Supporting Information

NO₂ and SO₂ Adsorption and Sensing on Janus B₂SeTe: Unveiling Its Electronic, Optical, and Magnetic Properties Using DFT and COMSOL

Manik Bala, Md Tawabur Rahman*, Raiyan Al Nahean, and Md Sakib Hasan Khan

Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh

*Corresponding Author: tawabur@eee.kuet.ac.bd

Fig. S1 (a) Sensor structure in COMSOL represents different layers of the proposed gas sensor. (b) Gas chamber model housing the sensor with a gas inlet and two outlets.

Table S I The lattice constant a; bond lengths of B-Se (d1), B-B (d2) and B-Te (d3); bond angles of B-B-Se (θ 1), B-B-Te (θ 2), B-Se-B(θ 3) and B-Te-B (θ 4); the thickness layer(t); the work function (Φ); the band gap (E_g); VBM/CBM positions.

a(Å)	d1(Å) d2(Å) d3(Å)	t(Å)	θ1(°) θ2(°) θ3(°) θ4(°)	Ф(eV)	E _g (eV)	Stability	VBM/CBM positions
4.07	2.153 1.683 2.129	4.9	114.329 117.871 104.215 99.914	5.307	2.151	Dynamically Stable	Г- М

(d) NO₂+CO+CH₄

(e) CO₂+HCN+H₂S

(f) H₂S+HCN+NH₃

0

(c) NO₂+CO₂+NH

2

(h) CO+CH₄+NH₃

(g) $SO_2+H_2S+NH_3$

0

Ν

С

н 🔘

50

T

Fig. S2 Top and side view of the most energetically favourable adsorption configuration of the adsorbed molecules (a) NO_2+CO_2 , (b) NO_2+CO , (c) $NO_2+CO+CH_4$, (d) $NO_2+CO_2+NH_3$, (e) $CO_2+HCN+H_2S$, (f) $H_2S+HCN+NH_3$, (g) $SO_2+H_2S+NH_3$, (h) $CO+CH_4+NH_3$, and (i) $NH_3+CO+CH_4+H_2S$ molecules on the B₂SeTe monolayer.

Fig. S3 The band structures (a) NO_2+CO_2 , (b) NO_2+CO , (c) $NO_2+CO+CH_4$, (d) $NO_2+CO_2+NH_3$, (e) $CO_2+HCN+H_2S$, (f) $H_2S+HCN+NH_3$, (g) $SO_2+H_2S+NH_3$, (h) $CO+CH_4+NH_3$, and (i) $NH_3+CO+CH_4+H_2S$ adsorbed B_2SeTe monolayer. The blue (red) colour indicates up (down) spin. Due to the presence of NO_2 gas, the bandgap changes rustically from the pristine value of 2.151 eV. In the absence of NO_2 gas, other gas-adsorbed structures have a band gap reasonably similar to the pristine band gap value.

Fig. S4 The orbital projected density of states of (a) NO_2+CO_2 , (b) NO_2+CO , (c) $NO_2+CO+CH_4$, (d) $NO_2+CO_2+NH_3$,(e) $CO_2+HCN+H_2S$, (f) $H_2S+HCN+NH_3$, (g) $SO_2+H_2S+NH_3$, (h) $CO+CH_4+NH_3$, and (i) $NH_3+CO+CH_4+H_2S$ absorbed B₂SeTe monolayer. Due to the presence of NO_2 gas, the bandgap changes rustically from the pristine value of 2.151 eV. In the absence of NO_2 gas, other gas-adsorbed structures have a band gap reasonably similar to the pristine band gap value.

Adsorbed gas	Bandgap (E _g)	Change in bandgap (ΔE _g)	Sensitivity (%S)	Log ₁₀ (S%)
NH ₃	2.153	0.002	3.8	0.58
HCN	2.156	0.005	9.209	0.97
CO	2.154	0.003	86.335	1.93
NO ₂	0.538	-1.613	3.4401×10 ¹⁵	13.53
SO ₂	1.275	-0.876	2.2466×10 ⁹	7.35
CO ₂	2.164	0.013	22.22	1.34
H ₂ S	2.166	0.015	25.162	1.4
CH ₄	2.154	0.003	5.6322	0.74
NO ₂ +CO ₂	0.633	-1.518	5.486×10 ¹⁴	14.74
NO ₂ +CO	0.683	-1.468	2.087×10 ¹⁴	14.32
NO ₂ +CO ₂ +NH ₃	0.632	-1.519	5.6×10 ¹⁴	14.74
NO ₂ +CO+CH ₄	0.692	-1.459	1.75×10 ¹⁴	14.24
CO ₂ +HCN+H ₂ S	2.153	0.002	3.8	0.58
H ₂ S+HCN+NH ₃	2.160	0.009	15.96	1.20
SO ₂ +H ₂ S+NH ₃	1.6	-0.551	4.2×10^{6}	6.623
CO+CH ₄ +NH ₃	2.146	-0.005	10.14	1
NH ₃ +CO+CH ₄ +H ₂ S	2.140	-0.011	23.68	1.37

Table S II Band gap, change in band gap, sensitivity, and logarithmic sensitivity for different gas combinations.

Fig. S5 Phonon dispersion curves of (a) NO_2 and (b) SO_2 adsorbed on B_2SeTe monolayer