

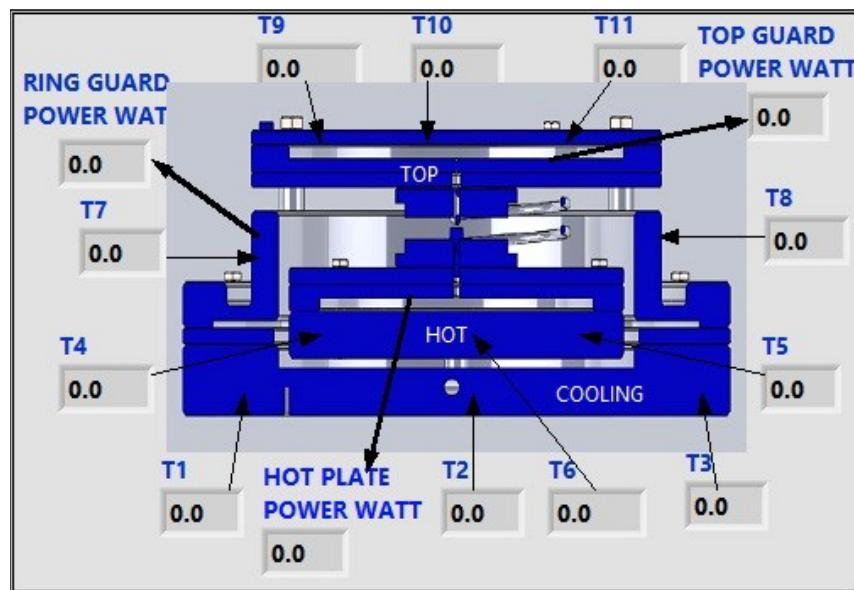
Experimental study on the thermal conductivity of graphene- carbon nanotube- silver nanoparticles ternary hybrid nanofluids

Pham Van Trinh^{a,b*}, Nguyen Ngoc Anh^a, Mai Thi Phuong^a, Nguyen Van Tu^a, Tran Van Hau^a, Do Tuan^a, Nguyen Thi Huyen^a, Cao Thi Thanh^a, Nguyen Van Hao^c, Mone Phommahaxay^c, Nguyen Thi Ngoc Mai^c, Phan Ngoc Hong^d, Phan Ngoc Minh^b, Bui Hung Thang^{a*}, Nguyen Van Chuc^{a*}

^a Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam

^b Graduate University of Science and Technology, Vietnam Academy of Science and, Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam

^c Institute of Sciences and Technology, TNU – University of Sciences, Tan Thinh ward, Thai Nguyen City, Viet Nam.


^d Center for High Technology Research and Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam

Supporting information

The thermal conductivity (K) of the nanofluids was measured using a HTL-04 thermal conductivity of liquid (Eee, India) in range from 30° to 55°C. The apparatus for thermal conductivity of liquid is designed and developed according to the principle of guarded hot plate method as shown in Figure S1. Thermocouple T1, T2, T3 used for measuring cold plate temperature, T4, T5, T6 used for measuring hot plate temperature and T7, T8, T9, T10, T11 used to adjust the temperature of top guard and ring guard. Temperature of hot plate, ring guard and top guard are controlled by hot plate power (P1), ring guard power (P2) and top guard power (P3). The K of fluid is calculated by using equation (1):

$$K = \frac{P1}{A} \times \frac{S}{Th - Tc} \quad (W.m^{-1}.K^{-1}) \quad (1)$$

where A is mean area for heat flow, S is thickness of liquid, Th and Tc are average hot plate and cold plate temperature, respectively.

Fig. S1. Experimental procedure for measuring the thermal conductivity of nanofluids