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I. Enzymes expression and purification

53 kDa

36 kDa

Fig S1. SDS-PAGE analysis of transaminases. A) 12 % SDS-PAGE analysis of purified (S)-selective
transaminases. Lane 0: molecular weight markers, Lane 1: purified Cvi-TA (WT) (53 kDa), Lane 2:
purified F88Y variant, Lane 3: purified F88Q variant, Lane 4: purified R416N variant, Lane 5:
purified R416A variant, Lane 6: purified R416K variant, Lane 7: purified K288A variant, Lane 8:
purified TA-10 (WT) (49 kDa), Lane 9: purified 3HMU-TA (WT) (51 kDa). B) 12 % SDS-PAGE analysis
of purified (R)-selective transaminases. Lane 0: molecular weight markers, Lane 1: purified Asp-
TA (WT) (37 kDa), Lane 2: purified Y58A variant, Lane 3: purified K179A variant, Lane 4: purified
W183A variant, Lane 5: purified T273A variant, Lane 6: purified R126A variant, Lane 7: purified
F113Y variant, Lane 8: purified F113Q variant. Molecular weights of transaminases were
calculated from expasy.org.
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Il. Screening for transaminases
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Fig. S2 Formation of dark precipitation indicating desired transaminase activities. The reactions
of 3HMU-TA (A) and (B) TA10 and 2-keto-glucose were incubated at 30 °C in a shaker incubator
at 220 rpm overnight.

The results of HTS using the diamine assay, which included also the (S)-selective transaminases
3HMU and TA10, indicated that the negative control reactions for both transaminases containing
a sugar substrate and transaminase (without P20) produced more dark precipitation compared
to the negative control reaction of Cvi-TA (Fig 2A in the main text). Therefore, only Cvi-TA and
Asp-TA were used as candidate enzymes for further study of mannosamine and galactosamine
synthesis. The results of the second screening in one-pot synthesis using LC-MS/MS detection
showed that mannosamine and galactosamine were formed in Asp-TA and Cvi-TA reactions,
respectively. (Fig S3).
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lll. Tunnel Analysis and Molecular Docking

a. Tunnels and Molecular Docking in Asp-TA

AN

A)

Radius (A)

= N w
= NN W
1 1

o
o

0 2 4 6 8
Distance from NZ of Lys-179 (A)

D)

LEU-181
MET-52

HIS-53

ARG-126

Fig. S3 Tunnel and Molecular Docking in Asp-TA. A) Plot indicating the radius and distance of a

tunnel in Asp-TA with 2-keto glucose. The red point was chosen as the center of the docking box.

B) The main tunnel in Asp-TA is shown in transparent surface and residues within 3 A from the

tunnel are shown. Chain A and B are shown in green and blue, respectively with PMP (dark green)
binding. Residues within 3 A of the tunnel are from both chain A (Tyr-58, Val-60, Phe-113, Glu-
115, lle-146, Trp-147, Val-148, Lys-179, Leu-181, Trp-183, Ser-214, Gly-215, Phe-216, Thr-273,
Thr-274, Ala-275, and PLP) and Chain B (Glu-49, Met-52, His-53, and Arg-216). The binding mode
of 2-keto-glucose (yellow) (C) and planar quinonoid (D) in Asp-TA. Residues within 5 A from 2-
keto-glucose and planar quinonoid are shown. Chain A and B are shown in green and blue,

respectively.



Results from the CAVER Analyst identified a tunnel generated for 2-keto-glucose binding to Asp-
TA. The plot illustrating the distance and radius of the tunnel relevant to 2-keto-glucose binding
is shown in Fig. S4A. The residues within 3 A of Asp-TA tunnel are from both Chain A and Chain B
(Fig. S4B). Molecular docking of 2-keto-glucose in Asp-TA suggested that PMP could attack the re
face of 2-keto-glucose to form the corresponding planar quinonoid (Fig. S3C). K179 donates a
hydrogen bond (2.2 A) to O1 of sugar. R126 donates two hydrogen bonds (2.1 and 2.3 A,
respectively) to 03 and 04 of the sugar. H53 accepts a hydrogen bond (2.4 A) from 06 of the
sugar. For 2-keto-galactose, O4 remains at the axial position. We proposed that O4 could interact
with R126 or H53.

Molecular docking of the planar quinonoid in Asp-TA showed that the docked planar quinonoid
overlapped with PLP in the crystal structure (Fig. S4D). The sugar moiety of the planar quinonoid
is stabilized by hydrogen bonds. R126 donates hydrogen bonds to both 01 (2.3 and 1.9 A) and
03 (2.8 and 2.6 A) of the sugar moiety. H53 accepts a hydrogen bond (2.6 A) from 04 of the sugar
moiety. E115 accepts a hydrogen bond (3.9 A) from 06 of sugar moiety. For the structure of the
planar quinonoid of 2-keto-galactose-PMP complex, the 04 remains at the axial position. We
proposed that 04 could interact with H53 or E115.

This study proposed that K179 could only donate a proton to the top face of the prochiral imine

(4.0 A). The proton can be donated to the equatorial position. Thus, the axial amino sugar can be
formed in Asp-TA, suggesting that Asp-TA prefers to catalyze axial transamination reaction.
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b. Tunnels and Molecular Docking in Cvi-TA
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Fig.54 Tunnel and Molecular Docking in Cvi-TA. A) Plot indicating the radius and distance of a
tunnel in Cvi-TA with 2-keto glucose. The red point was chosen as the center of the docking box.
B) The main tunnel in Cvi-TA is shown in transparent surface and residues within 3 A from the
tunnel are shown. Chain A and B are green and blue, respectively with PMP (dark green) binding.
Residues within 3 A of tunnel are from both Chain A (Phe-22, Met-56, Leu-59, Trp-60, Tyr-153,
Met-166, Tyr-168, Met-169, Gly-230, Ala-231, Gly-232, lle-262. Lys-288, Arg-416, Cys-418, and
PLP) and Chain B (Phe-88, Phe-89, Gly-319, and Thr-321). The binding mode of 2-keto-glucose
(yellow) (C) and planar quinonoid (D) in Cvi-TA. Residues within 5 A from 2-keto-glucose and
planar quinonoid are shown. Chain A and B are green and blue, respectively.

The results of the CAVER Analyst identified tunnels in Cvi-TA (Fig. S5) which is relevant to 2-keto-
glucose binding (shown in Fig. S5A). The residues within 3 A of Cvi-TA tunnels are from Chain A
and Chain B (Fig. S5B). Molecular docking of 2-keto-glucose in Cvi-TA resulted in nine binding
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modes. We selected the 2-keto-glucose binding mode shown in Fig. S5C because in this mode,
PMP could attack the re-face of 2-keto-glucose to form the corresponding planar quinonoid.
Y153 accepts a hydrogen bond (2.9 A) from 01 of sugar. W60 donates a hydrogen bond (2.1 A)
to 03 of sugar. R416 interacts with 04 and 06 (2.7 A) of sugar. For 2-keto-galactose, 04 remains
at the axial position. We proposed that 04 could interact with R416.

Molecular docking of a planar quinonoid in Cvi-TA resulted in twenty binding modes. We selected
the mode shown in Fig. S5D because the docked planar quinonoid is overlapped with PLP in the
crystal structure. The sugar moiety of the planar quinonoid is stabilized by hydrogen bonds
(Figure S5D). T321 accepts a hydrogen bond (2.0 A) from 01 of sugar moiety. W60 donates a
hydrogen bond (2.1 A) to O3 of sugar moiety. R416 interacts with O4 and 06 (2.6 A) of the sugar
moiety. For the structure of the planar quinonoid of 2-keto-galactose-PMP complex, O4 remains
at the axial position. We proposed that 04 could interact with R416.

Our analysis proposed that K288 could only donate a proton to the bottom face of the pro-chiral
imine (2.6 A). The proton is donated to the axial position. Thus, the equatorial amino sugar can
be formed in Cvi-TA, suggesting that Cvi-TA can catalyze equatorial transamination reaction.
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Table S1. Location of residues around the 2-keto-glucose and planar quinonoid binding sites

in Asp-TA
Residues located close to located c.Iose t?
2-keto-glucose planar quinonoid
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Residues located close to located c.Iose t?
2-keto-glucose planar quinonoid
<l
w183 V4 |
Table S2. Location of residues around the 2-keto-glucose and planar quinonoid binding

sites in Cvi-TA
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IV. Enzyme engineering by site-directed mutagenesis

Table S3. Primers designed for the site-directed mutagenesis of Cvi-TA and Asp-TA.

Primers Sequences (5'->3')

F_R416A_Cvi CAATAATCTGATTATGGCAGCCTGTGGTG

R_R416A_Cvi CACCACAGGCTGCCATAATCAGATTATTG

F_R416K_Cvi CAATAATCTGATTATGAAAGCCTGTGGTG

R_R416K_Cvi CACCACAGGCTTTCATAATCAGATTATTG

F_R416N_Cvi CAATAATCTGATTATGAATGCCTGTGGTG

R_R416N_Cvi CACCACAGGCATTCATAATCAGATTATTG

F_K288A_Cvi GTTTACCGCAGCCGCAGGCTTATCTTCT

R_K288A_Cvi AGAAGATAAGCCTGCGGCTGCGGTAAAC

F_F88Q_Cvi GCCGTTTTATAATACCCAGTTTAAAACCACCC

R_F88Q_Cvi GGGTGGTTTTAAACTGGGTATTATAAAACGGC

F_F88Y_Cvi GCCGTTTTATAATACCTATTTTAAAACCACCC

R_F88Y_Cvi GGGTGGTTTTAAAATAGGTATTATAAAACGGC

F_Y58A_Asp GTGATCTGACCGCGGATGTTATTAGCG

R_Y58A_Asp CGCTAATAACATCCGCGGTCAGATCAC

F_K179A_Asp CATTTGATCCGACCATTGCAAACCTGCAGTG

R_K179A_Asp CACTGCAGGTTTGCAATGGTCGGATCAAATG

F_W183A_Asp | CATTAAAAACCTGCAGGCAGGTGATCTGAC

R_W183A_Asp | GTCAGATCACCTIGCCTGCAGGTTTTTAATG




Primers Sequences (5'->3')
F T273A_Asp | GAAATTTTTATGTGTGCAACGGCCGGCG
R_T273A_Asp | CGCCGGCCGTTGCACACATAAAAATTTC
F R126A_Asp | GACCGGTGTTGCAGGTTCTAAAC
R_R126A_Asp | GTTTAGAACCTGCAACACCGGTC
F F113Q_Asp | GCATTCGTGATGCGCAGGTGGAAGTTATTG
R_F113Q_Asp CAATAACTTCCACCTGCGCATCACGAATGC
F_F113Y _Asp GCATTCGTGATGCGTATGTGGAAGTTATTG
R_F113Y_Asp CAATAACTTCCACATACGCATCACGAATGC
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V. Mannosamine and galactosamine synthesis utilizing P20 and transaminase

a. Reaction optimization for amino sugars synthesis
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Fig. S5 Amount of mannosamine formed at various ratios of glucose: (R)-PEA concentrations in
the reaction of T273A (green line) variant compared to those of Asp-TA (gray line).
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Fig. S6 Amount of galactosamine formed at various ratios of galactose: S-PEA concentrations in
the reaction of the F88Y (blue line) variant compared to that of Cvi-TA (gray line).
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b. Amino sugars synthesis via one-pot reaction of engineered P20 and transaminase
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Fig. S7 Amino sugars synthesis via one-pot reaction of engineered P20 and transaminase.
Mannosamine (A), galactosamine (B) and glucosamine (C) synthesized from multiple turnovers
of P20 and transaminase variants. Percentage of sugar substrate conversion is shown as green
squares while red circles represent the percentage of amino sugars formed. D- F) Peak areas of
2-keto-sugars intermediate formation are shown as black circles while those of sugar acid
formation are shown as blue circles. The proposed mechanism of mannosamine (G) and
galactosamine (H) synthesis from multiple turnovers of P20 and transaminase.
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VI. LC-MS/MS analyses

Table S4. MS Conditions for measurement of relevant compounds in mannosamine and
galactosamine synthesis

Precursor| Product |Transition for| Collision
Compounds ion ion MRM energy Mode
(m/2) (m/2) condition (eV)

Glucose 179 59, 89 179:89 3 Negative
Galactose 179 59, 89 179:89 2 Negative
Mannosamine 180 59, 72 180:72 15 Positive
Galactosamine 180 59, 72 180:72 15 Positive
Glucosamine 180 59, 72 180:72 15 Positive
2-keto-glucose 177 |89,99, 117 177:99 8 Negative
2-keto-galatose 177 |89, 99, 117 177:99 8 Negative
2-keto-gluconic acid 193 - - - Negative
2-keto-galactonic acid 193 - - - Negative
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Product analysis of one-pot, multiple turnover reactions of engineered P20 and transaminase
by LC-MS/MS
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Figure S8. Product analysis of one-pot, multiple turnover reactions of engineered P20 and
transaminase by LC-MS/MS. A) Product analysis of multiple turnover reactions of P20 (C170A)
and Asp-TA (T273A) to convert D-glucose to mannosamine by LC-MS/MS analysis. Total ion
chromatograms show depletion of glucose (eluted at 51 min, transition 179:119 m/z) and
formation of 2-keto-glucose (eluted at 26 min, transition 177:99 m/z) and mannosamine (eluted
at 27 min, transition 180:72 m/z) over time. Standard mannosamine (eluted at 27 min, transition
180:72 m/z) are shown as references. B) Product analysis of multiple turnover reactions of P20
(T169G) and Cvi-TA (F88Y) to convert galactose to galactosamine by LC-MS/MS analysis. Total ion
chromatograms show depletion of galactose (eluted at 51 min, transition 179:119 m/z) and
formation of 2-keto-galactose (eluted at 26 min, transition 177:99 m/z) and galactosamine (eluted
at 28 min, transition 180:72 m/z) over time. Standard galactosamine (eluted at 28 min, transition
180:72 m/z) are shown as references. C) Product analysis of multiple turnover reactions of P20
(C170A) and Cvi-TA (F88Y) to convert glucose to glucosamine by LC-MS/MS analysis. Total ion
chromatograms show depletion of glucose (eluted at 51 min, transition 179:119 m/z) and
formation of 2-keto-glucose (eluted at 26 min, transition 177:99 m/z) and glucosamine (eluted at
27 min, transition 180:72 m/z) over time. Standard glucosamine (eluted at 27 min, transition
180:72 m/z) are shown as references.
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Sugar acid formation from multiple turnover reactions of engineered P20 and transaminase
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Figure S9. Sugar acid formation from multiple turnover reactions of engineered P20 and
transaminase. Total ion chromatograms show formation of sugar acid (193 m/z) at various time
points of multiple turnovers of P20 and transaminases. A) Formation of 2-ketogluconic acid
eluted at 25 min. B) Formation of 2-ketogalactonic acid eluted at 24.5 min.
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VIIl.  Analytical results of 9-fluorenylmethoxycarbonyl-galactosamine
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Figure $10. HPLC chromatogram of Fmoc-galactosamine. Fmoc-galactosamine analyzed was from
(A) derivatization of standard galactosamine and (B) derivatization of galactosamine from the
reaction of engineered P20 and transaminase
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Figure S11. Mass spectra of Fmoc-galactosamine. A) The mass spectrum of purified Fmoc-
galactosamine from the reaction of engineered P20 and transaminase shows the formation of
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[M+Na] *at 424.5 m/z. B) This peak was also found in a mass spectrum of Fmoc-galactosamine
obtained from the reaction of the standard galactosamine.
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