Supplementary Information

Enhanced Electrochemical Activity of MgO Nanoparticles for High-Performance Supercapacitors

Megha Goyal,^a Sarvesh Kumar Pandey,^{b*} and Nitu Bhatnagar^{a*}

^aDepartment of Chemistry, Manipal University Jaipur, Jaipur – 303007, Rajasthan (India) ^bDepartment of Chemistry, Maulana Azad National Institute of Technology Bhopal, Bhopal -462003, Madhya Pradesh (India)

Corresponding Authors' Email E-mail: <u>sarvesh@manit.ac.in</u> <u>niturbhatnagar@gmail.com</u>

Parameter	Calculated Value
Dipole moment (Debye)	7.3
Electronic energy (Hartree)	-4131.404
$E_{HOMO} (eV)$	-4.068
E _{LUMO} (eV)	-10.639
Ionization potential, $I = -E_{HOMO}$	4.068
Electron affinity, $A = E_{LUMO}$	10.639
Energy gap, $\Delta E = E_{LUMO} - E_{HOMO}$	-6.571
Electronegativity, $\chi = (I + A)/2$	7.353
Hardness, $\eta = (I-A)/2$	-3.285
Softness (eV ⁻¹), $\sigma = 1/\eta$	-0.304
Electrophilicity, $\omega = \mu^2/2\eta$	-8.229
Nucleophilicity, $\varepsilon = 1/\omega$	-0.121
Total energy change of back-donation, $\Delta E_{b-d} = -\eta/4$	0.821
Electron accepting power, $\omega^+ = (I + 3A)^2/16(I - A)$	-12.317
Electron donating power, $\omega^- = (3I + A)^2/16(I - A)$	-4.963
Net electrophilicity, $(\Delta \omega \pm) = \omega^+ + \omega^-$	-18.279

Table S1. Some Selected and Useful Parameters of the MgONPs using the DFT Approach

 Table S2. Energy and Power Density at Different Current Densities for the 3-Electrode Method

Current density (A/g)	Energy density (Wh/kg)	Power density (W/kg)
0.1	1.38	49.4
0.2	1.08	73.4
0.3	1.04	98.2
0.6	0.67	196.4
1	0.55	293.1
1.3	0.48	394.9
1.6	0.42	486.1
2.6	0.31	773.5
3.3	0.27	966.9

Figure S1. Representation of a) Optimized Structure, b) HOMOs, and LUMOs of the MgONPs

Figure S2. (a) Crystal structure of MgO, showing Mg (green) and O (red) atoms in a cubic arrangement. (b) Radar chart of Mulliken charges for Mg and O atoms in the structure, with

Figure S3. Individual CV curves of MgONPs electrodes at different sweep rates (10 to 200 mVs^{-1})

Figure S4. Individual GCD curves of MgONPs electrodes at different current densities (0.1

to 1.3 A/g)