Supporting Information

Homoleptic complexes of titanium(IV) fused with O^N^O Schiff Base derivatives: design, BSA-DNA interaction, molecular docking, DFT and cytotoxicity

Shivabasayya V Salimath^{*a*}, Kavita B Hiremath^{*a*}, Mahabarathi Subramaniyan^{*a*}, Arjita Ghosh^{*b*}, Evangeline Lawrence^{*b*}, Anbalagan Moorthy^{*b*}, Murugesh Shivashankar^{*a*} and Madhvesh Pathak^{*a*}*

^aDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

^bDepartment of Integrative Biology, School of Bioscience and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India

*Email: <u>madhveshpathak@vit.ac.in</u> *ORCID iD: <u>https://orcid.org/0000-0002-1567-6519</u>

Figures and	Title		
tables			
Fig.S1-S4	NMR, FTIR and ESI-MS data of Ligand [IS]	3-4	
Fig.S5-S8	NMR, FTIR and ESI-MS data of Ligand [IN]	5-6	
Fig.S9-S12	NMR, FTIR and ESI-MS data of Ligand [IO]	7-8	
Fig.S13-S16	NMR, FTIR and ESI-MS data of Ligand [IF]	9-10	
Fig.S17-S20	NMR, FTIR and ESI-MS data of Ligand [ICI]	11-12	
Fig.S21-S24	NMR, FTIR and ESI-MS data of Ligand [IBr]	13-14	
Fig.S25-S29	NMR, FTIR, ESI-MS and HPLC data of Complex [Ti-1-IS]	14-17	
Fig.S30-S34	NMR, FTIR, ESI-MS and HPLC data of Complex [Ti-2-IN]	17-19	
Fig.S35-S39	NMR, FTIR, ESI-MS and HPLC data of Complex [Ti-3-IO]	20-22	
Fig.S40-S45	NMR, FTIR, ESI-MS and HPLC data of Complex [Ti-4-IF]	22-25	
Fig.S46-S50	NMR, FTIR, ESI-MS and HPLC data of Complex [Ti-5-ICl]	25-27	
Fig.S51-S55	NMR, FTIR, ESI-MS and HPLC data of Complex [Ti-6-IBr]	28-30	
Fig.S56-S57	UV-Vis and Fluorescence spectra of Ti(IV) complexes in DMSO:	31	
	H ₂ O (1:9)		
Fig.S58-S59	Stability of complexes in 1:9 DMSO: H ₂ O and GSH medium	32-33	
Fig.S60	UV-visible spectra of Ti(IV) complexes for Lipophilicity study of	34	
	complexes in octanol: water		
Fig.S61	UV-Visible spectra of DNA Binding studies of Ti(IV) complexes	35	
	(a)Ti-1-IS, (b) Ti-2-IN, (c) Ti-3-IO, (d) Ti-4-IF, (e) Ti-5-Cl and (f)		
	Ti-6-IBr		
Fig.S62	Linear plots of DNA UV-binding studies of Ti(IV) complexes	36	
Fig.S63	Fluorescence quenching spectra of DNA with increasing	37	
	concentration of Ti(IV) complexes		
Fig.S64	Stern-Volmer plots of I0/I vs. Ti(IV) complexes	38	
Fig.S64	Scatchard plots of log([I ₀ -I]/I) vs. log [Ti(IV) complexes]	38	

Fig.S66	Viscosity studies of Complexes	39				
Fig.S67	Cyclic voltammetry DNA binding Studies of Ti(IV) complexes					
Table S1	Oxidation and reduction peaks obtained from Cyclic					
	Voltammograms of Ti(IV) complexes with CT-DNA(0–50 µM)					
Fig.S68	Fluorescence quenching spectra of BSA with increasing					
	concentration of Ti(IV) complexes					
Fig.S69	Stern-Volmer plots of I0/I vs. Ti(IV) complexes	43				
Fig.S70	Scatchard plots of log([I ₀ -I]/I) vs. log [Ti(IV) complexes]	43				
Fig.S71	Synchronous spectra of BSA with increasing concentration of Ti(IV)	44				
	complexes at $\Delta\lambda$ =15 nm,					
Fig.S72	Stern-Volmer plots of I_0/I vs. complex of Synchronous spectra of BSA	45				
	with increasing concentration of Ti(IV) complexes at $\Delta\lambda$ =15 nm					
Fig.S73	Synchronous spectra of BSA with increasing concentration of Ti(IV)	45-46				
	complexes at Δλ=60 nm,					
Fig.S74	Stern-Volmer plots of I ₀ /I vs. complex of Synchronous spectra of BSA	46				
	with increasing concentration of Ti(IV) complexes at $\Delta\lambda$ =15 nm					
Table S2	Stern-Volmer plots of I ₀ /I vs. complex of Synchronous spectra of BSA	46				
	with increasing concentration of Ru(11) complexes at $\Delta\lambda$ =15 nm and					
D . 075	60nm Site model for the first station of DSA Heren for with	47				
F1g.5/5	Site marker fluorescence quenching studies of BSA+100profilm with	4/				
Fig \$76	an increase in the concentration of $\Pi(Iv)$ complexes	10				
r1g.570	fluorescence quenching studies of RSA+lbunrefin	40				
Fig \$77	Site marker fluorescence quenching studies of RSA+Warfarin with	/0				
rig.577	an increase in the concentration of Ti(IV) complexes					
Fig \$78	Scatchard plot of $\log(\Pi_0 - \Pi/\Gamma)$ vs \log [complexes]	50				
115.070	fluorescence quenching studies of BSA+Warfarin	50				
Table S3	The comparison of binding constants of the complexes Ti(IV) with	50				
	BSA before and after the addition of site probe at 298 K					
Fig.S79-S84	Molecular docking of DNA with Ti(IV) complexes	51-53				
Table S4	Docking scores and binding sites of DNA with Ti(IV) complexes	54				
Table S5	Docking scores and binding sites of BSA with Ti(IV) complexes	54				
Fig.885-890	Molecular docking of BSA with Ti(IV) complexes	55-57				
Table S6	Bond length (Å) of Ti(IV) complexes	58				
Table S7	Comparison of experimental and theoretical excitation spectral	58				
	details	50				
Fig S01	DPPH assay of Ti(IV) complexes	50				
Fig.371	MTT assay of Ti(IV) complexes on HoLe and MCE7 coll line	37 60.61				
r1g.372-373		00-01				
	Keierences	62				

Figure.S1. ¹H NMR spectrum of ligand IS (400 MHz, DMSO-d₆)

Figure.S2. ¹³C NMR spectrum of ligand IS (400 MHz, DMSO-d₆)

Figure.S4. ESI-MS spectrum of ligand IS

Figure.S5. ¹H NMR spectrum of ligand IN (400 MHz, DMSO-d₆)

Figure.S6. ¹³C NMR spectrum of ligand IN (400 MHz, DMSO-d₆)

Figure.S8. ESI-MS spectrum of ligand IN

Figure.S9.¹H NMR spectrum of ligand IO (400 MHz, DMSO-d₆)

Figure.S10. ¹³C NMR spectrum of ligand IO (400 MHz, DMSO-d₆)

Figure.S12. ESI-MS spectrum of ligand IO

Figure.S13. ¹H NMR spectrum of ligand IF(400 MHz, DMSO-d₆)

Figure.S14. ¹³C NMR spectrum of ligand IF(400 MHz, DMSO-d₆)

Figure.S17. ¹H NMR spectrum of ligand ICl (400 MHz, DMSO-d₆)

Figure.S18. ¹³C NMR spectrum of ligand ICl (400 MHz, DMSO-d₆)

Figure.S20. ESI-MS spectrum of ligand ICl

Figure.S21. ¹H NMR spectrum of ligand IBr (400 MHz, DMSO-d₆)

Figure.S22. ¹³C NMR spectrum of ligand IBr (400 MHz, DMSO-d₆)

Figure.S24. ESI-MS spectrum of ligand IF

Figure.S25. ¹H NMR spectrum of complex Ti-1-IS (400 MHz, DMSO-d₆)

Figure.S26. ¹³C NMR spectrum of complex Ti-1-IS (400 MHz, DMSO-d₆)

Figure.S28. ESI-MS spectrum of complex Ti-1-IS

Figure.S29. HPLC spectrum of complex Ti-1-IS

Figure.S31. ¹³C NMR spectrum of complex Ti-2-IN (400 MHz, DMSO-d₆)

Figure.S32. FTIR spectrum of complex Ti-2-IN

Figure.S33. ESI-MS spectrum of complex Ti-2-IN (400 MHz, DMSO-d₆)

Figure.S34. HPLC spectrum of complex Ti-2-IN

Figure.S35. ¹H NMR spectrum of complex Ti-3-IO (400 MHz, DMSO-d₆)

Figure.S36. ¹³C NMR spectrum of complex Ti-3-IO (400 MHz, DMSO-d₆)

Figure.S38. ESI-MS spectrum of complex Ti-3-IO

Figure.839. HPLC spectrum of complex Ti-3-IO

Figure.S40. ¹H NMR spectrum of complex Ti-4-IF(400 MHz, DMSO-d₆)

Figure.S41. ¹³C NMR spectrum of complex Ti-4-IF(400 MHz, DMSO-d₆)

Figure.S42. ¹⁹F NMR spectrum of complex Ti-4-IF(400 MHz, DMSO-d₆)

Figure.S44. ESI-MS spectrum of complex Ti-4-IF

Figure.S45. HPLC spectrum of complex Ti-4-IF

Figure.S47. ¹³C NMR spectrum of complex Ti-5-ICl (400 MHz, DMSO-d₆)

Figure.S48. FTIR spectrum of complex Ti-5-ICl

Figure.S49. ESI-MS spectrum of complex Ti-5-ICl

Figure.S50. HPLC spectrum of complex Ti-5-ICl

Figure.S51. ¹H NMR spectrum of complex Ti-6-IBr (400 MHz, DMSO-d₆)

Figure.S52. ¹³C NMR spectrum of complex Ti-6-IBr (400 MHz, DMSO-d₆)

Figure.S54. ESI-MS spectrum of complex Ti-6-IBr

Figure.S55. HPLC spectrum of complex Ti-6-IBr

Fig.S57. Fluorescence Spectra of Ti(IV) complexes in DMSO: H₂O (1:9)

Fig.S58. UV-Vis stability study of Ti(IV) complexes in 1:9 DMSO: H₂O medium

Fig.S59. UV-Vis stability study of Ti(IV) complexes in GSH medium

Fig. S60. UV-visible spectra of Ti(IV) complexes for Lipophilicity study of complexes in octanol: water

Fig.S61. UV-Visible spectra of DNA Binding studies of Ti(IV) complexes

Fig.S62. Linear plots of DNA UV-binding studies of Ti(IV) complexes

Fig.S63. Fluorescence quenching spectra of DNA with increasing concentration of Ti(IV) complexes

Fig.S64. Stern-Volmer plots of I₀/I vs. Ti(IV) complexes

Fig.S65. Scatchard plot of log([I₀-I]/I) vs. log [Ti(IV) complexes]

Fig.S66. Viscosity Studies of Ti(IV) complexes

Fig.S67. Cyclic voltammetry DNA binding Studies of Ti(IV) complexes

Table S1: Oxidation and reduction peaks obtained from Cyclic Voltammograms of Ti(IV) complexes with CT-DNA(0–50 $\mu M)$

Complexes	Oxidation peak	Reduction peak
Ti-1-IS	-0.877, 0.533, 1.099	-0.860, -0.117, 1.327
Ti-2-IN	-1.328, -0.924, -0.233	-0.920, -0.335
Ti-3-IO	-0.892, -0.264	-0.900, -0.355, -0.665, 1.161
Ti-4-IF	-0.892, -0.417, 1.16	-0.892, -0.148, 0.859
Ti-5-ICl	-0.932, 0.425	-0.916, -0.218, 0.750
Ti-6-IBr	-0.908, 0.440, 1.239	-1.249, -0.908, -0.055

Fig.S68. Fluorescence quenching spectra of BSA with increasing concentration of Ti(IV) complexes

Fig.S69. Stern-Volmer plots of I_0/I vs. complex

Fig.S70. Scatchard plot of log([I₀-I]/I) vs. log [complex]

Fig.S71. Synchronous spectra of BSA with increasing concentration of Ti(IV) complexes at $\Delta\lambda$ =15 nm

Fig.S72. Stern-Volmer plots of I_0/I vs. complex of Synchronous spectra of BSA with increasing concentration of Ti(IV) complexes at $\Delta\lambda$ =15 nm

Fig.S73. Synchronous spectra of BSA with increasing concentration of Ti(IV) complexes at $\Delta\lambda$ =60 nm

Fig.S74. Stern-Volmer plots of I_0/I vs. complex of Synchronous spectra of BSA with increasing concentration of Ti(IV) complexes at $\Delta\lambda$ =60 nm

Table S2; Stern-Volmer plots of I_0/I vs. complex of Synchronous spectra of BSA with increasing concentration of Ru(II) complexes at $\Delta\lambda$ =15 nm and 60nm

Complexes	Ka	Ka
	Δλ=15nm	Δλ=60 nm
Ti-1-IS	0.1444	0.0334
Ti-2-IN	0.0150	0.0445
Ti-3-IO	0.0803	0.1882
Ti-4-IF	0.5071	0.6377
Ti-5-ICl	0.2911	0.1084
Ti-6-IBr	0.1376	0.3096

Fig.S75. Site marker fluorescence quenching studies of BSA+Ibuprofin with an increase in the concentration of Ti(IV) complexes

Fig.S76. Scatchard plot of $\log([I_0-I]/I)$ vs log [complex] of site marker fluorescence quenching studies of BSA+Ibuprofin

Fig.S77. Site marker fluorescence quenching studies of BSA+Warfarin with an increase in the concentration of Ti(IV) complexes

Fig.S78. Scatchard plot of $\log([I_0-I]/I)$ vs log [complex] of site marker fluorescence quenching studies of BSA+Warfarin

Table S3; The comparison of binding constants of the complexes Ti(IV) with BSA before and after the addition of site probe at 298 K. K_b binding constant ^a

COMPLEXES	BSA	BSA+Ibuprofen	BSA + Warfarin
	Kb ^a (× 10 ⁴ M ⁻¹)	Kb ^a (× 10 ⁴ M ⁻¹)	Kb ^a (× 10 ⁴ M ⁻¹)
Ti-1-IS	0.040	0.034	0.048
Ti-2-IN	0.047	0.015	0.069
Ti-3-IO	0.036	0.050	0.058
Ti-4-IF	0.011	0.037	0.040
Ti-5-ICl	0.065	0.035	0.016
Ti-6-IBr	0.014	0.054	0.039

Fig.S79. Molecular docking of DNA with Ti-1-IS; purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S80. Molecular docking of DNA with Ti-2-IN ; purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S81. Molecular docking of DNA with Ti-3-IO ; purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S82. Molecular docking of DNA with Ti-4-IF ; purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S83. Molecular docking of DNA with Ti-5-ICl ; purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S84.Molecular docking of DNA with Ti-6-IBr ; purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Complexes	Nucleotides	Docking scores in kcal/mol
Ti-1-IS	DC3, DG4, DT19, DC21, DG22	-9.3
Ti-2-IN	DG2, DG4, DC3, DC21, DT20	-10.3
Ti-3-IO	DA6, DG22	-8.4
Ti-4-IF	DC3, DG4, DC21, DG22	-9.7
Ti-5-ICl	DC21, DG22, DC3	-9.7
Ti-6-IBr	DG4,DA5,DA6,DA16, T19	-9.5

Table S4; Docking scores and binding sites of DNA with Ti(IV) complexes

Table S5; Docking scores and binding sites of BSA with Ti(IV) complexes

Complexes	Amino acid residues	Docking scores in kcal/mol
Ti-1-IS	GLU182, ARG185, PRO117, LYS116,	-10.8
	LEU115, LYS114, PRO516	
Ti-2-IN	SER109, LYS114, ARG427, GLU424,	-11.5
	THR421, PRO420	
Ti-3-IO	PRO420, VAL423, ILE522, GLU424,	-9.2
	SER109, PRO110, ARG144	
Ti-4-IF	GLU125, THR121, LEU122, LYS136,	-9.8
	GLU140, LEU115, LYS116, ASP118	
Ti-5-ICl	ASP118, THR121, LEU122, GLU125,	-9.9
	LYS132, LYS136, GLU140, PRO113,	
	LEU115, LYS116, LEU115, LYS116	
Ti-6-IBr	THR121, GLU125, LYS132, LYS136,	-9.7
	GLU140, LYS116, ASP118, LEU122	

Fig.S85. Molecular docking of BSA with Ti-1-IS purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S86. Molecular docking of BSA with Ti-2-IN purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S87. Molecular docking of BSA with Ti-3-IO purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S88. Molecular docking of BSA with Ti-4-IF purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S89. Molecular docking of BSA with Ti-5-ICl purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

Fig.S90. Molecular docking of BSA with Ti-6-IBr purple color indicates carbon atoms, blue color indicates nitrogen, grey color indicates titanium(IV) ion, red color indicates oxygen atoms

S. NO	Code	O-Ti	N-Ti	O-Ti
1	Ti-1-IS	1.997	2.886	2.032
2	Ti-2-IN	1.997	2.887	2.031
3	Ti-3-IO	2.031	2.882	2.032
4	Ti-4-IF	1.998	2.885	2.030
5	Ti-5-ICl	2.001	2.886	2.031
6	Ti-6-IBr	2.000	2.885	2.029

Table S6; Bond length (Å) of Ti(IV) complexes

Table S7; Comparison of experimental and theoretical excitation spectral details

	Experimental	Theoretical Prediction			
Code	Abs (nm)	Abs. max (nm)	Oscillator strength (f)	Transition	Orbital Contribution
Ti-1-IS	339	389	0.325	S ₀ →S9	H→L+4 82%, H-3→L 3%,
Ti-2-IN	341	378	0.233	$S_0 \rightarrow S_{10}$	H→L+4 46%, H-3→L 19%,
Ti-3-IO	340	412	0.298	$S_0 \rightarrow S_{12}$	H→L+3 68%, H-3→L 12%,
Ti-4-IF	343	406	0.282	$S_0 \rightarrow S_{10}$	H→L+5 48%, H-4→L 26%,
Ti-5-ICl	345	443	0.316	$S_0 \rightarrow S_{11}$	H→L+3 55%, H→L+4 21%,
Ti-6-IBr	343	625	0.238	$S_0 \rightarrow S_{10}$	H→L+5 78%, H-4→L 6%,

*H – HOMO, L - LUMO

H→L+4 83%, H-4→L+2 4%

Fig.S91. DPPH assay of Ti(IV) complexes

Fig.S92. MTT assay of Ti(IV) complexes on HeLa cell line

Fig.S93. MTT assay of Ti(IV) complexes on MCF7 cell line

References:

- 1. Subramaniyan, Mahabarathi, et al. "New bioactive titanium (IV) derivatives with their DFT, molecular docking, DNA/BSA interaction, antioxidant and in-vitro investigations." *Inorganica Chimica Acta* 571 (2024): 122191.
- Thanigachalam, Sathish, et al. "Bioactive O[^] N[^] O[^] Schiff base appended homoleptic titanium (iv) complexes: DFT, BSA/CT-DNA interactions, molecular docking and antitumor activity against HeLa and A549 cell lines." *RSC advances* 14.19 (2024): 13062-13082.
- 3. Dorairaj, Dorothy Priyanka, et al. "Ru (II)-p-Cymene complexes of furoylthiourea ligands for anticancer applications against breast cancer cells." *Inorganic Chemistry* 62.30 (2023): 11761-11774.
- 4. Haribabu, Jebiti, et al. "Michael addition-driven synthesis of cytotoxic palladium (ii) complexes from chromone thiosemicarbazones: investigation of anticancer activity through in vitro and in vivo studies." *New Journal of Chemistry* 47.33 (2023): 15748-15759.
- 5. Arunachalam, Abirami, et al. "Synthesis and Structure of Naphthoyl Thiourea-Based Binuclear Ruthenium (II) Arene Complexes: Studies on Anticancer Activity and Apoptotic Mechanism." *ChemBioChem*: e202500057.
- 6. Monika, Sankar, et al. "Binuclear Ruthenium (II) Complexes Featuring Arylthiourea Ligands: Synthesis, Crystal Structure and Anticancer Assessment." *Applied Organometallic Chemistry* 39.5 (2025): e70146.
- Kar, Binoy, et al. "2-Aryl-1 H-imidazo [4, 5-f][1, 10] phenanthroline-Based Binuclear Ru (II)/Ir (III)/Re (I) Complexes as Mitochondria Targeting Cancer Stem Cell Therapeutic Agents#." *Journal of Medicinal Chemistry* 67.13 (2024): 10928-10945.
- 8. Das, Utpal, et al. "Exploring the phototoxicity of GSH-resistant 2-(5, 6-dichloro-1 Hbenzo [d] imidazol-2-yl) quinoline-based Ir (III)-PTA complexes in MDA-MB-231 cancer cells." *Dalton Transactions* 53.14 (2024): 6459-6471.