


Figure S1 Loadings scatter plot of PCA of volatile constituents of greengage wines by four *Saccharomyces* yeasts (odor activity value (OAV)>0.1).

Figure S2 X/Y overview plot of PCA of volatile constituents of greengage wines by four *Saccharomyces* yeasts (odor activity value (OAV)>0.1).

Supplementary Table S1 The volatile constituents of fresh wines by different *Saccharomyces* yeasts (µg/L of methyl octanoate).

Retention time (min)	Volatile constituents	Identification method	RI	Odor threshold	Odor description	ScD254	ScK1	ScBV818	ScSY
Esters (27)									
3.04	Ethyl acetate	NIST, RI		7500 ¹	Pineapple	603.76±100.79 ^b	682.39±44.88 ^b	1067.57±123.57 ^a	593.38±43.36 ^b
9.15	Isoamyl acetate	NIST, RI	1118	30 ¹	Banana	ND	22.37±1.09 ^b	35.36±5.21 ^a	21.37±1.40 ^b
29.19	Phenethyl acetate	NIST, RI	1953	250 ²	Floral, rose, sweet	31.66±2.46 ^a	25.47±3.00 ^b	30.26±3.52 ^{ab}	27.66±0.79 ^{ab}
Acetate esters									
6.2	Ethyl butyrate	NIST, RI	1049	20 ³	Apple	ND	ND	31.02±5.04 ^a	ND
6.68	Ethyl 2-methylbutanoate	NIST, RI	1061			ND	15.46±2.07 ^b	28.87±3.57 ^a	ND
7.24	Ethyl isovalerate	NIST, RI	1074	3 ⁴	Apple, fruit, pineapple	ND	ND	23.28±2.60 ^a	ND
13.23	Ethyl hexanoate	NIST, RI	1220	5 ¹	Flowery, fruity	63.63±1.67 ^c	86.21±5.91 ^b	168.85±13.26 ^a	85.54±3.16 ^b
15.66	Ethyl 3-hexenoate	NIST, RI	1298			13.86±0.52 ^b	15.09±0.48 ^b	24.28±2.27 ^a	14.80±0.82 ^b
16.98	Ethyl (L)-(-)-lactate	NIST, RI	1350			21.05±2.45 ^b	28.97±6.24 ^a	25.34±1.16 ^{ab}	29.25±1.43 ^a
19.74	Ethyl 2-hydroxyisovalerate	NIST, RI	1464			ND	ND	13.81±0.68 ^b	16.85±1.06 ^a
20.18	Ethyl octanoate	NIST, RI	1482	2 ¹	Fruity, floral	ND	119.90±9.00 ^b	145.99±11.51 ^a	97.24±6.71 ^c
21.42	Ethyl <i>trans</i> -4-octenoate	NIST, RI	1540			ND	ND	16.68±0.89 ^a	ND
23.22	Ethyl 2-hydroxy-4-methylpentanoate	NIST, RI	1627			26.37±2.40 ^b	31.96±4.10 ^b	48.96±3.76 ^a	50.68±2.54 ^a
25.46	Ethyl methyl succinate	NIST, RI	1743			20.85±3.17 ^a	22.60±5.03 ^a	23.85±2.47 ^a	ND
25.61	Ethyl decanoate	NIST, RI	1751	200 ³	Fruity, fatty	31.71±0.98 ^b	53.10±3.09 ^a	54.87±8.23 ^a	ND
26.12	Ethyl benzoate	NIST, RI	1778	53 ⁵	Sweet, medicinal	410.72±32.16 ^{bc}	461.66±30.20 ^{ab}	513.20±42.88 ^a	391.81±18.25 ^c
26.74	Ethyl 9-decenoate	NIST, RI	1812	100 ⁶	Fruity	ND	28.12±6.68 ^a	ND	ND
28.15	Ethyl succinate	NIST, RI	1891			ND	47.75±8.16 ^a	27.77±6.81 ^b	24.98±0.75 ^b
28.51	Ethyl hydrogen glutarate	NIST, RI	1912			32.81±4.75 ^c	82.61±9.74 ^a	57.96±5.91 ^b	59.12±1.99 ^b
28.62	Ethyl phenylacetate	NIST, RI	1919	650 ⁵	Fruit, sweet	73.34±5.62 ^a	57.81±4.61 ^b	66.43±6.32 ^{ab}	60.52±1.79 ^b
28.78	Ethyl butyl succinate	NIST, RI	1928			24.74±2.16 ^b	31.70±2.86 ^a	35.23±3.28 ^a	32.46±0.28 ^a
30.8	Ethyl isopentyl succinate	NIST, RI	>2000			91.64±9.97 ^a	94.69±11.58 ^a	108.26±8.83 ^a	92.72±2.18 ^a

34.17	Ethyl 3-hydroxytridecanoate	NIST, RI	>2000			ND	ND	ND	32.41±1.56 ^a
34.65	Ethyl cinnamate	NIST, RI	>2000	1.1 ⁴	Honey, cinnamon	217.71±25.25 ^b	200.09±21.71 ^b	274.18±29.55 ^a	195.93±5.57 ^b
28.38	Ethyl esters					1028.44±86.38 ^c	1377.73±112.28 ^b	1688.83±136.99 ^a	1184.32±42.60 ^c
	Methyl salicylate	NIST, RI	1904	40 ⁷	Sweet, wintergreen	42.13±4.44 ^{ab}	42.78±3.03 ^{ab}	48.93±5.35 ^a	40.48±2.18 ^b
33.17	Diethyl malate	NIST, RI	>2000	760000 ⁸	Brown sugar, sweet	49.91±16.02 ^a	39.94±5.94 ^a	52.18±9.28 ^a	45.55±0.64 ^a
34.87	Decanolactone	NIST, RI	>2000			24.60±3.78 ^a	22.22±3.80 ^a	25.34±1.33 ^a	22.33±0.31 ^a
	Total Alcohols (9)					1780.50±203.94 ^c	2212.89±165.15 ^b	2948.48±282.47 ^a	1935.09±3.28 ^{bc}
7.96	Isobutyl alcohol	NIST, RI	1089	40000 ⁸	Alcohol, winelike	43.22±7.34 ^b	83.27±13.56 ^a	94.64±13.56 ^a	87.28±6.94 ^a
9.85	Butyl alcohol	NIST, RI	1137	150000 ⁸	Fruit	ND	14.79±2.41 ^a	13.24±1.48 ^a	14.01±0.87 ^a
12.17	Isoamyl alcohol	NIST, RI	1190	30000 ¹	Whiskey, nail polish	632.76±98.62 ^b	937.76±119.32 ^a	992.30±96.22 ^a	991.87±60.12 ^a
17.35	Hexyl alcohol	NIST, RI	1364	8000 ¹	Green, fruity	37.64±4.80 ^b	49.10±4.38 ^a	53.24±3.90 ^a	55.19±3.58 ^a
23.04	[S,S]-2,3-Butanediol	NIST, RI	1617			93.34±29.69 ^a	72.95±17.76 ^a	86.54±16.54 ^a	86.00±3.51 ^a
30.28	Benzyl alcohol	NIST, RI	>2000	200000 ⁴	Sweet, flower	290.45±51.70 ^a	171.42±28.32 ^b	174.87±13.11 ^b	149.32±0.58 ^b
30.91	Phenylethyl alcohol	NIST, RI	>2000	10000 ⁹	Rose, pollen, perfume	1146.08±219.92 ^a	1214.57±223.88 ^a	1182.27±99.50 ^a	1193.15±1.98 ^a
31.91	β-Dihydroionol	NIST, RI	>2000			86.50±16.68 ^b	112.91±13.53 ^a	113.23±4.21 ^a	125.66±2.03 ^a
30.71	α-Ionol	NIST, RI	>2000			ND	ND	25.16±0.94 ^a	ND
	Total Acids (7)					2329.99±402.59 ^a	2656.78±421.58 ^a	2735.50±242.29 ^a	2702.48±67.46 ^a
20.75	Acetic acid	NIST, RI	1507	200000 ¹	Sour	144.62±17.81 ^a	104.46±18.68 ^b	126.68±12.78 ^{ab}	114.69±4.71 ^b
26.29	2-Methylbutyric acid	NIST, RI	1787			96.36±13.30 ^a	67.41±15.92 ^b	72.53±2.49 ^b	84.66±4.76 ^{ab}

29.79	Hexanoic acid	NIST, RI	1988	420 ⁴	Cheese, fatty	175.92±29.49 ^{ab}	150.26±27.89 ^b	185.98±3.34 ^{ab}	203.63±2.44 ^a
33.51	Octanoic acid	NIST, RI	>2000	500 ⁴	Cheese, fatty acid	162.90±23.38 ^c	236.57±31.00 ^b	267.59±21.83 ^{ab}	291.08±6.74 ^a
36.84	Decanoic acid	NIST, RI	>2000	1000 ⁸	Rancid, fat	98.74±24.45 ^b	131.13±40.89 ^{ab}	204.46±57.66 ^a	189.23±10.28 ^a
37.72	9-Hexadecenoic acid	NIST, RI	>2000			22.20±6.18 ^b	53.04±10.95 ^a	ND	ND
39.17	Benzoic acid	NIST, RI	>2000	1000 ²	Urine	319.10±108.94 ^a	225.04±53.38 ^a	301.63±62.34 ^a	217.57±13.14 ^a
	Total					1019.84±205.65 ^a	967.91±160.50 ^a	1158.87±52.71 ^a	1100.85±27.78 ^a
	Aldehydes (3)								
22.06	Decanal	NIST, RI	1570	1.25 ²	Soap, orange peel	13.32±2.97 ^a	17.44±6.15 ^a	ND	ND
22.56	Benzaldehyde	NIST, RI	1593	350 ⁴	Almond, burnt sugar	165.76±12.90 ^b	126.32±14.50 ^c	272.73±13.30 ^a	170.86±11.90 ^b
29.09	2,4-Dimethylbenzaldehyde	NIST, RI	1947			301.46±29.45 ^{bc}	273.27±27.50 ^c	368.43±18.36 ^a	324.55±3.41 ^b
	Total					480.54±42.81 ^{bc}	417.02±46.27 ^c	641.15±30.09 ^a	495.41±15.31 ^b
	Ketones (2)								
31.45	trans- β -Ionone	NIST, RI	>2000			49.80±4.72 ^b	38.63±4.28 ^c	62.18±5.26 ^a	56.92±3.39 ^{ab}
29.51	Dihydro- β -ionone	NIST, RI	1972			19.77±2.61 ^b	18.75±1.97 ^b	28.53±1.95 ^a	21.78±0.43 ^b
	Total					69.57±7.33 ^b	57.37±6.20 ^c	90.71±7.12 ^a	78.70±3.82 ^b
	Phenols (3)								
25.9	cis-Ocimenol	NIST, RI	1767			69.29±12.58 ^a	49.91±4.99 ^a	54.84±14.42 ^a	50.74±5.08 ^a
35.2	3-Allylguaiacol	NIST, RI	>2000			61.97±11.74 ^{ab}	67.39±0.85 ^a	52.75±2.72 ^b	53.41±2.31 ^b
21.11	1,2-Oxolinalool	NIST, RI	1525			21.81±1.80 ^a	23.58±6.84 ^a	19.85±3.65 ^a	25.11±1.13 ^a
	Total					153.07±25.09 ^a	140.89±11.97 ^a	127.43±20.70 ^a	129.26±8.52 ^a
	Terpenes (1)								
24.93	α -Terpineol	NIST, RI	1714	100 ¹	Citrus	24.62±8.73 ^a	ND	ND	20.43±1.86 ^a
	Total					24.62±8.73 ^a	ND	ND	20.43±1.86 ^a
	Total volatiles					5858.14±883.53 ^b	6452.86±798.39 ^{ab}	7702.14±589.83 ^a	6462.22±124.31 ^{ab}

^a Data are the means ± standard deviation (n=3)

^b Values in the same row with different letters indicate significant differences (P < 0.05) by Duncan's tests

^c RI, Retention indices, were determined by using n-alkanes C₈-C₂₀

^d OAVs, Odor activity values, were calculated from divided volatile constituent concentration by volatiles odor threshold

^e Odor description reported in the <http://www.flavornet.org/flavornet.html> and <http://www.thegoodscentscompany.com/search2.html>

^f ND, not detected

^g Column type: HP-Innowax (30 m × 0.25 mm × 0.25 µm, Agilent Technologies)

Supplementary Table S2. The volatile constituents of fresh wines by coculturing *Saccharomyces* yeasts with *T. delbrueckii* (µg/L of methyl octanoate).

No.	Retention time (min)	Volatile constituents	Identification method	RI	Odor threshold	Odor description	Single culture			Simultaneous inoculation			Sequential inoculation		
							ScK1	ScBV818	ScSY	ScK1+Td_Si	ScBV818+Td_Si	ScSY+Td_Si	ScK1+Td_Se	ScBV818+Td_Se	ScSY+Td_Se
		Esters (24)					687.36 ^c	779.03 ^{bc}	767.28 ^{bc}	948.43 ^b	1154.19 ^a	642.62 ^c	920.79 ^b	797.74 ^{bc}	646.45 ^c
E1	6.88	Isoamyl acetate	NIST, RI	1066	30 ¹	Banana	4.32 ^a	5.10 ^a	ND	ND	ND	ND	ND	5.21 ^a	ND
E2	27.16	Benzyl acetate	NIST, RI	1836			3.76 ^{bc}	ND	2.82 ^c	4.77 ^{ab}	4.00 ^{bc}	3.24 ^c	5.66 ^a	3.86 ^{bc}	3.11 ^c
E3	28.88	Phenethyl acetate	NIST, RI	1934	250 ²	Floral, rose, sweet	ND	ND	ND	ND	58.48 ^a	ND	ND	ND	ND
		Acetate esters					8.08 ^{bc}	5.10 ^{bc}	2.82 ^c	4.77 ^{bc}	62.48 ^a	3.24 ^c	5.66 ^{bc}	9.07 ^b	3.11 ^c
E4	12.07	Ethyl hexanoate	NIST, RI	1188	5 ¹	Flowery, fruity	ND	ND	40.08 ^a	26.77 ^b	28.50 ^b	ND	ND	ND	ND
E5	15.01	Ethyl hexenoate	3- NIST, RI	1278			ND	5.16 ^b	8.51 ^a	4.10 ^b	4.93 ^b	3.55 ^b	ND	5.47 ^b	ND
E6	16.7	Ethyl lactate	NIST, RI	1339	14000 ¹⁰	Fruit	13.91 ^{abc}	17.94 ^{ab}	15.52 ^{abc}	10.42 ^c	11.85 ^{bc}	14.25 ^{abc}	15.99 ^{abc}	19.57 ^a	15.07 ^{abc}
E7	19.68	Ethyl octanoate	NIST, RI	1461	2 ¹	Fruity, floral	ND	ND	96.58 ^a	54.30 ^{bc}	73.75 ^b	ND	ND	37.72 ^c	ND
E8	21.01	Ethyl octenoate	7- NIST, RI	1520			ND	ND	ND	ND	6.57 ^a	ND	ND	ND	ND
E9	22.94	Ethyl DL-leucate	NIST, RI	1612			ND	ND	ND	ND	17.94 ^a	ND	ND	ND	ND
E10	25.76	Ethyl benzoate	NIST, RI	1759	53 ⁵	Sweet, medicinal	145.41 ^{cd}	189.29 ^{bc}	67.66 ^e	216.56 ^b	178.69 ^{bc}	73.70 ^e	281.22 ^a	181.47 ^{bc}	91.14 ^{de}
E11	26.35	Ethyl decenoate	9- NIST, RI	1790	100 ⁶	Fruity	ND	ND	13.69 ^b	24.98 ^a	ND	ND	ND	ND	ND
E12	28.3	Ethyl phenylacetate	NIST, RI	1899	650 ⁵	Fruit, sweet	11.54 ^{ab}	12.15 ^{ab}	11.68 ^{ab}	15.30 ^{ab}	15.77 ^a	10.98 ^b	12.76 ^{ab}	11.11 ^b	12.20 ^{ab}
E13	29.35	Ethyl dodecanoate	NIST, RI	1962	5900 ⁵	Sweet, medicinal	5.01 ^d	7.99 ^{bc}	10.39 ^{ab}	12.23 ^a	5.77 ^{cd}	5.76 ^{cd}	4.32 ^{de}	2.21 ^e	6.38 ^{cd}
E14	30.15	Ethyl hydrocinnamate	NIST, RI	>2000			1.67 ^a	ND	ND	ND	1.69 ^a	ND	ND	ND	ND
E15	34.33	Ethyl cinnamate	NIST, RI	>2000	1.1 ⁴	Honey, cinnamon	92.43 ^c	143.15 ^a	117.59 ^{abc}	110.38 ^{bc}	133.05 ^{ab}	113.36 ^{abc}	116.16 ^{abc}	95.71 ^c	102.70 ^{bc}

E16	38.25	Ethyl hydrogen succinate	NIST, RI	>2000			ND	ND	ND	7.75 ^a	6.36 ^{bc}	3.08 ^d	5.92 ^c	7.61 ^{ab}	7.56 ^{ab}	
		Ethyl esters					269.96 ^c	375.68 ^b	381.70 ^b	482.79 9 ^a	484.86 ^a	224.68 ^c	436.37 ^{ab}	360.87 ^b	235.05 ^c	
E17	28.06	Methyl salicylate	NIST, RI	1886	40 ⁷	Sweet, wintergreen	ND	ND	ND	29.11 ^a	18.60 ^b	ND	ND	1.02 ^c	ND	
E18	35.61	Methyl hexadecanoate	NIST, RI	>2000			ND	ND	ND	ND	4.37 ^a	ND	ND	ND	ND	
E19	40.09	Methyl linoleate	NIST, RI	>2000			ND	ND	1.08 ^a	ND	ND	ND	ND	ND	ND	
E20	34.52	γ -Decalactone	NIST, RI	>2000			5 ⁵	Peach, fat	ND	ND	ND	ND	ND	66.17 ^a	ND	ND
E21	35.28	δ -Decalactone	NIST, RI	>2000			100 ⁵	Coconut	ND	ND	4.27 ^a	ND	ND	2.10 ^c	3.04 ^b	1.52 ^c
E22	37.99	γ -Dodecalactone	NIST, RI	>2000					3.42 ^b	ND	4.30 ^a	ND	ND	ND	ND	ND
E23	38.71	δ -Dodecalactone	NIST, RI	>2000					ND	ND	ND	ND	ND	ND	ND	1.55 ^a
E24	26.09	Diethyl succinate	NIST, RI	1777	200000 ⁴	Wine, fruit	405.90 ^b	398.24 ^b	373.10 ^b	431.77 ^b	583.87 ^a	412.60 ^b	409.54 ^b	425.27 ^b	403.67 ^b	
		Alcohols (11)					1549.20 ^a	1479.05 ^a	1736.78 ^a	1734.99 ^a	1694.36 ^a	1647.42 ^a	1715.07 ^a	1590.62 ^a	1886.16 ^a	
A1	6.48	Isobutyl alcohol	NIST, RI	1056	40000 ⁸	Alcohol, winelike	23.57 ^b	2.31 ^c	22.53 ^b	ND	29.81 ^{ab}	1.78 ^c	3.37 ^c	6.68 ^c	36.37 ^a	
A2	8.56	Butyl alcohol	NIST, RI	1101	150000 ⁸	Fruit	ND	ND	16.09 ^a	9.51 ^b	8.77 ^b	ND	ND	ND	ND	
A3	11.63	Isopentyl alcohol	NIST, RI	1179	30000 ¹	Whiskey, nail polish	383.37 ^b	404.80 ^b	560.08 ^a	395.49 ^b	352.70 ^b	432.65 ^{ab}	442.09 ^{ab}	478.53 ^{ab}	460.14 ^{ab}	
A4	16.94	Hexyl alcohol	NIST, RI	1349	8000 ¹	Green, fruity	31.85 ^c	37.78 ^{bc}	47.45 ^a	32.60 ^c	30.40 ^c	42.31 ^{ab}	37.52 ^{bc}	30.84 ^c	33.51 ^{bc}	
A5	23.25	Octyl alcohol	NIST, RI	1628	200 ⁵	Moss, nut, mushroom	16.10 ^a	14.30 ^{ab}	12.80 ^{abc}	ND	ND	11.64 ^{bc}	12.22 ^{abc}	10.26 ^c	ND	
A6	23.82	2,3-Butanediol	NIST, RI	1658	120000 ¹¹	Cream, floral, fruit	5.60 ^{de}	17.19 ^c	29.84 ^b	6.58 ^{de}	50.26 ^a	8.56 ^d	ND	25.62 ^b	11.71 ^{cd}	
A7	25.68	Nonyl alcohol	NIST, RI	1755	600 ³	Fat, green	ND	ND	2.73 ^b	6.90 ^a	5.62 ^c	ND	ND	ND	ND	
A8	30.04	Benzyl alcohol	NIST, RI	>2000			200000 ⁴	Sweet, flower	105.19 ^{bc}	140.95 ^{abc}	121.07 ^{abc}	144.79 ^{ab}	167.07 ^a	115.69 ^{bc}	122.12 ^{abc}	94.27 ^c
A9	30.66	Phenethyl alcohol	NIST, RI	>2000			10000 ¹¹	Rose, pollen, perfume	977.48 ^a	853.70 ^a	924.19 ^a	1139.11 ^a	1039.56 ^a	1029.24 ^a	1097.74 ^a	937.32 ^a
A10	32.94	Hydrocinnamyl alcohol	NIST, RI	>2000				6.05 ^b	ND	ND	ND	ND	5.54 ^b	ND	ND	
														8.66 ^a		

A11	30.37	α -Ionol	NIST, RI	>2000			ND	8.01 ^b	ND	ND	10.16 ^a	ND	ND	7.09 ^b	ND
		Acids (8)					622.89 ^{bc}	626.92 ^{bc}	856.08 ^{ab}	594.28 ^c	597.73 ^c	938.19 ^a	495.78 ^c	588.29 ^c	672.57 ^{bc}
C1	20.53	Acetic acid	NIST, RI	1497	200000 ¹	Sour	104.12 ^{abc}	153.30 ^a	100.08 ^{ab}	97.71 ^{abc}	56.09 ^c	134.95 ^{ab}	98.24 ^{abc}	134.75 ^{ab}	79.49 ^{bc}
C2	29.52	Hexanoic acid	NIST, RI	1972	420 ⁴	Cheese, fatty	137.71 ^{bc}	ND	202.69 ^{ab}	106.79 ^c	106.38 ^c	242.50 ^a	ND	118.44 ^c	180.91 ^{ab}
C3	33.23	Octanoic acid	NIST, RI	>2000	500 ⁴	Cheese, fatty acid	232.87 ^c	236.85 ^c	359.35 ^a	205.34 ^c	248.90 ^{bc}	330.02 ^{ab}	253.32 ^{bc}	199.63 ^c	224.88 ^c
C4	36.56	Decanoic acid	NIST, RI	>2000	1000 ⁸	Rancid, fat	111.03 ^a	156.81 ^a	167.22 ^a	114.10 ^a	144.09 ^a	173.51 ^a	117.51 ^a	107.74 ^a	116.80 ^a
C5	37.48	9-Decenoic acid	NIST, RI	>2000			15.08 ^b	ND	ND	22.09 ^a	7.18 ^c	ND	19.88 ^{ab}	6.93 ^c	ND
C6	39.12	Benzoic acid	NIST, RI	>2000	1000 ²	Urine	18.14 ^b	34.68 ^a	ND	ND	28.66 ^a	18.75 ^b	ND	20.80 ^b	33.13 ^a
C7	39.58	Dodecanoic acid	NIST, RI	>2000	1000 ³	Metal	ND	45.29 ^a	26.73 ^c	39.28 ^{ab}	ND	35.05 ^{abc}	ND	ND	32.70 ^{bc}
C8	43.05	Tetradecanoic acid	NIST, RI	>2000	10000 ⁵	Burnt, cheese, harsh	3.95 ^c	ND	ND	8.99 ^a	6.42 ^b	3.42 ^c	6.84 ^{ab}	ND	4.65 ^{bc}
		Aldehydes (4)					390.94 ^a	244.98 ^b	163.76 ^c	88.80 ^d	199.07 ^{bc}	4.51 ^e	72.97 ^d	58.22 ^d	56.90 ^d
L1	21.63	Decanal	NIST, RI	1550	1.25 ²	Soap, orange peel	202.21 ^a	174.25 ^a	5.34 ^b	ND	4.49 ^b	3.51 ^b	ND	10.01 ^b	9.69 ^b
L2	22.27	Benzaldehyde	NIST, RI	1580	350 ⁴	Almond, burnt sugar	107.84 ^c	70.73 ^d	158.41 ^b	78.15 ^d	183.89 ^a	ND	61.31 ^{de}	48.22 ^e	45.46 ^e
L3	25.32	<i>m</i> -Tolualdehyde	NIST, RI	1736			53.92 ^a	ND	ND	10.65 ^b	10.69 ^b	ND	10.57 ^b	ND	ND
L4	32.64	Coconut aldehyde	NIST, RI	>2000			26.96 ^a	ND	ND	ND	ND	1.00 ^b	1.09 ^b	ND	1.76 ^b
		Ketones (3)					13.48 ^c	106.30 ^{ab}	108.91 ^{ab}	ND	105.31 ^{ab}	121.83 ^a	ND	ND	94.19 ^b
K1	29.11	Dihydro- β -ionone	NIST, RI	1948			13.48 ^a	ND	17.11 ^a	ND	ND	16.05 ^a	ND	ND	12.81 ^a
K2	31.07	β -Ionone	NIST, RI	>2000	0.09 ⁴	Seaweed, violet, flower	ND	106.30 ^a	91.80 ^{ab}	ND	93.83 ^{ab}	105.78 ^a	ND	ND	81.38 ^b
K3	32.16	3,4-Dehydro- β -ionone	NIST, RI	>2000			ND	ND	ND	ND	11.48 ^a	ND	ND	ND	ND
		Phenols (1)					25.51 ^a	ND	ND	ND	32.18 ^a	28.28 ^a	33.52 ^a	28.33 ^a	30.74 ^a
P1	34.94	Eugenol	NIST, RI	>2000	6 ⁴	Clove, honey	25.51 ^a	ND	ND	ND	32.18 ^a	28.28 ^a	33.52 ^a	28.33 ^a	30.74 ^a

Terpenes (2)											
T1	23.04	Linalool	NIST, RI	1617	3 ⁵	Flower, lavender	140.90 ^a	152.88 ^a	36.01 ^b	170.55 ^a	171.11 ^a
T2	26.45	α -Terpineol	NIST, RI	1795	100 ¹	Citrus	36.64 ^{ab}	35.23 ^{ab}	36.01 ^{ab}	41.28 ^{ab}	44.87 ^a
		Total volatiles					104.26 ^a	117.65 ^a	ND	129.27 ^a	126.24 ^a
							3430.28 ^a	3389.15 ^a	3668.81 ^a	3537.06 ^a	3953.93 ^a
										112.23 ^a	115.27 ^a
										3528.94 ^a	3393.16 ^a
											3200.69 ^a
											3518.06 ^a

^a Data are the means \pm standard deviation (n=3)

^b Values in the same row with different letters indicate significant differences ($P < 0.05$) by Duncan's tests

^c RI, Retention indices, were determined by using n-alkanes C₈-C₂₀

^d OAVs, Odor activity values, were calculated from divided volatile constituent concentration by volatiles odor threshold

^e Odor description reported in the <http://www.flavornet.org/flavornet.html> and <http://www.thegoodsentscompany.com/search2.html>

^f ND, not detected

^g Column type: HP-Innowax (30 m \times 0.25 mm \times 0.25 μ m, Agilent Technologies)

References

- 1 H. Guth, Quantitation and sensory studies of character impact odorants of different white wine varieties, *J. Agr. Food Chem.*, 1997, 45, 3027-3032. (Thresholds were in a water/ethanol (90/10) solution.)
- 2 L. Cullere, A. Escudero, J. Cacho, & V. Ferreira, Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines, *J. Agr. Food Chem.*, 2004, 52(6), 1653-1660. (Thresholds were in 10% ethanol/water mixture containing 5 g/L tartaric acid at pH 3.4.)
- 3 C. T. Peng, Y. Wen, Y. S. Tao, & Y. Y. Lan, Modulating the formation of Meili wine aroma by prefermentative freezing process, *J. Agr. Food Chem.*, 2013, 61, 1542-1553. (Thresholds were in 12% ethanol/water mixture containing 5 g/L tartaric acid at pH 3.2.)
- 4 V. Ferreira, R. Lopez, & J. F. Cacho, Quantitative determination of the odorants of young red wines from different grape varieties, *J. Sci. Food Agric.*, 2000, 80(11), 1659-1667. (Thresholds were in a synthetic wine, 11% ethanol, v/v, 7 g/L glycerine, 5 g/L tartaric acid, pH 3.4.)
- 5 J. A. Pino, & O. Queris, Analysis of volatile compounds of mango wine, *Food Chem.*, 2011, 125(4), 1141-1146. (Thresholds were measured in the laboratory, in 11% ethanol/water mixture.)
- 6 Y. S. Tao, & L. Zhang, Intensity prediction of typical aroma characters of Cabernet Sauvignon wine in Changli County (China), *LWT*, 2010, 43, 1550-1556. (Thresholds were calculated in 9.72 g/100 g ethanol/water mixture containing 5 g/L tartaric acid at pH 3.2.)
- 7 R. G. Buttery, R. M. Seifert, D. G. Guadagni, & L. C. Ling, Characterization of some volatile constituents of bell peppers, *J. Agr. Food Chem.*, 1969, 17(6), 1322-1327. (Thresholds were in ethanol/water mixture.)
- 8 P. X. Etievant, "Wine," in *Volatile Compounds of Food and Beverages*, ed. H. Maarse, New York, NY: Dekker, 1991, 483-546. (Thresholds were in 12% ethanol/water mixture.)
- 9 X. C. Wang, A. H. Li, M. Dizy, N. Ullah, W. X. Sun, & Y. S. Tao, Evaluation of aroma enhancement for "Ecolly" dry white wines by mixed inoculation of selected *Rhodotorula mucilaginosa* and *Saccharomyces cerevisiae*, *Food Chem.*, 2017, 228, 550-559. (Thresholds were measured in the laboratory, in 11% ethanol/water mixture at pH 3.2.)
- 10 H. Li, *Wine tasting*, China Science Press, Beijing, 2006, 29-106. (Thresholds were calculated in a 12% ethanol/water mixture.)

11 R. Lopez, E. Ezpeleta, I. Sanchez, J. Cacho, & V. Ferreira, Analysis of the aroma intensities of volatile compounds released from mild acid hydrolysates of odorless precursors extracted from Tempranillo and Grenache grapes using gas chromatography-olfactometry. *Food Chem.*, 2004, 88, 95e103. (Thresholds were in a synthetic wine, 11% ethanol, v/v, 7 g/L glycerine, 5 g/L tartaric acid, pH 3.4.)