Supporting Information for

Catalytic Efficiency of Cu-MOFs: HKUST-1 and CuBDC for the Protodeboronation of Aryl Boronic Acids

Yudha P. Budiman,^{a,b,*} Muhamad Rashifari,^{a,b} Muhamad Diki Permana,^{b,c} Kansy
Haikal,^a Iis I. Widyowati,^a Yessi Permana,^d Ubed S. F. Arrozi,^e Wirawan Ciptonugraha,^f
Tri Mayanti,^a Allyn P. Sulaeman,^a Juliandri,^a Witri Wahyu Lestari^f

^aDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas

Padjadjaran, 45363 Sumedang, Indonesia

^bSpecial Educational Program for Green Energy Conversion Science and Technology,

Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of

Yamanashi, Kofu 400-8511, Japan

^cCenter for Crystal Science and Technology, University of Yamanashi, Kofu 400-8511, Japan ^dInorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

^eDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Malang, 65145, Malang, Indonesia

^fDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas

Maret, Surakarta, 57126, Indonesia,

*Corresponding author: <u>y.p.budiman@unpad.ac.id</u>

S1. General Information

Unless otherwise noted, all reagents were purchased from Sigma-Aldrich were checked for purity by GC-MS and used as received. Absolute ethanol (Sigma-Aldrich, 99.8%) was used as received. The removal of solvent was performed by an extraction method in a mixture of brine water (2 mL) and ethyl acetate (2 mL) three times.

High-angle X-ray diffraction patterns were obtained on a Rigaku Miniflex 600 D/teX Ultra diffractometer with Cu Kα radiation. Infrared spectra were recorded on a Nicolet 380 FT-IR spectrometer as solids, using an ATR unit, and are reported in cm⁻¹. GC-MS analyses were performed using an Agilent 7890A gas chromatograph (column: DB-5MS 5% phenylmethylsiloxane, 30 m, Ø 0.25 mm, film 0.25 μm; *injector: 200 °C; oven: 40 °C (2 min), 40 °C to 280 °C (20 °C min⁻¹) (5 min) *; carrier gas: He (1 mL min⁻¹) equipped with an Agilent 5977B GC/MSD operating in EI mode). Copper atomic absorption spectrometry were conducted on a Perkin Elmer AAnalyst 400 AA with Series N30501XX Copper (Cu) Lumina hollow cathode lamp.

All NMR spectra were recorded at 298 K using an Agilent DD2 (¹H-NMR, 500 MHz; ¹³C{¹H}-NMR, 125 MHz). ¹H-NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent (CDCl₃: 7.24 ppm), ¹³C{¹H}-NMR spectra are reported relative to TMS via the carbon signals of the deuterated solvent (CDCl₃: 77.16 ppm

S1.1 Synthesis of toluene (2a) from *p*-tolylboronic acid (1a)

Compound **2a** was synthesized following the general procedure and using the following chemicals and conditions: *p*-tolylboronic acid (54.3 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 3.630 min] m/z: 91 $[M]^+$.

This compound is known.¹

S1.2 Synthesis of toluene (2a) from *m*-tolylboronic acid (1b)

Compound **2a** was synthesized following the general procedure and using the following chemicals and conditions: *m*-tolylboronic acid (54.3 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 3.625 min] m/z: 91 $[M]^+$.

This compound is known.¹

S1.3 Synthesis of toluene (2a) from o-tolylboronic acid (1c)

Compound **2a** was synthesized following the general procedure and using the following chemicals and conditions: *o*-tolylboronic acid (54.3 mg, 0.4 mmol), HKUST-1 (26.4 mg,

0.04 mmol), K_2CO_3 (55.3 mg, 0.4 mmol), mesitylene (56 μ L, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 3.633 min] m/z: 91 $[M]^+$.

This compound is known.¹

S1.4 Synthesis of anisole (2d) from p-methoxyphenylboronic acid (1d)

Compound **2d** was synthesized following the general procedure and using the following chemicals and conditions: *p*-methoxyphenylboronic acid (60.8 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 5.353 min] m/z: $109 [M]^+$.

This compound is known.¹

S1.5 Synthesis of anisole (2d) from o-methoxyphenylboronic acid (1e)

Compound **2d** was synthesized following the general procedure and using the following chemicals and conditions: *o*-methoxyphenylboronic acid (60.8 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 5.346 min] m/z: $109 [M]^+$.

This compound is known.¹

S1.6 Synthesis of fluorobenzene (2f)

Compound **2f** was synthesized following the general procedure and using the following chemicals and conditions: *p*-fluorophenylboronic acid (56.0 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 40 °C, and 1.5 h.

GCMS: [t = 2.626 min] m/z: $96 [M]^+$.

This compound is known.²

S1.7 Synthesis of bromobenzene (2g)

$$Br \longrightarrow H$$

Compound **2g** was synthesized following the general procedure and using the following chemicals and conditions: *p*-bromophenylboronic acid (80.3 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 5.518 min] m/z: $156 [M]^+$.

This compound is known.²

S1.8 Synthesis of biphenyl (2h)

Compound **2h** was synthesized following the general procedure and using the following chemicals and conditions: biphenylboronic acid (79.2 mg, 0.4 mmol), HKUST-1 (26.4

mg, 0.04 mmol), K_2CO_3 (55.3 mg, 0.4 mmol), mesitylene (56 μ L, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O_2 atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 9.287 min] m/z: 155 $[M]^+$.

¹**H NMR** (500 MHz, CDCl3) δ = 7.64–7.63 (*m*, 4H; Ar-H), 7.48 (*t*, 4H, ³*J*_{H,H} = 8 Hz; Ar-H), 7.39 (*t*, 2H, ³*J*_{H,H} = 7 Hz; Ar-H); ¹³C{¹**H**} **NMR** (125 MHz, CDCl3) δ = 141.4, 128.9, 127.4, 127.3

This compound is known.²

S1.9 Synthesis of tert-butylbenzene (2i)

$$\rightarrow$$

Compound **2i** was synthesized following the general procedure and using the following chemicals and conditions: *tert*-butylphenylboronic acid (71.2 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 6.091 min] m/z: 134 $[M]^+$.

This compound is known.²

S1.10 Synthesis of benzo[b]thiophene (2j)

Compound **2j** was synthesized following the general procedure and using the following chemicals and conditions: benzo[*b*]thien-2-ylboronic acid (71.2 mg, 0.4 mmol), HKUST-1 (26.4 mg, 0.04 mmol), K₂CO₃ (55.3 mg, 0.4 mmol), mesitylene (56 μL, 0.4 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h. Due to strong interactions

between sulfur-containing heterocycles such as benzo[b]thiophene (2j) with silica gel during column chromatography, elution becomes challenging, resulting in a low isolated yield that is insufficient for NMR measurement.

GCMS: [t = 7.921 min] m/z: 134 $[M]^+$.

This compound is known.³

S1.11 Synthesis of styrene (2k)

Compound **2k** was synthesized following the general procedure and using the following chemicals and conditions: trans-2-Phenylvinylboronic acid (29.6 mg, 0.2 mmol), HKUST-1 (13.2 mg, 0.02 mmol), K₂CO₃ (27.6 mg, 0.2 mmol), mesitylene (28 μL, 0.2 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

GCMS: [t = 4.946 min] m/z: $104 [M]^+$.

This compound is known.⁴

S1.12 Synthesis of ethylbenzene (21)

Compound **21** was synthesized following the general procedure and using the following chemicals and conditions: trans-2-Phenylvinylboronic acid (30 mg, 0.2 mmol), HKUST-1 (13.2 mg, 0.02 mmol), K_2CO_3 (27.6 mg, 0.2 mmol), mesitylene (28 μ L, 0.2 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

This compound is known.⁵

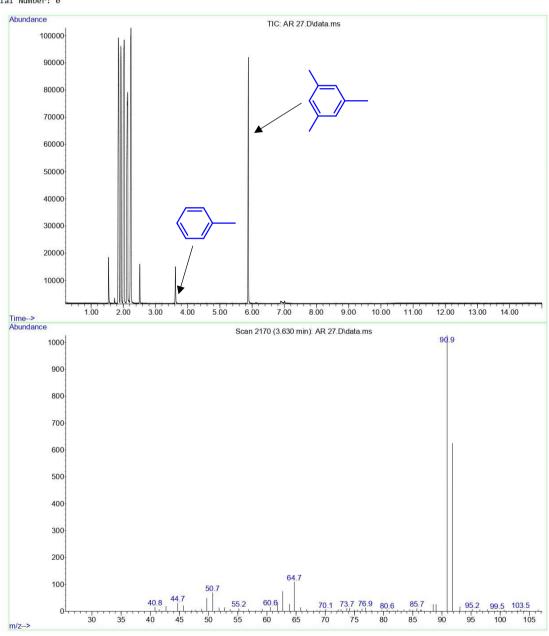
S1.13 Synthesis of naphthalene (2m)

Compound **2m** was synthesized following the general procedure and using the following chemicals and conditions: 4,4,5,5-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (50.82 mg, 0.2 mmol), HKUST-1 (13.2 mg, 0.02 mmol), K_2CO_3 (27.6 mg, 0.2 mmol), mesitylene (28 μ L, 0.2 mmol), EtOH/H₂O (1 mL : 1 mL), O_2 atmosphere, 70 °C, and 1.5 h.

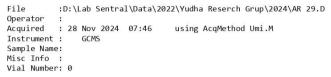
GCMS: [t = 7.759 min] m/z: 128 [M]⁺.¹**H NMR** (500 MHz, CDCl₃) δ = 3.10 (q, 4H, ${}^{3}J_{H,H}$ = 3 Hz), 7.52 (d, 4H, ${}^{3}J_{H,H}$ = 3 Hz); ¹³**C NMR** (125 MHz, CDCl₃) δ = 133,5, 128.0, 125.9; **GCMS**: [t = 7.935 min] m/z: 134 [M]⁺.

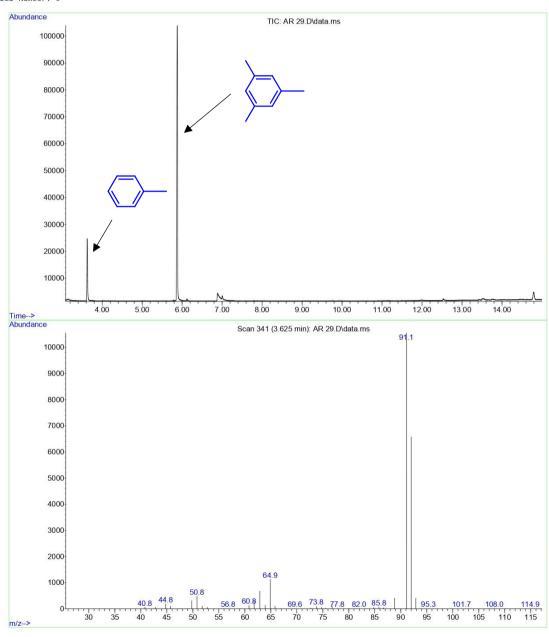
This compound is known.²

S1.14 Synthesis of toluene (2a) from 4,4,5,5-tetramethyl-2-(*m*-tolyl)-1,3,2-dioxaborolane (1n)

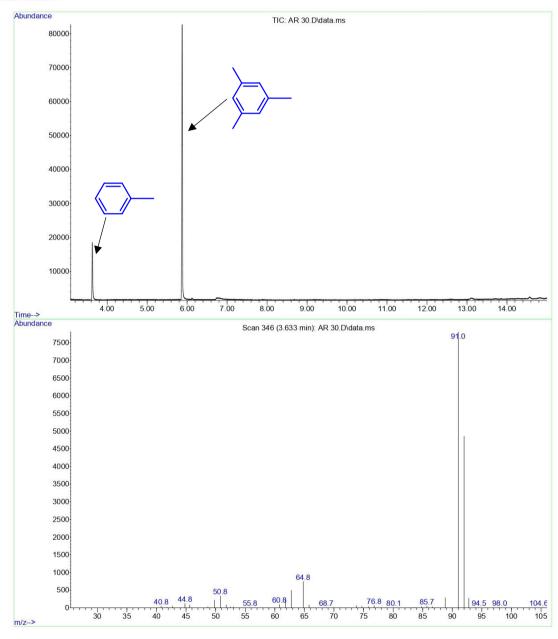

Compound **2n** was synthesized following the general procedure and using the following chemicals and conditions: 4,4,5,5-tetramethyl-2-(*m*-tolyl)-1,3,2-dioxaborolane (43.6 mg, 0.2 mmol), HKUST-1 (13.2 mg, 0.02 mmol), K₂CO₃ (27.6 mg, 0.2 mmol), mesitylene (28 μL, 0.2 mmol), EtOH/H₂O (1 mL : 1 mL), O₂ atmosphere, 70 °C, and 1.5 h.

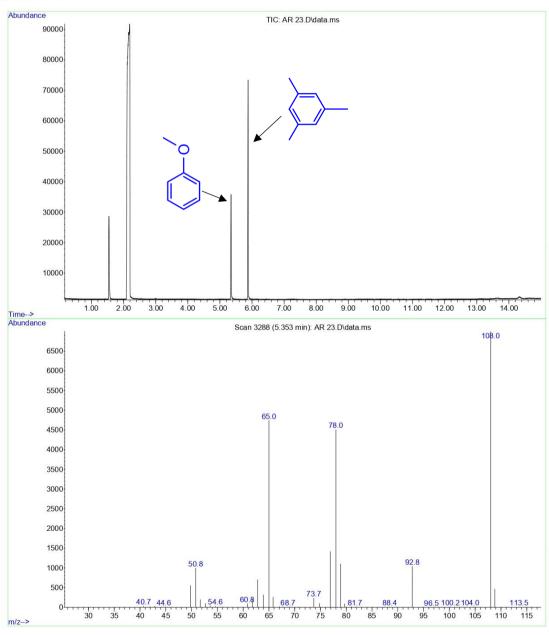
GCMS: [t = 3.633 min] m/z: 91 [M]⁺.


This compound is known.¹

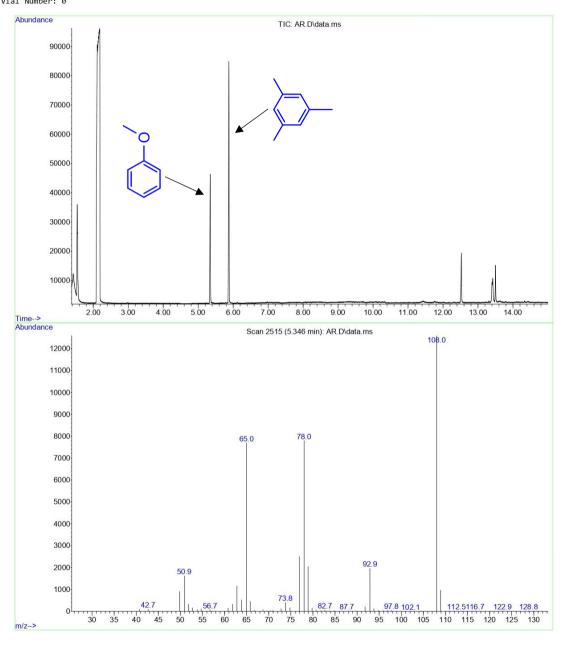

S2. GC-MS and ¹H, ¹³C{¹H} NMR Spectra

S2.1 GC–MS spectrum of the reaction described in Table 3, entry 1, with mesitylene as the internal standard.

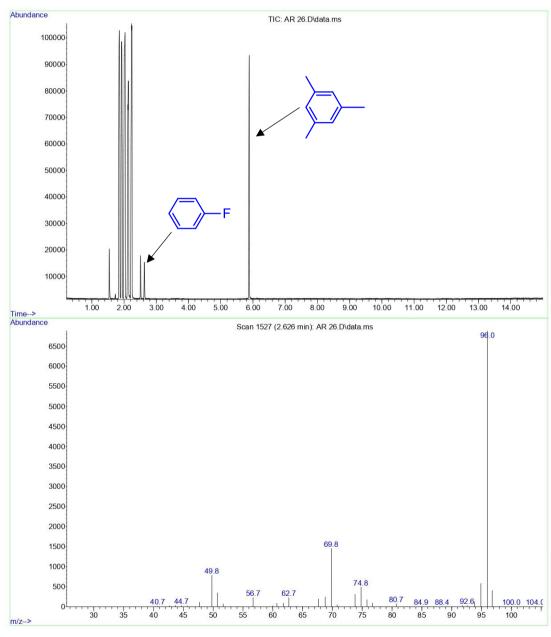

S2.2 GC–MS spectrum of the reaction described in Table 3, entry 2, with mesitylene as the internal standard.


S2.3 GC–MS spectrum of the reaction described in Table 3, entry 3, with mesitylene as the internal standard.

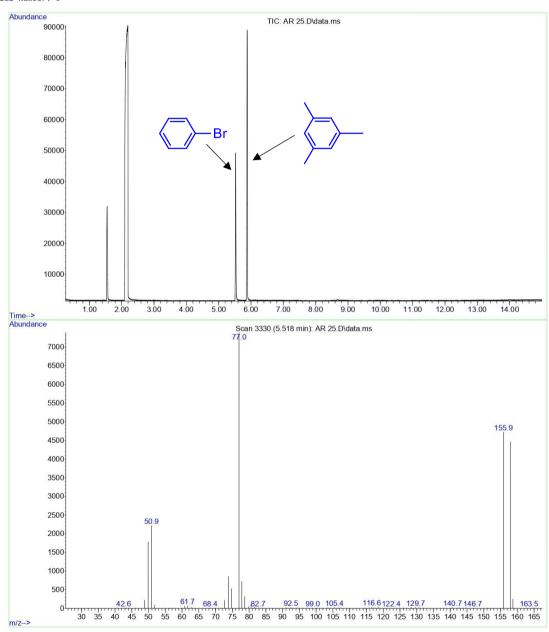
File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2024\AR 30.D
Operator :
Acquired : 28 Nov 2024 08:25 using AcqMethod Umi.M
Instrument :
GCMS
Sample Name:
Misc Info :
Vial Number: 0


S2.4 GC–MS spectrum of the reaction described in Table 3, entry 4, with mesitylene as the internal standard.

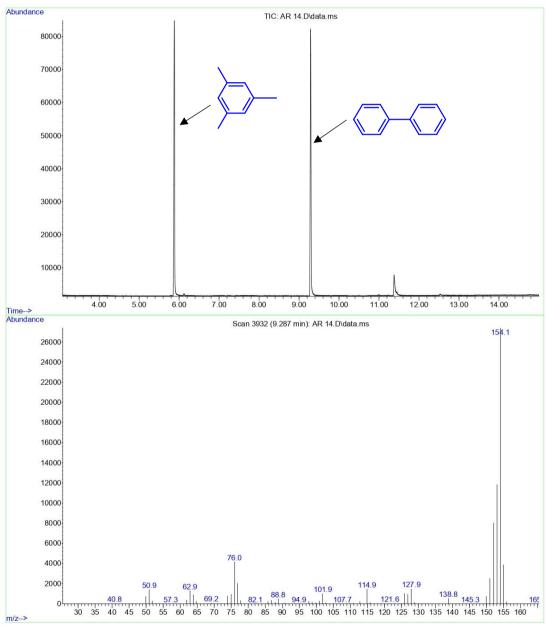
File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2024\AR 23.D
Operator :
Acquired : 15 Nov 2024 16:09 using AcqMethod Umi.M
Instrument :
GCMS
Sample Name:
Misc Info :
Vial Number: 0

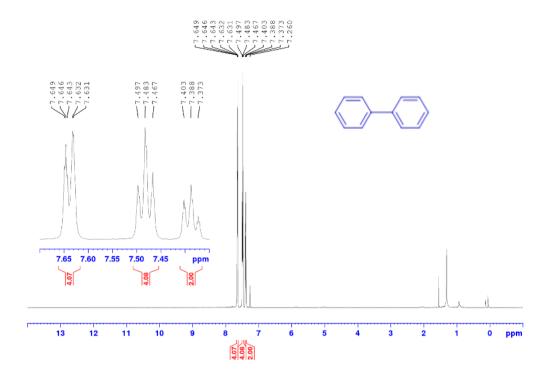

S2.5 GC–MS spectrum of the reaction described in Table 3, entry 5, with mesitylene as the internal standard.

File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2024\AR.D
Operator :
Acquired : 15 Nov 2024 14:31 using AcqMethod Umi.M
Instrument : GCMS
Sample Name:
Misc Info :
Vial Number: 0

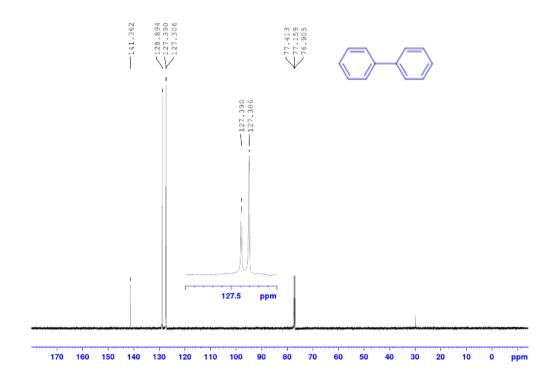

S2.6 GC–MS spectrum of the reaction described in Table 3, entry 6, with mesitylene as the internal standard.

File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2024\AR 26.D Operator : Acquired : 15 Nov 2024 16:58 using AcqMethod Umi.M Instrument : GCMS Sample Name: Misc Info : Vial Number: 0

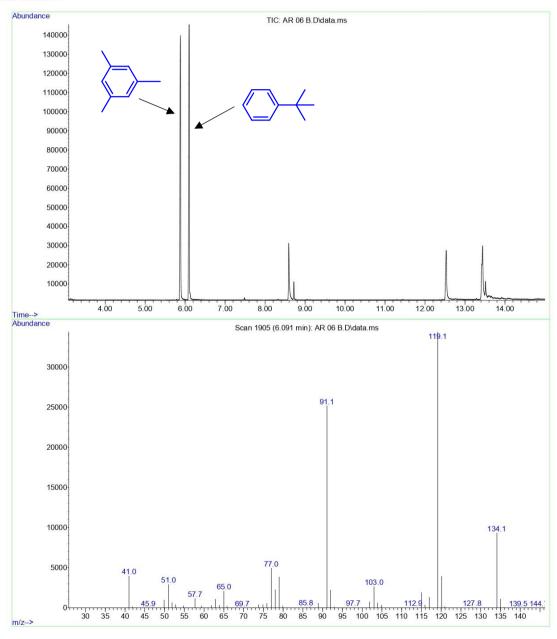

S2.7 GC–MS spectrum of the reaction described in Table 3, entry 7, with mesitylene as the internal standard.



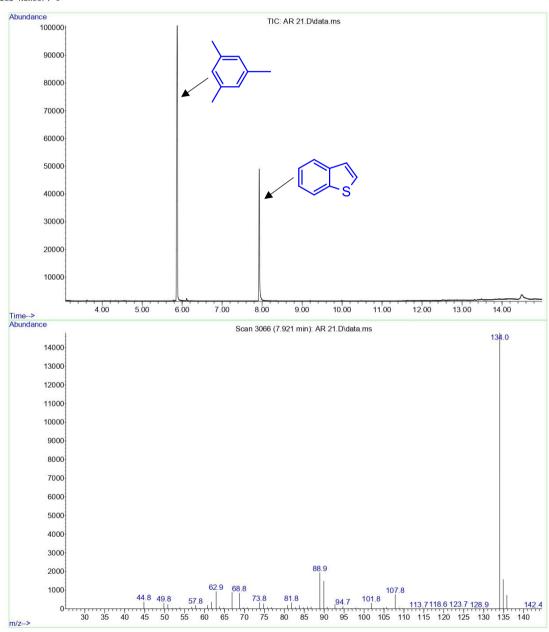
S2.8 GC–MS spectrum of the reaction described in Table 3, entry 8, with mesitylene as the internal standard.



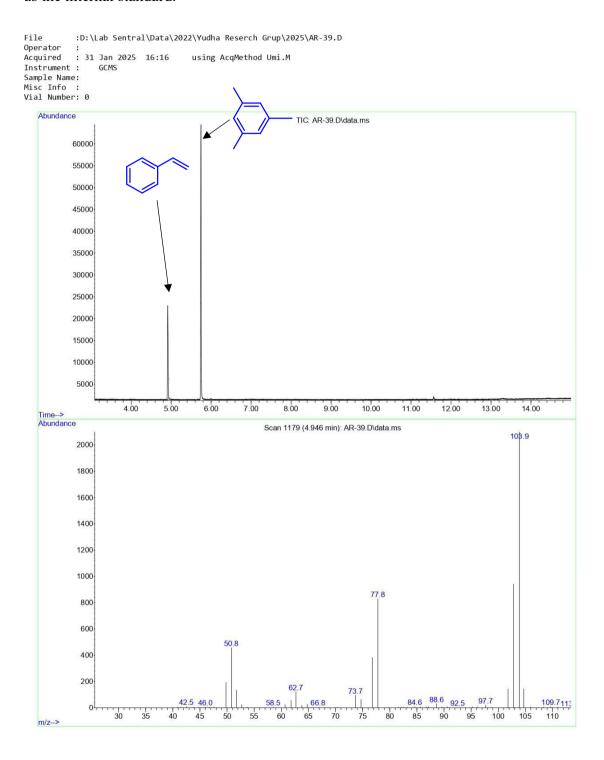
S2.9 ¹H NMR spectrum of **2h** (500 MHz, CDCl₃)



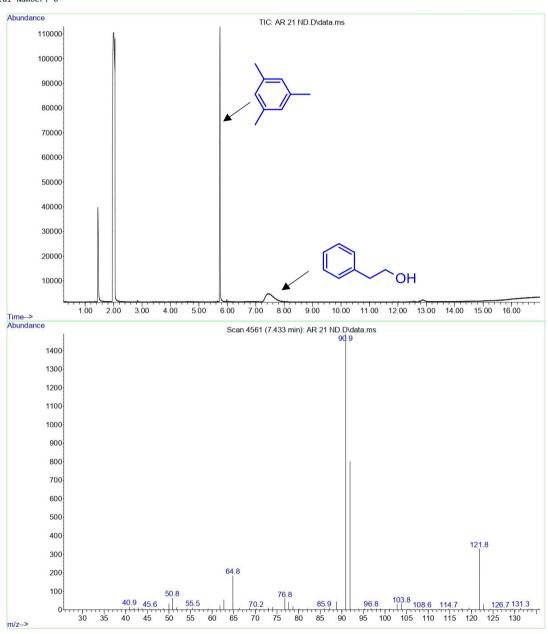
 $S2.10^{13}C\{^{1}H\}$ NMR spectrum of **2h** (125 MHz, CDCl₃)


S2.11 GC–MS spectrum of the reaction described in Table 3, entry 9, with mesitylene as the internal standard.

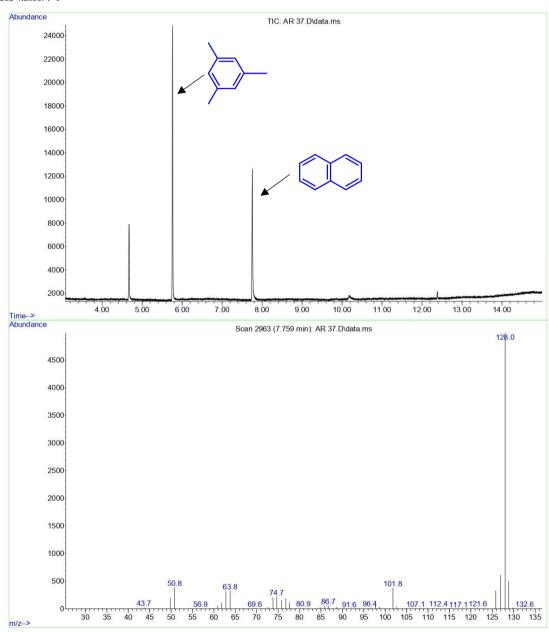
File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2024\AR 06 B.D Operator :
Acquired : 19 Aug 2024 08:40 using AcqMethod Umi.M
Instrument : GCMS
Sample Name:
Misc Info :
Vial Number: 0



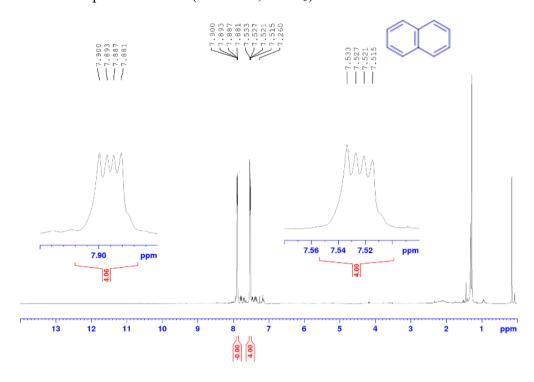
S2.12 GC-MS spectrum of the reaction described in Table 3, entry 10, with mesitylene as the internal standard.



S2.13 GC–MS spectrum of the reaction described in Table 3, entry 11, with mesitylene as the internal standard.

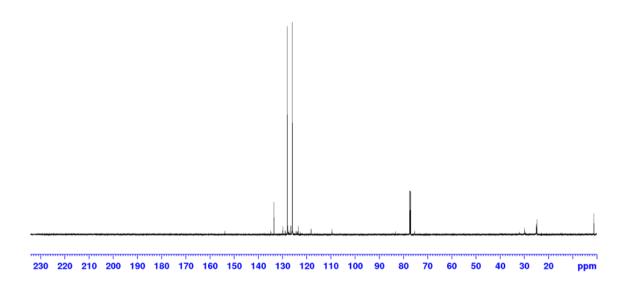


S2.14 GC-MS spectrum of the reaction described in Table 3, entry 12, with mesitylene as the internal standard.

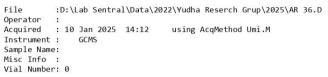


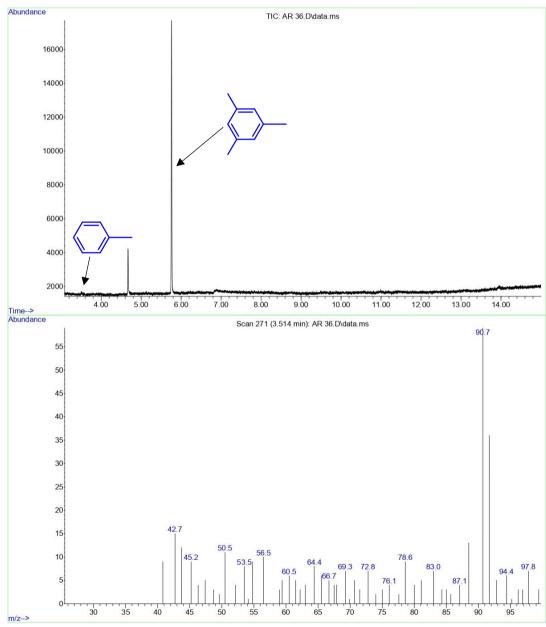
S2.15 GC-MS spectrum of the reaction described in Table 3, entry 13, with mesitylene as the internal standard.

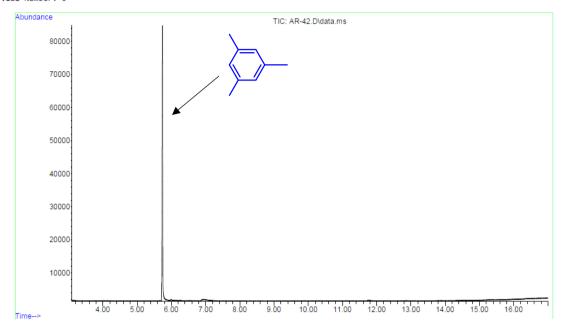
File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2025\AR 37.D
Operator :
Acquired : 10 Jan 2025 14:38 using AcqMethod Umi.M
Instrument :
GCMS
Sample Name:
Misc Info :
Vial Number: 0



S2.16 ¹H NMR spectrum of **2m** (500 MHz, CDCl₃)




$S2.17\,^{13}C\{^1H\}$ NMR spectrum of $\boldsymbol{2m}$ (125 MHz, CDCl3)


S2.18 GC–MS spectrum of the reaction described in Table 3, entry 13, with mesitylene as the internal standard.

S2.19 GC-MS spectrum of stock toluene adsorption on HKUST-1 with mesitylene as an internal standard.

File :D:\Lab Sentral\Data\2022\Yudha Reserch Grup\2025\AR-42.D Operator :
Acquired : 24 Apr 2025 08:10 using AcqMethod Umi.M Instrument : GCMS Sample Name:
Misc Info :
Vial Number: 0

S3. XRD Data

S3.1 XRD Pattern of HKUST-1

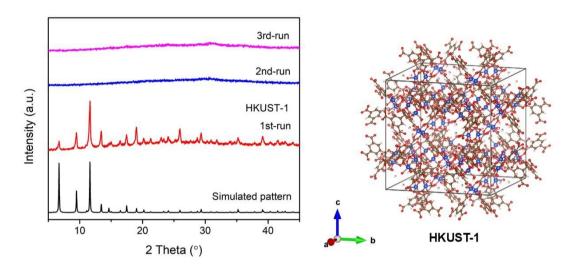


Fig. S1. Crystal structure and XRD pattern of HKUST-1 and after several uses.

S3.2 XRD Pattern of CuBDC

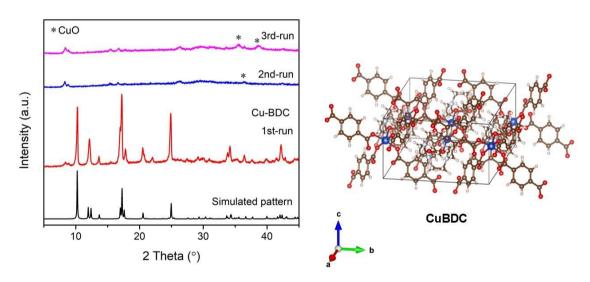
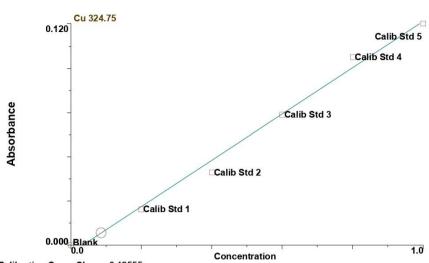



Fig. S2. Crystal structure and XRD pattern of CuBDC and after several uses.

S4. AAS Data

Calibration Curve Slope: 0.12555
Calibration Curve Intercept: -0.00418

Calibration Curve Correlation Coefficient: 0.995663
Calibration Curve Type: Linear, Calculated Intercept
Current Sample Concentration: 0.086 mg/L

Std #	Standard ID	Entered Conc.	Calculated Conc.	Action
Blank	Blank	0	0.033	Include
1	Calib Std 1	0.2	0.189	Include
2	Calib Std 2	0.4	0.347	Include
3	Calib Std 3	0.6	0.596	Include
4	Calib Std 4	0.8	0.845	Include
5	Calib Std 5	1.0	0.990	Include

The detected concentrations of nitric acid and ethyl acetate in the sample were 0.002 ppm and 0.003 ppm, respectively. Given a total sample concentration of 0.086 ppm, the measured copper concentration was 0.081 ppm.

Calibration data for Cu 324.75 Equation: Linear, Calculated Intercept Entered Calculated

	Mean Signal	Conc.	Conc.	Standard	
ID	(Abs)	mg/L	mg/L	Deviation	%RSD
Blank	0.0000	0	0.033	0.00	7.2
Calib Std 1	0.0195	0.2	0.189	0.00	1.0
Calib Std 2	0.0394	0.4	0.347	0.00	2.2
Calib Std 3	0.0706	0.6	0.596	0.00	1.0
Calib Std 4	0.1019	0.8	0.845	0.00	0.3
Calib Std 5	0.1201	1.0	0.990	0.00	0.4
Correlation Coef.:	0.995663 Slope	e: 0.12555	Intercept	t: -0.00418	

Sequence No.: 25 Autosampler Location:

Sample ID: Blank Date Collected: 2/24/2025 10:31:17 AM

Analyst: Data Type: Original

 Replicate Data: Blank

 Repl
 SampleConc
 StndConc
 BlnkCorr
 Time
 Signal

 #
 mg/L
 mg/L
 Signal
 Stored

 1
 0.026
 0.026
 -0.001
 10:31:18
 No

 2
 0.006
 0.006
 -0.003
 10:31:22
 No

 3
 0.005
 0.005
 -0.004
 10:31:27
 No

 Mean:
 0.012
 0.012
 -0.003
 No
 No

 \$RSD:
 99.58
 99.58
 58.26
 No
 No

Sequence No.: 26 Autosampler Location:

Sample ID: Blank Date Collected: 2/24/2025 10:31:34 AM

Analyst: Data Type: Original

Replicate Data: Blank

 Repl
 SampleConc
 StndConc
 BlnkCorr
 Time
 Signal

 #
 mg/L
 mg/L
 Signal
 Stored

 1
 0.003
 0.003
 -0.004
 10:31:34
 No

 2
 0.002
 0.002
 -0.004
 10:31:38
 No

 3
 0.002
 0.002
 -0.004
 10:31:42
 No

 Mean:
 0.002
 0.002
 -0.004
 10:31:42
 No

 SD:
 0.001
 0.001
 0.0001
 ...
 ...

 %RSD:
 25.65
 25.65
 1.83
 ...

Sequence No.: 27 Sample ID: EA Analyst: Autosampler Location: Date Collected: 2/24/2025 10:31:56 AM Data Type: Original

Replicate Data: EA

Repl #	SampleConc mg/L	StndConc mg/L	BlnkCorr Signal	Time	Signal Stored
	•	•	-		
1	0.006	0.006	-0.003	10:31:57	No
2	0.004	0.004	-0.004	10:32:02	No
3	0.005	0.005	-0.004	10:32:06	No
Mean:	0.005	0.005	-0.004		
SD:	0.001	0.001	0.0001		
Spcn.	22 22	22 22	2 7/		

Sequence No.: 28 Autosampler Location:

Sample ID: sample Date Collected: 2/24/2025 10:32:20 AM

Analyst: Data Type: Original

Replicate Data: sample

Replicate Data. Sample						
Repl	SampleConc	StndConc	BlnkCorr	Time	Signal	
#	mg/L	mg/L	Signal		Stored	
1	0.087	0.087	0.007	10:32:20	No	
2	0.086	0.086	0.007	10:32:25	No	
3	0.086	0.086	0.007	10:32:29	No	
Mean:	0.086	0.086	0.007			
SD:	0.001	0.001	0.0001			
%RSD:	1.067	1.067	1.74			

References

- 1. C. Liu, X. Li, Y. Wu and J. Qiu, RSC Adv., 2014, 4, 54307–54311.
- 2. Y.P. Budiman, M. Rashifari, S. Azid, I.Z. Ghafara, Y. Deawati, Y. Permana, U.S.F. Arrozi, W. Ciptonugroho, T. Mayanti and W.W. Lestari, *ChemistrySelect*, 2024, **9**, e202304913.
- 3. Z. Gai, B. Yu, X. Wang, Z. Deng and P. Xu, *Microbiology*, 2008, **154**, 3804–3812.
- 4. S. Abrantes, J. High Resol. Chromatogr., 1993, 16, 113–115.
- B.M. El-Haj, A.M. Al-Amri, M.H. Hassan, R.K. Bin-Khadem and A.A. Al-Hadi,
 J. Anal. Toxicol., 2000, 24, 390–394.