-2 and 15a-3, and the simulated powder XRD spectrum of 15a-4 based on its single-crystal XRD data.

ATR-IR Spectra of 6a and 15a:

Figure S9. ATR-IR spectrum of diester 6a.

Figure S10. ATR-IR spectrum of 15a-1 after irradiation of the crystals of 6a.

Figure S11. ATR-IR spectrum of 15a-3.

Figure S12. Overlay of the ATR-IR spectra of 15a-3 and 15a-4.

UV-vis Absorption Spectra of Compounds 6a, 9, 10 and 15a:

Figure S13. UV-vis absorption spectrum of compound 9 in MeOH (1×10^{-4} M; $\lambda_{max} = 323$ nm, absorption tail up to ca. 378 nm); ϵ (323 nm) = 1.46×10^{4} M⁻¹ cm⁻¹.

Figure S14. UV-vis absorption spectrum of compound 10 in MeOH (1×10^{-4} M; $\lambda_{max} = 322$ nm, absorption tail up to ca. 390 nm); ϵ (322 nm) = 1.30×10^{4} M⁻¹ cm⁻¹.

Figure S15. UV-vis absorption spectrum of compound **6a** in CH₂Cl₂ (2.5×10^{-5} M; $\lambda_{max} = 326$ nm, absorption tail up to ca. 400 nm); ϵ (326 nm) = 3.04×10^4 M⁻¹ cm⁻¹.

Figure S16. Diffuse reflectance UV-vis spectrum of 6a in solid powder form.

Figure S17. UV-vis absorption spectrum of compound 15a in CH₂Cl₂ (5 × 10⁻⁵ M; $\lambda_{max} = 284$ nm); ϵ (284 nm) = 5.90 × 10³ M⁻¹ cm⁻¹.

Experimental Set-up for the Photochemical [2+2] Cycloadditions:

Figure S18. (a) Appearance of the UV gel nail dryer (Beurer, MP38) when it is off. b) Appearance of the UV gel nail dryer with the fluorescent lamps on. (c) Appearance of a powder sample, which was prepared for irradiation and placed between two quartz microscope slides. (d) Irradiation of a solution sample in a quartz test tube inside a fume hood with a cooling fan on.

Four Philips PL-S 9-Watt UV-A fluorescent bulbs were used for irradiation. The emission spectrum of these fluorescent lamps can be accessed via the following link: <u>https://www.lighting.philips.com/prof/special-lamps/insect-trap/actinic-bl/actinic-bl-pl-s-pl-</u> <u>l/927901721008 EU/product</u> (Last accessed on May 23, 2025).

Computational Data

XYZ coordinates:

anti-cis-anti conformer (15a-anti-cis-anti; A)

There is no negative frequency (imaginary mode) as expected

С	2.74313610998885	0.85289097870194	2.11079569313839
Н	1.91632277304693	1.47841954783772	1.77641806958660
С	3.48332359549148	1.25245956526958	3.20493955533392
Н	3.22797229304256	2.18045491695847	3.72258013557340
С	4.56535917613499	0.46450254092675	3.66581724628095
Н	5.14074065781069	0.78702811323466	4.53750127923536
С	4.89435533539861	-0.70239075339039	3.00759830726919
Н	5.73528214283997	-1.31345869520457	3.34731501991428
С	4.15357089669570	-1.13719586487073	1.87380234972686
С	4.49741721166692	-2.33243055538137	1.18202366914757
Н	5.34869307503274	-2.92070853799135	1.53523027034355
С	3.76968836450674	-2.73090183572857	0.08488770728083
Н	4.03777737954978	-3.64253836230445	-0.45530986865426
С	2.65105899624126	-1.97401561127609	-0.34575586278947
Н	2.08358626275963	-2.34034614392045	-1.20202215619925
С	2.26435123341723	-0.81477732457466	0.29987509884816
С	3.04034449641397	-0.35366593652669	1.41861064941333
С	1.02400420672267	-0.05283658639907	-0.08087544280442
Н	1.27251232270206	1.00022079886751	-0.27511846616861
С	0.12923489265112	-0.57930333771066	-1.22247159399638
Н	0.32604855817961	-1.59828166452021	-1.57124355634318
С	-0.04803358314053	0.33741350486986	-2.40206273951907
С	-1.35864405224307	0.49320296538340	-4.34764287538566
С	-0.79590843472756	0.68876539429921	-5.58676643853988
Н	0.17692079298893	0.24086796121152	-5.79826631148869
С	-1.46910036339222	1.46522904185706	-6.55925914405107
Н	-1.01143574767849	1.61017227253192	-7.54053531565085
С	-2.68292142003914	2.04325957315046	-6.26160039294723
Н	-3.20427036503502	2.65564248695312	-7.00125267590384
С	-3.28974082013739	1.85659144541053	-4.98802927211459

С	-4.54317917560603	2.45591377107640	-4.68087116870166
Η	-5.02598359901171	3.07127222912241	-5.44384885103982
С	-5.13964868267532	2.26439006634567	-3.45421688779562
Η	-6.10221812294485	2.72887408153351	-3.22796323297226
С	-4.51757505595922	1.44979380419472	-2.47906458038505
Н	-4.99386959866124	1.26905554480622	-1.51463985374712
С	-3.30458918805102	0.86038242686080	-2.75187814324729
С	-2.62955242817846	1.04959698995155	-3.99801179391105
С	-2.16453711153769	0.44555869620405	-0.67308088511838
С	-1.11371867843278	-0.54782474990337	-0.24498191954754
Η	-1.58304745005110	-1.53620512758751	-0.14813292855940
С	-0.21138414223921	-0.10795118014718	0.92656077797073
Η	-0.48696163997012	0.90045246906079	1.24595516134942
С	-0.07803712572735	-1.03689461353760	2.10283262302461
С	0.05737786950478	-2.39982147272799	1.88839125907193
Н	-0.01320919233580	-2.79935809249263	0.87473188772309
С	0.32127409053637	-3.30247166926792	2.94344890732097
Н	0.42945144106241	-4.36785189640944	2.72474031612501
С	0.45793424625726	-2.83638560735938	4.23199764899268
Н	0.67959929059665	-3.52057295839514	5.05558405080082
С	0.30628284040683	-1.45199455840258	4.51417753047813
С	0.43904002446825	-0.96096021443327	5.84408695772819
Н	0.66764891206810	-1.67436861003873	6.64081454204322
С	0.28061640082526	0.37803119175255	6.12723356915301
Н	0.38478487355901	0.74250086137165	7.15248832187267
С	-0.02807072792692	1.28450193172859	5.08257839109543
Н	-0.16648560869937	2.34511653415371	5.30826228826201
С	-0.15364525374676	0.84057082851998	3.78312289038003
Н	-0.38962339373784	1.56546638099074	3.00423083612097
С	0.01681445794756	-0.53366103969419	3.44546963672205
0	0.20494644856561	1.51617980059438	-2.41820652507750
0	-0.67042846733242	-0.29833231954771	-3.42956696332204
0	-2.71866647216563	-0.00216370584865	-1.83617943604983
0	-2.43628081933057	1.49505854060074	-0.15552931774297

Transition state-1 (16a; B)

only one imaginary mode exists since it is the TS

С	2.62180765395658	0.76432802726734	1.90058281232112
Н	1.74639976562316	1.33952428737988	1.60458511280134
С	3.32505559837877	1.15106411351438	3.02168798714641
Н	2.98589113209669	2.01187941355291	3.60292951472961
С	4.47740212323213	0.43643086095467	3.42546009827248
Н	5.02457044071639	0.74651740118406	4.31936594495244
С	4.91206843700285	-0.64029953298595	2.68289178673202
Н	5.81118886861069	-1.18914435807389	2.97665741952016
С	4.21027861124065	-1.06084630185590	1.52038508621116
С	4.66736577783142	-2.15487187459693	0.73555352878329
Н	5.57746557762048	-2.67855169379208	1.04048323260557
С	3.98100955815598	-2.53516731048077	-0.39380671290145
Н	4.34431805885742	-3.36138982167297	-1.01010279015744
С	2.78777920716940	-1.86755507044625	-0.76242577405277
Н	2.26847348429116	-2.18579877978738	-1.66822799272894
С	2.28674399312601	-0.81641230742085	-0.01682223577434
С	3.02168571703185	-0.35978333052945	1.12740422767334
С	0.98432048871970	-0.15772809550513	-0.38677187308175
Н	1.17409545618766	0.86109360573794	-0.76439357143150
С	0.02236755245492	-0.89858255308463	-1.35643213664119
Н	0.17567793584946	-1.98420636202397	-1.28756389293670
С	0.07436490720621	-0.53576520290399	-2.82498150168129
С	-1.57121141830698	0.78014840141161	-4.18854808193395
С	-0.93041928395656	0.93285989662272	-5.39742752668079
Н	0.07099886159481	0.52569353313719	-5.53101386374690
С	-1.59817869820438	1.63110967874707	-6.43261368354162
Н	-1.09657899981203	1.75838783250091	-7.39490429568683
С	-2.85583368285548	2.15624637016844	-6.23327373938914
Н	-3.35903994147206	2.70435725757112	-7.03346861876598
С	-3.53374324816049	1.99640193031153	-4.99099615842002

С	-4.83690304387155	2.52378486211359	-4.78046113749241
Η	-5.31634181764029	3.07629169700721	-5.59212739913334
С	-5.48460238600165	2.33821074954949	-3.57945610142962
Η	-6.48589417073488	2.74691329781306	-3.42411900653595
С	-4.86573013361356	1.61013307893554	-2.53727328248111
Η	-5.37721352292721	1.43905319110868	-1.58859990956958
С	-3.60389381889581	1.08588955926852	-2.70530657083847
С	-2.88776852336754	1.27662022731172	-3.93350609527018
С	-2.00131647163651	0.69317453207404	-0.99121704422373
С	-1.19611754148362	-0.47993728390811	-0.46005052428210
Η	-1.87390597030864	-1.31112416273252	-0.22310969630718
С	-0.19986457606306	-0.05896525322771	0.65909257850206
Η	-0.37692645436356	0.98146381582415	0.93781679092192
С	-0.12096817290286	-0.94229142868301	1.87613203479351
С	0.12103186571285	-2.29905023804286	1.73522159043161
Η	0.21465481189296	-2.73310609211362	0.73874049512258
С	0.28717101766719	-3.15193332620117	2.84832098098844
Η	0.48598658769340	-4.21413749590000	2.68633701269592
С	0.21692234141996	-2.64103654967545	4.12366343856575
Η	0.36041879566187	-3.28693758240253	4.99397516713268
С	-0.04439264343048	-1.26114822432733	4.33084588220645
С	-0.11809818128324	-0.72347670393472	5.64586729082144
Η	0.03479399283807	-1.39866044589278	6.49237031000652
С	-0.37536556166004	0.61228365986832	5.85656094764864
Η	-0.42758826131409	1.01201442708367	6.87242562221493
С	-0.58113753251643	1.46871379277388	4.74798696921851
Η	-0.79947258193894	2.52697166524721	4.91324840303580
С	-0.51359775680947	0.97855391644929	3.46138476441132
Η	-0.68745000489531	1.66547334506393	2.63314780702617
С	-0.23302829572140	-0.39392802445346	3.19963355110972
0	0.93520747514954	-0.82546867742934	-3.61273967953574
0	-1.02541764371714	0.18816551703133	-3.08703146431518
0	-3.09803427987168	0.27572171758999	-1.69525757414477
0	-1.73148147525332	1.85182842190942	-0.82672845349095

anti-cis-syn conformer (15a-anti-cis-syn; C)

There is no negative frequency (imaginary mode) as expected

С	2.62087533057121	0.95956921140150	1.69092977556326
Н	1.72544040656254	1.46630400408546	1.33342512991506
С	3.41302188731632	1.58486363752250	2.63228130416726
Н	3.13019912729211	2.57017563618411	3.01127762703926
С	4.58555039462165	0.95556291646563	3.11544316919610
Н	5.20236332179949	1.45670630431844	3.86600252525836
С	4.94974789902515	-0.28358514056524	2.63062959400821
Н	5.85952811439845	-0.77454638885943	2.98732708780971
С	4.15723243248843	-0.94994984965245	1.65532671813469
С	4.53800461293271	-2.21933191764817	1.13665577339314
Н	5.45778571283944	-2.68427424286485	1.50184569669228
С	3.76063372631284	-2.84099303013938	0.18709553573993
Н	4.05611028823570	-3.81051729767746	-0.22207890665533
С	2.55751721469275	-2.23877445008314	-0.25973688697148
Н	1.95817598405811	-2.77385838482866	-0.99767533376028
С	2.13419421773011	-1.01488504847515	0.22337260856471
С	2.95411801419647	-0.32635873672798	1.18204082269367
С	0.82291499609621	-0.39927260446786	-0.18103432531132
Н	0.99327526497784	0.61363871645152	-0.57193004306181
С	-0.12043277593869	-1.17128233451380	-1.14304589496331
Н	0.06326378393115	-2.24903694856304	-1.18367440219041
С	-0.27541501357699	-0.67933715301881	-2.55599978153487
С	-1.07735624684860	1.30503890609734	-3.62385075202655
С	-0.30540074795681	1.99794538927304	-4.52634203638866
Η	0.78067316681264	1.97096927525085	-4.41994958519257
С	-0.92134894239091	2.74388806135683	-5.55871181025572
Н	-0.29831709237618	3.29016905627868	-6.27061594588869
С	-2.29469624535632	2.78807975977438	-5.65441002849939
Η	-2.77920273774437	3.37126272843545	-6.44127132673567
С	-3.11644477864668	2.07956785019511	-4.73379088490457

С	-4.53525966794045	2.13005029696297	-4.83008854214522
Н	-4.98135296545396	2.73018588738152	-5.62676883947424
С	-5.33079198340762	1.43856556289471	-3.94356312095529
Н	-6.41930181353301	1.48340566825395	-4.02423303151638
С	-4.74171878714090	0.65239046717380	-2.92534749112636
Η	-5.35581848683100	0.07802480540157	-2.22918095670468
С	-3.37302606746213	0.58631230698215	-2.81119413934498
С	-2.50428387346615	1.30100181453694	-3.69193360767001
С	-2.26265184394734	0.19506563036273	-0.73457454725202
С	-1.31766624191632	-0.84333092905058	-0.18149766783866
Η	-1.90675530426456	-1.73388190393619	0.08334811247501
С	-0.34434887608782	-0.31786994629876	0.89764326293973
Η	-0.58001569439199	0.71714865036674	1.15667583113497
С	-0.15748428110792	-1.15930965899506	2.13229562311462
С	-0.07949367300441	-2.53913284357409	2.02141744989859
Η	-0.21837640179151	-3.01528937578613	1.04875367587300
С	0.20243504623716	-3.36697367443203	3.13182776431501
Η	0.26013936618917	-4.44958017197830	2.99331742148144
С	0.41519488895723	-2.80877524331987	4.37236428624272
Η	0.64741457344187	-3.43601279189493	5.23728636191348
С	0.33042213983952	-1.40159945381386	4.54974548949663
С	0.54057529318303	-0.81587265161080	5.83054445157988
Η	0.77609407472553	-1.47504221430025	6.67078997100924
С	0.44675740101506	0.54626230196395	6.01398487778870
Η	0.60969550065721	0.98359308835983	7.00242285131475
С	0.12928619593237	1.38191607730005	4.91454855971316
Н	0.04438183967683	2.46184712735705	5.06113757863485
С	-0.07186312490361	0.84530505869249	3.66029666380794
Η	-0.31237016969560	1.51832072970321	2.83804686623464
С	0.02753382183095	-0.55718115818424	3.42460314730002
0	-0.30544758389004	-1.34486108861456	-3.55555713763633
0	-0.44820156627474	0.67802036948283	-2.55529002142184
0	-2.83027191002226	-0.28992084705620	-1.87679776945350
0	-2.48873619284272	1.28964841540353	-0.29484075001046

Transition state-2 (16b; D)

only one imaginary mode exists since it is the TS

С	2.70840268566389	0.71476444422736	1.41509988866989
Н	2.00234954021201	1.32905643329924	0.85945672742008
С	3.36512804513116	1.27148960329620	2.49346189195871
Н	3.16000321413911	2.30693589094597	2.77549135520869
С	4.28957390713634	0.50645499752841	3.24401964258287
Н	4.79782038510373	0.95325462524816	4.10249839198902
С	4.55406138222188	-0.79695236939081	2.88041814873365
Н	5.27778823906296	-1.39470659559961	3.44158306195990
С	3.89677669943930	-1.39635064736145	1.77026660176942
С	4.17457271058243	-2.73906054385330	1.39209532509998
Н	4.91247055394201	-3.30733408254442	1.96483629316427
С	3.52234050464925	-3.30572116708515	0.32222031392448
Н	3.73835413657179	-4.33482062165497	0.02369444963731
С	2.54302330392924	-2.57001931319581	-0.38966330127145
Н	2.01879106749521	-3.07468032053883	-1.20196190674422
С	2.22395980904406	-1.26557815053815	-0.05791051153089
С	2.93301856766219	-0.63522897385368	1.02491933550401
С	1.06854581724295	-0.53430962430394	-0.69722727656830
Н	1.31889207807621	0.51898273933493	-0.86817109966272
С	0.39437468131492	-1.19957859243858	-1.92583981836483
Н	0.94690553442497	-2.00835072552353	-2.41596424289650
С	-0.04100926629414	-0.27279907685682	-3.04485928516590
С	-1.19405721725966	1.78155364423558	-3.36278022493630
С	-0.70780907560568	2.91625407760900	-3.97194996365452
Н	0.36251753936424	3.12322634740333	-3.91564391168593
С	-1.58486373509837	3.79783717060505	-4.64746147502476
Н	-1.17916714718068	4.69411557445856	-5.12274418303684
С	-2.93547009761342	3.53080493606385	-4.70255622511958
Н	-3.61788596854048	4.21026167316023	-5.21888118147213
С	-3.47155449447117	2.36825384838431	-4.08235230587401

С	-4.86737010481187	2.08306001870213	-4.11549350609068
Н	-5.52689348937237	2.77869937008915	-4.63983106416380
С	-5.38033801187311	0.95943171295350	-3.50444483411460
Н	-6.45322712317795	0.75584961998695	-3.54045140124111
С	-4.53081021484707	0.04694053571316	-2.83062017516653
Н	-4.92316630156846	-0.85105675546270	-2.35512694465427
С	-3.18019523529219	0.31008299301339	-2.79272249755962
С	-2.59226370796184	1.46449688696103	-3.40072445399997
С	-2.20958899696008	-1.55986251930130	-1.39813505601936
С	-0.76221256670778	-1.72264521027825	-0.98810383820839
Н	-0.58219267409070	-2.76712457937743	-0.71001077637177
С	-0.29683625177943	-0.70943429048944	0.09904385356427
Н	-0.87282892284226	0.21278519256386	-0.03360484020835
С	-0.24405651496067	-1.09713481780601	1.54867178049810
С	-0.05112952622299	-2.41459958657763	1.92559324074799
Н	-0.04051986061554	-3.20029699045793	1.16923795594996
С	0.17230945211614	-2.78042589622079	3.27375084525759
Н	0.32495600785366	-3.83288361499961	3.52582313530237
С	0.22170337507840	-1.81495428358223	4.25330237090138
Н	0.42137079684083	-2.08247279967463	5.29443548698906
С	0.01211505107856	-0.44787098939698	3.92558398708405
С	0.07249746049417	0.56165118667225	4.92649447911244
Н	0.28441845024745	0.26216456188472	5.95667700353883
С	-0.13028381534376	1.88811723947955	4.61177122694180
Н	-0.07803140833502	2.65441588227309	5.38952297942080
С	-0.41621929819523	2.25710865870401	3.27422119494514
Н	-0.58913398280478	3.30766411613603	3.02639003648237
С	-0.47174573095906	1.30176448115999	2.28035391344435
Н	-0.68151167394083	1.62262137879867	1.25968666489647
С	-0.24949928298426	-0.07677305366257	2.56249129284943
0	-0.15611811244269	-0.61657302857992	-4.19310935218275
0	-0.29529280685331	1.00568365809602	-2.63155801098026
0	-2.23980342783156	-0.48696667807659	-2.21026580462776
0	-3.16595495128067	-2.19921760030458	-1.04294340695058

syn-cis-syn conformer-2 (15a-syn-cis-syn; E)

There is no negative frequency (imaginary mode) as expected

С	2.85035288355691	0.61501281601431	1.67938983295660
Н	2.16551985928379	1.23065254655734	1.09864667214458
С	3.45181348144906	1.16348335417305	2.79361482623355
Н	3.23157984180210	2.19633578533101	3.07483179605512
С	4.34379912211180	0.39499012851369	3.57924355355917
Н	4.80938599628648	0.83641584123729	4.46427833685016
С	4.62740240936629	-0.90565501174944	3.21902539489900
Н	5.32213051054752	-1.50762425833865	3.81144667431423
С	4.02599802911785	-1.49674282851824	2.07332850286936
С	4.32033014469287	-2.83759423842675	1.70020740496319
Н	5.02669230209636	-3.41146560951864	2.30615622771514
С	3.72268423065857	-3.39479563578927	0.59407132357171
Н	3.95005982972896	-4.42287082142545	0.30065469410648
С	2.78724188242551	-2.64941445922554	-0.16581970957126
Н	2.30849628065820	-3.14688594147664	-1.00992637882260
С	2.45730873109417	-1.34611108045912	0.15683310576963
С	3.10298268806620	-0.72883216708213	1.28557131809583
С	1.35267244140473	-0.59203612857686	-0.53919758840396
Н	1.64905169744773	0.45102661408470	-0.70813425284531
С	0.72282228867417	-1.24892324399192	-1.80411883039409
Н	1.25587505706410	-2.10205960584881	-2.23344490760497
С	0.41853590384168	-0.30518915124053	-2.93989737466057
С	-1.21446626559841	1.43215415944583	-3.33051008519531
С	-0.69143858837769	2.22287617069517	-4.32873758531330
Н	0.38890407589074	2.26316801927419	-4.46794333590355
С	-1.55567571930220	2.97739928297276	-5.15583764490668
Н	-1.13014793657273	3.59965241612259	-5.94651790845809
С	-2.91794945848540	2.93175333253128	-4.95993381808347
Н	-3.59070344359541	3.51688089591027	-5.59154223395353
С	-3.48369597274211	2.12970670065942	-3.92997810070207

С	-4.89127709492444	2.10017790231296	-3.72178267267519
Η	-5.52550495353249	2.70660850874680	-4.37286312517868
С	-5.44369482698964	1.33059566528167	-2.72276671792998
Η	-6.52490256436647	1.31544857643112	-2.56729775602056
С	-4.61101301151318	0.54577794865266	-1.89093082945425
Η	-5.03066495622497	-0.07497900305443	-1.09710233591658
С	-3.24797323574292	0.55363647483043	-2.07127046619265
С	-2.62218013948277	1.34435464876556	-3.08782376872239
С	-1.83473886813323	-1.28526927933380	-1.67698393514798
С	-0.55156079763019	-1.60961676369938	-0.95264007989866
Η	-0.54518136135447	-2.68222893133311	-0.72311379118875
С	-0.06101437149694	-0.69871826125478	0.19074898528028
Η	-0.56446827996708	0.26578845594266	0.10006866675897
С	-0.07670550545852	-1.17545703076395	1.61519027923111
С	0.07955576035807	-2.51870225742793	1.91320546873801
Η	0.11906999117523	-3.25363607991225	1.10809646480630
С	0.23038136240992	-2.97846167208644	3.24224553230187
Н	0.35964984547249	-4.04767938113637	3.42829544994636
С	0.23416204100306	-2.08257989914555	4.28743435119722
Η	0.37012349787831	-2.42275223121702	5.31762269470898
С	0.05742077164608	-0.69375834683520	4.04217065099654
С	0.06372701838785	0.24372165744263	5.11303233108008
Н	0.20832825751417	-0.13000588437248	6.13056882647184
С	-0.10983772960548	1.59093737618964	4.87991202970457
Н	-0.10214405037664	2.30088012451378	5.71105962955032
С	-0.30638430116517	2.05503811483054	3.55577777721422
Н	-0.45390564066790	3.12245572564779	3.37178968354915
С	-0.30845193625291	1.17149111989667	2.49655746295561
Н	-0.45231937019949	1.56259649877236	1.48919391111140
С	-0.12021170042169	-0.22676168949645	2.69458697076650
0	0.75774530482691	-0.43021463013890	-4.08474645475815
0	-0.37954589899065	0.71278814086662	-2.48817840371900
0	-2.46614483596791	-0.18648007746023	-1.18993574400395
0	-2.20863172279882	-1.87182140231053	-2.66198899484756

References

- [1] G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- [2] G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- [3] APEX2, Bruker AXS Inc. Madison Wisconsin USA (2013).
- [4] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings,
 G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, 53, 226-235.
- [5] L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849–854.

¹H and ¹³C{¹H} NMR spectra:

Figure S19. ¹H-NMR spectrum of 8 in CDCl₃.

Figure S21. ¹H-NMR spectrum of 10 in DMSO-*d*₆.

Figure S22. ¹H-NMR spectrum of 6a in CDCl₃.

Figure S23. $^{13}C{^{1}H}$ -NMR spectrum of 6a in CDCl₃.

Figure S24. ¹H-NMR spectrum of 6b in CDCl₃.

Figure S25. $^{13}C{^{1}H}$ -NMR spectrum of 6b in CDCl₃.

Figure S26. ¹H-NMR spectrum of 6c in CDCl₃.

Figure S27. ${}^{13}C{}^{1}H$ -NMR spectrum of 6c in CDCl₃.

Figure S28. ¹H-NMR spectrum of 15a in CDCl₃.

Supporting Information— Temel, Yildiz, Ceyhan, Alkan, Şahin, and Türkmen

Figure S29. ¹³C{¹H}-NMR spectrum of 15a in CDCl₃.

Figure S30. ¹H-NMR spectrum of 15b in CDCl₃.

Figure S31. ¹³C{¹H}-NMR spectrum of 15b in CDCl₃.

Figure S32. ¹H-NMR spectrum of 15c in CDCl₃.

Figure S33. ¹³C{¹H}-NMR spectrum of 15c in CDCl₃.

Figure S34. ¹H-NMR spectrum of 7a in CDCl₃.

Figure S35. $^{13}C{^{1}H}$ -NMR spectrum of 7a in CDCl₃.

2.5 MeO₂C MeO₂C **P** 3.0 3.5 52.5 92.5 08.5 78.6 -95[.]Z 4.0 -4'59 -4'31 -4'44 -4'44 -4'44 -4'44 -4'48 1.05 4.5 1.01 5.0 ~2.19 -5.22 -5.22 1.02 5.5 f1 (ppm) 6.0 6.5 -<u>72.</u>2 7.0 2.00.1 2.07 2.07 2.02 2.02 2.00.1 2.00.1 7.5 4.2 7.1 4.3 7.2 8.0 MUMMUM 4.4 7.3 4.5 8.5 7.4 4.6 9.0 7.5 4.7 7.6 4.8 9.5 4.9 7.7 10.0 5.0 7.8 10.5 5.1 7.9 5.2 8.0 11.0

Figure S36. ¹H-NMR spectrum of 7b in CDCl₃.

Figure S37. ¹³C{¹H}-NMR spectrum of 7b in CDCl₃.

Figure S38. ¹H-NMR spectrum of 7c in CDCl₃.

Figure S39. ¹³C{¹H}-NMR spectrum of 7c in CDCl₃.

Figure S40. ¹H-NMR spectrum of 17 in CDCl₃.

Figure S41. ${}^{13}C{}^{1}H$ -NMR spectrum of 17 in CDCl₃.

Supporting Information-Temel, Yildiz, Ceyhan, Alkan, Şahin, and Türkmen

Figure S42. ¹H-NMR spectrum of 18 in acetone- d_6 .

Figure S43. ¹³C{¹H}-NMR spectrum of 18 in acetone- d_6 .

HRMS Data:

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 11:53 AM on: 9/10/2024

Agilent Technologies

Page 1 of 1

Printed at: 4:41 PM on: 9/2/2024

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 11:47 AM on: 9/10/2024

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 3:22 PM on: 6/5/2024

Agilent Technologies

Page 1 of 1

Printed at: 5:02 PM on: 9/2/2024

Agilent Technologies

Page 1 of 1

Printed at: 3:06 PM on: 9/10/2024

Agilent Technologies

Page 1 of 1

Printed at: 11:55 AM on: 9/3/2024

Agilent Technologies

Page 1 of 1

Printed at: 3:12 PM on: 9/10/2024

End of Report

Agilent Technologies

Page 1 of 1

Printed at: 12:23 PM on: 9/10/2024

Agilent Technologies

Page 1 of 1

Printed at: 11:39 AM on: 9/3/2024

Agilent Technologies

Page 1 of 1

Printed at: 3:44 PM on: 9/9/2024