Supplementary Information

for

Facile Calixarene-based Sensor Array Strategy for Quality Evaluation of Yinxing Mihuan Oral Solution

Kejing Niu ^{a,#}, Mengyu Ye ^{a,#}, Yun Lyu ^a, Wenqian Cheng ^a, Shaoqing He ^d, Dan Liu ^{c,*}, Huijuan Yu ^{a,b,*}

^a State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.

^b Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.

^c Department of Pharmacy, 967th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Dalian, Liaoning, 116011, China.

^d Xi'an Buchang TCM Cardiovascular and Cerebrovascular Hospital, Xi'an, Shaanxi, 710082, China.

* Corresponding author. E-mail addresses: dlld3836@163.com (D. Liu); huijuanyu@tjutcm.edu.cn (H. Yu).

[#] Kejing Niu and Mengyu Ye contributed equally to this work.

1. Supporting information and raw data

Figure S1. The fluorescence spectra of YMOS (5 µL), YMOS's impact on the fluorescence spectra of dyes, and the alterations in fluorescence of macrocycle•dye reporter pairs upon the addition of YMOS (5 µL) in HEPES buffer solution (10 mM, pH=7.4) at 25 °C. (a) β -CD•MB (1.0 µM/10.0 µM; $\lambda_{ex} = 664$ nm, $\lambda_{em} = 688$ nm), (b) CB[6]•DSMI (8.0 µM/1.0 µM; $\lambda_{ex} = 450$ nm, $\lambda_{em} = 582$ nm), (c) SC4A•OX1 (20.0 µM/1.0 µM; $\lambda_{ex} = 648$ nm, $\lambda_{em} = 668$ nm), (d) SC5A•LCG (1.0 µM/1.0 µM; $\lambda_{ex} = 368$ nm, $\lambda_{em} = 505$ nm), (e) CAC4A•RhB (1.0 µM/0.8 µM; $\lambda_{ex} = 554$ nm, $\lambda_{em} = 576$ nm), (f) SAC5A•RhB (1.0 µM/0.8 µM; $\lambda_{ex} = 554$ nm, $\lambda_{em} = 576$ nm), (g) QAC5A•EY (0.4 µM/0.5 µM; $\lambda_{ex} = 517$ nm, $\lambda_{em} = 537$ nm).

Figure S2. Chemical structures of the focused compounds from YMOS.

Figure S3. Fluorescence spectra of CA•dye (CAC4A•RhB, SAC5A•RhB, and QAC5A•EY) titrated by MeOH and dyes (RhB and EY) titrated by GinA in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a) Fluorescence spectra of CAC4A•RhB (1.0 μ M/0.8 μ M) reporter pair titrated by MeOH (up to 29 μ L) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) Fluorescence spectra of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair titrated by MeOH (up to 29 μ L) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) Fluorescence spectra of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair titrated by MeOH (up to 19 μ L) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (c) Fluorescence spectra of QAC5A•EY (0.4 μ M/0.5 μ M) reporter pair titrated by MeOH (up to 19 μ L) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (d) Fluorescence spectra of RhB (0.8 μ M) titrated by GinA (up to 65.76 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (e) Fluorescence spectra of EY (0.5 μ M) titrated by GinA (up to 78.16 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm.

Figure S4. Direct fluorescence titration of RhB with CAC4A in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a) Direct fluorescence titration of RhB (0.8 μ M) with CAC4A (up to 1.27 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) The titration curve of RhB (0.8 μ M) with CAC4A at $\lambda_{em} = 576$ nm acquired by a 1:1 binding model (n = 3).

Figure S5. Fluorescence spectra of dyes (RhB and EY) titrated by QGR and competitive fluorescence titration of CA•dye (CAC4A•RhB, SAC5A•RhB, QAC5A•EY) reporter pairs with QGR in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a) Fluorescence spectra of RhB (0.8 μ M) titrated by QGR (up to 39.47 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) Competitive titration of CAC4A•RhB (1.0 μ M/0.8 μ M) reporter pair with QGR (up to 38.50 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (c) Competitive titration of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair with QGR (up to 38.50 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (c) Competitive titration of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair with QGR (up to 29.70 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (d) Fluorescence spectra of EY (0.5 μ M) titrated by QGR (up to 53.21 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (e) Competitive titration of QAC5A•EY (0.4 μ M/0.5 μ M) reporter pair with QGR (up to 44.33 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (f) The titration curve of QAC5A•EY (0.4 μ M/0.5 μ M) with QGR at $\lambda_{em} = 537$ nm acquired by a 1:1 binding model (*n* = 3).

Figure S6. Fluorescence spectra of dyes (RhB and EY) titrated by SoB in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a) Fluorescence spectra of RhB (0.8 μ M) titrated by SoB (up to 2000 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) Fluorescence spectra of EY (0.5 μ M) titrated by SoB (up to 340.25 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm.

Figure S7. Competitive fluorescence titration of CA•dye (QAC5A•EY, SAC5A•RhB, CAC4A•RhB) reporter pairs with SoB in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a1) Competitive fluorescence titration of QAC5A•EY (0.4 μ M/0.5 μ M) reporter pair with SoB (up to 81.53 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (a2) The titration curve of QAC5A (0.4 μ M) with SoB at $\lambda_{em} = 537$ nm acquired by a 1:1 binding model (n = 3). (b1) Competitive fluorescence titration of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair with SoB (up to 1666.67 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b2) The titration curve of SAC5A (1.0 μ M) with SoB at $\lambda_{em} = 576$ nm acquired by a 1:1 binding model (n = 3). (c1) Competitive fluorescence titration of CAC4A•RhB (1.0 μ M/0.8 μ M) reporter pair with SoB (up to 1803.28 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm.

Figure S8. Fluorescence spectra of dyes (RhB and EY) titrated by Uri in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a) Fluorescence spectra of RhB (0.8 μ M) titrated by Uri (up to 4161.29 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) Fluorescence spectra of EY (0.5 μ M) titrated by Uri (up to 653.20 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm.

Figure S9. Competitive fluorescence titration of CA•dye (QAC5A•EY, SAC5A•RhB, CAC4A•RhB) reporter pairs with Uri in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a1) Competitive fluorescence titration of QAC5A•EY (0.4 μ M/0.5 μ M) reporter pair with Uri (up to 176.47 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (a2) The titration curve of QAC5A•EY (0.4 μ M/0.5 μ M) with Uri at $\lambda_{em} = 537$ nm acquired by a 1:1 binding model (n = 3). (b1) Competitive fluorescence titration of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair with Uri (up to 3975.90 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b2) The titration curve of SAC5A•RhB (1.0 μ M/0.8 μ M) with Uri at $\lambda_{em} = 576$ nm acquired by a 1:1 binding model (n = 3). (c1) Competitive fluorescence titration of CAC4A•RhB (1.0 μ M/0.8 μ M) reporter pair with Uri (up to 1000 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm.

Figure S10. Fluorescence spectra of dyes (RhB and EY) titrated by Pra and competitive titration of CA•dye (CAC4A•RhB, SAC5A•RhB, QAC5A•EY) reporter pairs with Pra in HEPES buffer solution (10 mM, pH 7.4) at 25 °C. (a) Fluorescence spectra of RhB (0.8 μ M) titrated by Pra (up to 653.20 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (b) Competitive fluorescence titration of CAC4A•RhB (1.0 μ M/0.8 μ M) reporter pair with Pra (up to 571.43 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (c) Competitive fluorescence titration of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair with Pra (up to 571.43 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (c) Competitive fluorescence titration of SAC5A•RhB (1.0 μ M/0.8 μ M) reporter pair with Pra (up to 666.67 μ M) at $\lambda_{ex} = 554$ nm and $\lambda_{em} = 576$ nm. (d) Fluorescence spectra of EY (0.5 μ M) titrated by Pra (up to 653.20 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (e) Competitive titration of QAC5A•EY (0.4 μ M/0.5 μ M) reporter pair with Pra (up to 357.29 μ M) at $\lambda_{ex} = 517$ nm and $\lambda_{em} = 537$ nm. (f) The titration curve of QAC5A•EY (0.4 μ M/0.5 μ M) with Pra at $\lambda_{em} = 537$ nm acquired by a 1:1 binding model (*n* = 3).

Figure S11. The hydrogen bond (green lines) mode of CAC4A•GinA, SAC5A•GinA, and QAC5A•GinA complexes at the B3LYP-D3 (BJ)/6-31G (d)/SMD (water) theoretical level (for the sake of clarity of CAC4A, SAC5A, and QAC5A, only the groups with hydrogen bonds with the analytes are shown)

Figure S12. Elucidation of the SAC5A•GinA complex by ¹H-NMR spectroscopic analysis (500 MHz, D₂O, 298 K, internal reference standards: TSP-d₄).

Figure S13. The hydrogen bond (green lines) mode of SAC5A•Uri (a) and QAC5A•Uri (b) complexes at the B3LYP-D3 (BJ)/6-31G (d)/SMD (water) theoretical level (for the sake of clarity of SAC5A and QAC5A, only the groups with hydrogen bonds with the analytes are shown)

Host Analyte	CAC4A	SAC5A	QAC5A
QGR	_	_	$(9.68\pm0.95)\times10^{5}$
SoB	_	$(6.86\pm0.48)\times10^{3}$	$(2.46\pm0.70)\times10^{5}$
GinA	$(4.43\pm0.77)\times10^4$	$(6.35\pm2.45)\times10^{5}$	$(5.50\pm1.52)\times10^4$
Uri	_	$(2.07\pm0.30)\times10^{2}$	$(1.77\pm0.30)\times10^{5}$
Pra	_	_	(9.11±0.73)×10 ⁴

Table S1. Association constant (K_a/M^{-1}) between the macrocyclic host and the analyte (n = 3).

"-" represents no obvious binding affinity.

Single			
E_{HA}	$E_{ m H}$	E_{A}	ΔE
-5024.79	-3495.80	-1528.87	-0.12
-8075.33	-6546.34	-1528.88	-0.11
-5304.94	-3775.97	-1528.88	-0.09
-7457.48	-6546.36	-911.04	-0.08
-4687.11	-3775.98	-911.04	-0.09
	$E_{\rm HA}$ -5024.79 -8075.33 -5304.94 -7457.48 -4687.11	$E_{\rm HA}$ $E_{\rm H}$ -5024.79-3495.80-8075.33-6546.34-5304.94-3775.97-7457.48-6546.36-4687.11-3775.98	Single point energy (hartree) $E_{\rm HA}$ $E_{\rm H}$ $E_{\rm A}$ -5024.79-3495.80-1528.87-8075.33-6546.34-1528.88-5304.94-3775.97-1528.88-7457.48-6546.36-911.04-4687.11-3775.98-911.04

 Table S2. Calculation results of the binding energy (hartree) of host•analyte complexes.

Host•Analyst	interactions	Groups in host	Groups in analyst
	О–Н…О	-СООН	–OH
CAC4A•GinA	С–Н…О	-СООН	-CH ₃
	Ar–H…O	Ar–H	-C=O
CAC4A•GINA	C−H····N	-N=N-	-C(CH ₃) ₃
	$O-H\cdots\pi$	Ar	–OH
	π–π	–N=N– and Ar	-0-
	O–H…N	-N=N-	–OH
	С–Н…О	-SO ₃ H	-CH ₃
SAC5A cin A	Ar–H…O	Ar–H	C=O
SAC5A•GinA	О−Н…π	Ar	–OH
	$C-H\cdots\pi$	Ar	CH
	π–π	–N=N– and Ar	-0-
	С–Н…О	-N(CH ₃) ₃	-C=O and -O-
QAC5A•GinA	C–H··· π	Ar	-CH-
	π–π	Ar	–C=O and –O–
	O–H…N	-N=N-	–OH
SAC5A Juri	C–H…N	-N=N-	-CH-
SACJAOII	N–H··· π	Ar	-NH-
	π–π	–OH	-C=O
	С–Н…О	-N(CH ₃) ₃	–OH and –C=O
	N–H··· π	Ar	-NH-
	$C-H\cdots\pi$	Ar	-CH-
	π–π	Ar	-C=O

 Table S3. Summary of the non-covalent interactions between Host•Analyst

Em-k	CAC4A•RhB		SAC5A•RhB			QAC5A•EY			
Batches	1	2	3	1	2	3	1	2	3
YM1	0.9364	0.9391	0.9488	0.9024	0.9251	0.9066	0.9188	0.9454	0.9515
YM2	0.9479	0.9445	0.9343	0.9099	0.9118	0.8996	0.9313	0.9459	0.9248
YM3	0.9576	0.9453	0.9330	0.9088	0.9033	0.9027	0.9657	0.9263	0.9468
YM4	0.9772	0.9315	0.9345	0.9102	0.9070	0.9051	0.9576	0.9475	0.9395
YM5	0.9462	0.9287	0.9546	0.9257	0.9027	0.9126	0.9529	0.9664	0.9647
YM6	0.9778	0.9441	0.9670	0.9186	0.9015	0.9110	0.9363	0.9819	0.9460
YM7	0.9861	0.9717	1.000	0.9808	0.9890	0.9764	0.9447	0.9570	0.9647
YM8	0.9805	0.9677	0.9599	0.9777	0.9770	0.9679	0.9435	0.9310	0.9450
YM9	0.9743	0.9691	0.9765	0.9677	0.9823	0.9840	0.9592	0.9566	0.9627
YM10	0.9715	0.9779	0.9631	0.9883	0.9852	0.9850	0.9613	0.9704	0.9633
YM11	0.9765	0.9665	0.9701	0.9833	0.9755	0.9705	1.000	0.9901	0.9624
YM12	0.9685	0.9783	0.9751	0.9751	0.9830	1.000	0.9469	0.9493	0.9619

Table S4. The normalized I/I_0 (E_{m-k}) of 12 batches of qualified YMOS samples determined by different sensor units (n=3).

<i>S</i> Batches	<i>S</i> 1	<i>S</i> 2	<i>S</i> 3	\overline{S}	Standard deviation
YM1	1.097	1.139	1.137	1.125	0.024
YM2	1.123	1.133	1.098	1.118	0.018
YM3	1.157	1.111	1.117	1.129	0.025
YM4	1.168	1.120	1.115	1.134	0.029
YM5	1.152	1.129	1.157	1.146	0.015
YM6	1.158	1.153	1.151	1.154	0.004
YM7	1.223	1.229	1.248	1.233	0.013
YM8	1.215	1.193	1.191	1.200	0.013
YM9	1.215	1.221	1.233	1.223	0.009
YM10	1.231	1.242	1.223	1.232	0.009
YM11	1.264	1.241	1.216	1.241	0.024
YM12	1.206	1.223	1.245	1.224	0.020

Table S5. The "spider-web" area (*S*) for 12 batches of qualified YMOS samples (*n*=3).

sampies (
1/1		1		2		3		RSD
1/10	1-1	1-2	2-1	2-1 2-2		3-1 3-2		(%)
0:30	3.017	3.085	3.261	3.090	3.186	3.146	3.131	2.5%
1:30	4.331	3.978	4.118	4.206	4.395	4.201	4.205	3.2%
3:30	5.178	4.907	4.982	4.805	5.194	5.063	5.021	2.8%
6:30	6.522	6.632	6.236	6.238	6.271	6.260	6.360	2.5%

Table S6. The fluorescence response of QAC5A•EY exposed to self-made YMOS samples (n=6).

Analyte	Method	Material	Principle	Testing	Advantages	Conclusion	Ref.
				time/volume			
Radix	Electronic	Mental oxide	The study employed electronic tongue	130 s per	Rapid, simple	The alcohol-soluble	[1]
Codonopsis	sensing	semiconductors	technology to obtain sweetness values, and	sample in	and accurate	extract content and	
			captured odor fingerprint information through	electronic		polysaccharide	
			an electronic nose.	tongue test,		extract, as well as	
				720 s per		taste and color of	
				sample in		Radix Codonopsis	
				electronic nose		were predicted.	
				test			
Polygonatu	Chemsensor	4-Hydrazino-1,8-	The synthesized HAN exhibited a turn-on	12 min per	Excellent	The quality control	[2]
m Sibiricum		naphthalimide	fluorescence response toward monosaccharide	sample/10 μL	precision and	of polysaccharide	
Red.		(HAN)	with a bright orange fluorescence under UV		good	and qualtification of	
			radiation.		accuracy	four	
						monosaccharides	
						from P. sibiricum	

 Table S7 Application of sensing technology in quality evaluation of TCM

				-	Red. Polysaccharide
				,	were
				,	simultaneously
				1	performed .
Baicalin	electrochemica	Biochar (BC)/ZIF-	The BC/ZIF-67/MnCo ₂ O ₄ displayed the – Sup	perior '	The content of [3]
(Bn) and	l sensor	67/MnCo ₂ O ₄	increased electroactive surface area, enhanced sense	nsitivity,	baicalin and
baicalein		composite	electrocatalytic properties, and improved sele	ectivity,	baicalein were
(Be)			electrical conductivity of the catalyst, accu	curacy, and	simultaneously
			facilitating improved sensitivity and prac	acticality	detected.
			selectivity.		
Bulbus Lilii	near-infrared	Carbon	The potential of carbon dot- – Sim	nple, rapid '	The geographical [4]
	spectroscopy	dottetramethoxypo-	tetramethoxyporphyrin nanocomposite-based and	d accurate	origin of lily was
	sensor	rphyrin	nano-effect near-infrared spectroscopy sensor	,	distinguished.
		nanocomposite	combined with chemometric method was		
			investigated for identifing lily from different		
			geographical origins.		
Licorice	Colorimetric	Iron oxide	The peroxidase-like activities of three iron 40 min per Eas	sy-to-use,	Glycyrrhizic acid, [5]

	sensor array	nanozymes	oxide nanozymes (Fe ₂ O ₃ , Fe ₃ O ₄ , His-Fe ₃ O ₄) sample /5 μI	effective and	liquiritin,
			could be inhibited by the competitive effects	sensitive	licochalcone A and
			of active substances of licorice, which resulted		isolicoflavonol were
			in the inability of H_2O_2 to prevent fading of		identified as the
			TMB.		active compounds.
Qufeng	Fluorescence	Calixarenes/	The molecular recognitions between 10 min	er Facile, rapid,	Standard fingerprint [6]
Zhitong	sensor array	Calixarenes•dyes	azocalixarenes and the compounds of QZC are sample/2.5 μ	L and	of qualified sample
Capsule			transduced through the fluorescence signal	less	was constructed for
(QZC)			output of the QZC itself or the applied	technically	quality evaluation
			indicator.	demanding	of QZC.
Yinxing	Fluorescence	Calixarenes•dyes	Using indicator displacement assay (IDA), the 10 min per	Simple	The inter-batch Presen
Mihuan	sensor array		molecular recognitions between calixarenes sample/5 µ	sample	consistency t work
Orial			and the tested compounds from YMOS were	preparation	evaluation and
Solution			converted into multi-fluorescence signals by	and	feeding ratio
(YMOS)			extruding the indicators from their respective	environmenta	monitoring of
			hosts.	l friendliness	YMOS were
					realized.

References

- X. Guo, R. Yang, Y. Wang, J. Wang, Y. Wang, H. Zou and Y. Yan, Prediction of Chemical Composition and Sensory Information of Codonopsis Radix Based on Electronic Nose, *Molecules*, 2025, 30, 1146.
- Z. Wang, Q. Sun, Y. Zhao, J. Du and B. Wang, Synthesis of naphthalimide-type chemsensor and its application in quality evaluation for polygonatum sibiricum Red, *Frontiers in Chemistry*, 2022, 10, 969014.
- X. Zhang and R. Liu, An ultrasensitive electrochemical sensor for the simultaneous detection of baicalin and baicalein in pharmaceuticals and serum samples, *Talanta*, 2025, 285, 127414.
- W. Long, Z. Hu, L. Wei, H. Chen, T. Liu, S. Wang, Y. Guan, X. Yang, J. Yang and H. Fu, Accurate identification of the geographical origins of lily using nearinfrared spectroscopy combined with carbon dot-tetramethoxyporphyrin nanocomposite and chemometrics, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2022, 271, 120932.
- X. Yuan, S. Cheng, L. Chen, Z. Cheng, J. Liu, H. Zhang, J. Yang and Y. Li, Iron oxides based nanozyme sensor arrays for the detection of active substances in licorice, *Talanta*, 2023, 258, 124407.
- J. H. Tian, Y. L. Lin, J. J. Li, R. Ma, H. Yu, Y. Wang, X. Y. Hu and D. S. Guo, Supramolecular fluorescence sensing for quality evaluation of traditional Chinese medicine, *Arab. J. Chem.*, 2023, 16, 104974.