Supplementary Information

Degradation of bisphenol A during heat-activated peroxodisulfate treatment: Kinetics, mechanism, and transformation products

Chunyu Wang^a, Juan Yan^a, Jia Yuan^a, Ling Zhang^a, Wei Qian^b, Guochen Bian^b, Yunhong Song^a, Xu Gao^{a, *}, Han Mao^{c, **}

^a Chaohu Regional Collaborative Technology Service Center for Rural Revitalization of Anhui Province, School of Biological and Environmental Engineering, Chaohu University, Hefei, 238000, China

^b Anhui Green Energy Technology Institute Co., Hefei, 238088, China

^c South China Institute of Environment Sciences, Ministry of Ecology and

Environment, Guangdong, 510655, China

*Corresponding author: E-mail: gaoxun@chu.edu.cn

**Co-Corresponding author: E-mail: maohan@scies.org

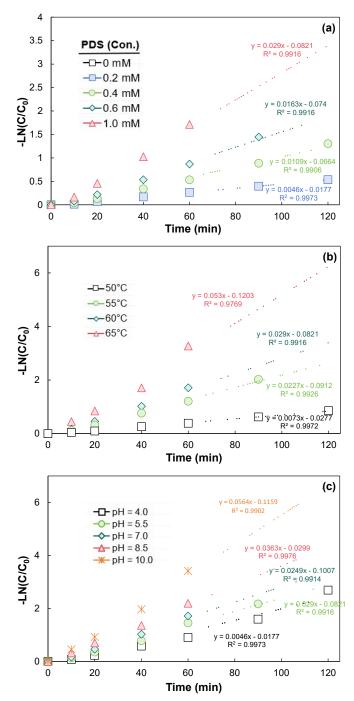
Telephone: +86-0551-82369184

Text S1. Chemicals.

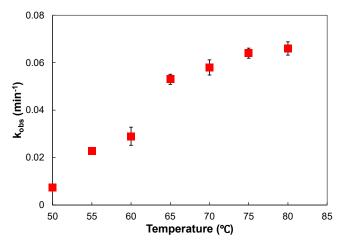
Bisphenol A (BPA, \geq 98.5%), sodium peroxydisulfate (Na₂S₂O₈, \geq 99.0%), sodium hydroxide (NaOH, \geq 98.5%), and sodium sulfite (Na₂SO₃, \geq 99.0%) were purchased from Aladdin Chemistry Co. Ltd. (Shanghai, China). Sodium bicarbonate (NaHCO₃, \geq 99.0%), sodium nitrate (NaNO₃, \geq 98.0%), potassium dihydrogen phosphate (KH₂PO₄, \geq 98.5%), and sodium chloride (NaCl, \geq 99.5%) were obtained from Macklin Biochemical Co., Ltd. (Shanghai, China). Methanol (MeOH), tert-butanol (TBA), isopropanol (IPA), and formic acid were of chromatographic grade and obtained from Sigma-Aldrich (St. Louis, MO, USA). Suwannee river NOM (#1R101F) from was supplied by the International Humic Substance Society (Minnesota, USA). All experimental solutions were prepared by ultra-pure water (18.25 MΩ/cm). Balanced Reverse Polymer (BRP) cartridges (60 mg/3 cm³, #00522-20009) were obtained from Welch Materials. Inc.

Text S2. SPE procedures.

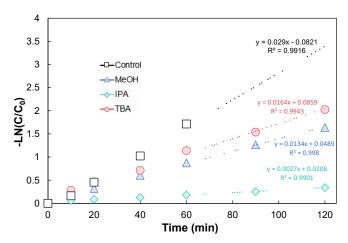
Immediately after incubation, the reaction solutions of BPA were adjusted to pH < 2 by 98% sulfuric acid before SPE. BRP cartridges were conditioned with 5 mL MeOH and 5 mL water (pH 3) sequentially, followed by sample loading. Approximately 50 mL sample was loaded onto each cartridge, then rinsed with 2 mL water and 2 mL 3% MeOH-water and blown to dryness under vacuum. The cartridge was then eluted with 2 mL MeOH.

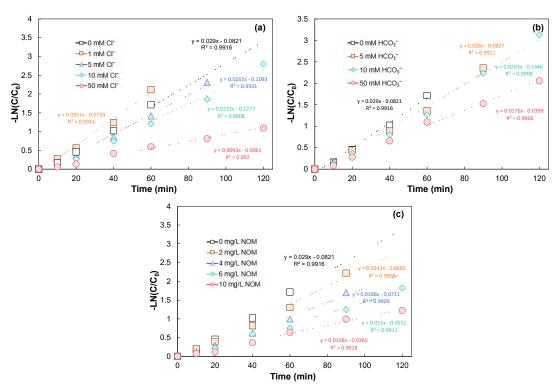

Text S3. Instrumental setup of HRMS.

Transformation products of BPA in the samples were identified by a Thermo Fisher Scientific Q-Exactive HRMS (Waltham, MA, USA) equipped with an ZORBAX SB-C18 column (Agilent, 5 μ m, 2.1 \times 100 mm). Elution was performed at a flow rate of 0.2 mL min⁻¹ with H₂O + 0.1% formic acid (v/v) (eluent A) and MeOH + 0.1% formic acid (v/v) (eluent B), employing a linear gradient as follows: 95% A, 0-3 min; 95% to 5% A, 3-7 min; 5% A, 7-12 min; 5% to 95% A, 12-12.1 min; 95% A, 12.1-15 min. The sample injection volume was 2 μ L. Mass analyses were conducted in negative mode using electrospray ionization (ESI) source. The instrument parameters used for sample analysis were as follows: ion transfer tube temperature of 350 °C; source temperature of 300 °C; sheath gas pressure of 35 arb, auxiliary gas pressure of 10 arb, spray voltage of 3500 V. Mass spectrometric data was collected at full scan mode over a mass range of m/z 60-900 to identify the transformation products.


Table S1. Mass spectrum data and proposed molecular structures for the transformation products generated from BPA in heat/PDS system.

Transformation Products	Retention	Measured exact mass	Formula of derived molecule	Proposed structure
BPA	3.06	227.12741 [M-H] ⁻	$C_{15}H_{16}O_2$	HO—СН ₃ —ОН
P1	4.46	243.11685 [M-H] ⁻	$C_{15}H_{16}O_3$	HO CH ₃ OH
P2	2.45	258.91504 [M-H] ⁻	$C_{15}H_{16}O_4$	HO CH_3 CH_3 CH_3 CH_3
Р3	1.46	277.09781 [M+H] ⁺	$C_{15}H_{16}O_5$	HO CH_3 OH OH CH_3 OH
P4	0.83	290.90201 [M-H] ⁻	$C_{15}H_{16}O_6$	HO CH_3 OH CH_3 OH OH
P5	7.16	213.01425 [M-H] ⁻	$C_{14}H_{14}O_2$	но—СН ₃ —ОН
Р6	0.64	199.90761 [M-H] ⁻	$C_{13}H_{12}O_2$	HO C H_2 OH
Р7	1.89	109.02868 [M+H] ⁺	$\mathrm{C_7H_8O}$	HO—CH ₃


P8	7.514	135.04716 [M-H] ⁻	$C_9H_{12}O$	HO——CH CH CH ₃
P9	6.95	153.09103 [M-H]	$C_9H_{12}O_2$	СН ₃ СН СН ₂ ОН
P10	2.29	149.02335 [M-H]	$\mathrm{C_9H_{10}O_2}$	HO————————————————————————————————————
P11	3.04	137.02303 [M-H]	$\mathrm{C_7H_6O_3}$	но—соон
P12	6.17	95.06091 [M+H] ⁺	$\mathrm{C_6H_6O}$	Ф—он
P13	6.85	111.05555 [M+H] ⁺	$C_6H_6O_2$	HO—OH Or OH OH OH
P14	8.00	439.30029 [M+H] ⁺	$C_{30}H_{30}O_3$	HO————————————————————————————————————


Fig. S1. Effects of (a) initial PDS dosage at 60° C , (c) reaction temperature, (d) solution pH on the observed pseudo-first-order rate constant ($k_{\rm obs}$) of BPA degradation in heat/PDS system. Experimental conditions: [BPA]₀ = 40 μ M, [PDS]₀ = 1.0 mM, pH 7.0 \pm 0.1 maintained by 10.0 mM phosphate buffer.

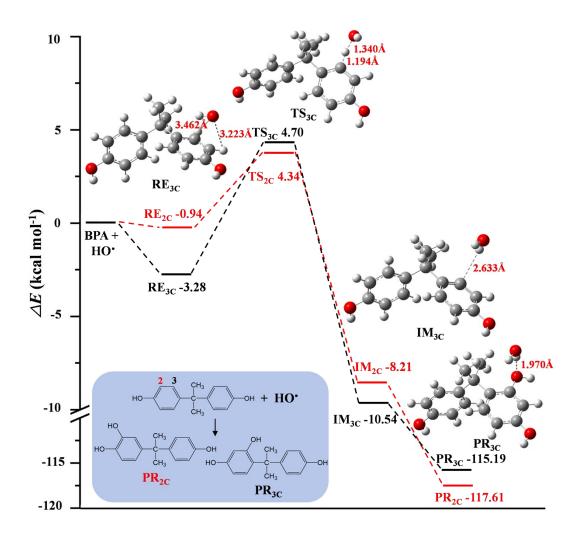

Fig. S2. Relationship between the $k_{\rm obs}$ of BPA degradation and reaction temperature. Experimental conditions: [BPA] $_0$ = 40 μ M, [PDS] $_0$ = 1.0 mM, pH 7.0 \pm 0.1 maintained by 10.0 mM phosphate buffer.

Fig. S3. Effects of MeOH, TBA, and IPA on the $k_{\rm obs}$ of BPA degradation in heat/PDS system. Experimental conditions: [BPA] $_0$ = 40 μ M, [PDS] $_0$ = 1.0 mM, [MeOH] $_0$ = 10 mM, [TBA] $_0$ = 10 mM, [IPA] $_0$ = 10 mM, pH 7.0 \pm 0.1 maintained by 10.0 mM phosphate buffer.

Fig. S4. Effects of (a) Cl⁻, (b) HCO₃⁻, and (c) NOM on the k_{obs} of BPA degradation in heat/PDS system. Experimental conditions: [BPA]₀ = 40 μ M, [PDS]₀ = 1.0 mM, [Cl⁻]₀ = 0-50 mM, [HCO₃⁻]₀ = 0-50 mM, [NOM]₀ = 0-10 mg/L, pH 7.0 \pm 0.1 maintained by 10.0 mM phosphate buffer.

Fig. S5. Calculation of the ΔE value for HO $^{\bullet}$ addition reactions at different C sites of BPA molecule.